High-Performance T-13/4 (5 mm)
TS AlGaAs Infrared (875 nm)
Lamp
Technical Data HSDL-4200 Series
HSDL-4220 30°
HSDL-4230 17°
Features
• Very High Power TS AlGaAs
Technology
• 875 nm Wavelength
• T-13/4 Package
• Low Cost
• Very High Intensity:
HSDL-4220 - 38 mW/sr
HSDL-4230 - 75 mW/sr
• Choice of Viewing Angle:
HSDL-4220 - 30°
HSDL-4230 - 17°
• Low Forward Voltage for
Series Operation
• High Speed: 40 ns Rise Times
• Copper Leadframe for
Improved Thermal and
Optical Characteristics
Applications
• IR Audio
• IR Telephones
• High Speed IR
Communications
IR LANs
IR Modems
IR Dongles
• Industrial IR Equipment
• IR Portable Instruments
Package Dimensions
• Interfaces with Crystal
Semiconductor CS8130
Infrared Transceiver
Description
The HSDL-4200 series of emitters
are the first in a sequence of
emitters that are aimed at high
power, low forward voltage, and
high speed. These emitters utilize
the Transparent Substrate, double
heterojunction, Aluminum Gal-
lium Arsenide (TS AlGaAs) LED
technology. These devices are
optimized for speed and efficiency
at emission wavelengths of 875
nm. This material produces high
radiant efficiency over a wide
range of currents up to 500 mA
peak current. The HSDL-4200
series of emitters are available in
a choice of viewing angles, the
HSDL-4230 at 17° and the
HSDL-4220 at 30°. Both lamps
are packaged in clear T-13/4
(5 mm) packages.
5.00 ± 0.20
(0.197 ± 0.008)
1.27
(0.050) NOM.
1.14 ± 0.20
(0.045 ± 0.008)
8.70 ± 0.20
(0.343 ± 0.008)
2.35
(0.093)MAX.
0.70
(0.028) MAX.
0.50 ± 0.10
(0.020 ± 0.004)
SQUARE
CATHODE
5.80 ± 0.20
(0.228 ± 0.008) CATHODE
2.54
(0.100) NOM.
31.4
(1.23) MIN.
2
The wide angle emitter, HSDL-
4220, is compatible with the IrDA
SIR standard and can be used
with the HSDL-1000 integrated
SIR transceiver.
Absolute Maximum Ratings
Parameter Symbol Min. Max. Unit Reference
Peak Forward Current IFPK 500 mA [2], Fig. 2b
Duty Factor = 20%
Pulse Width = 100 µs
Average Forward Current IFAVG 100 mA [2]
DC Forward Current IFDC 100 mA [1], Fig. 2a
Power Dissipation PDISS 260 mW
Reverse Voltage (IR = 100 µA) VR5V
Transient Forward Current (10 µs Pulse) IFTR 1.0 A [3]
Operating Temperature TO070°C
Storage Temperature TS-20 85 °C
LED Junction Temperature TJ110 °C
Lead Soldering Temperature 260 for °C
[1.6 mm (0.063 in.) from body] 5 seconds
Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and
the wire bonds.
Electrical Characteristics at 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Reference
Forward Voltage VF1.30 1.50 1.70 V IFDC = 50 mA Fig. 2a
2.15 IFPK = 250 mA Fig. 2b
Forward Voltage V/T -2.1 mV/°CI
FDC = 50 mA Fig. 2c
Temperature Coefficient -2.1 IFDC = 100 mA
Series Resistance RS2.8 ohms IFDC = 100 mA
Diode Capacitance CO40 pF 0 V, 1 MHz
Reverse Voltage VR220 V I
R
= 100 µA
Thermal Resistance, Rθjp 110 °C/W
Junction to Pin
The package design of these
emitters is optimized for efficient
power dissipation. Copper
leadframes are used to obtain
better thermal performance than
the traditional steel leadframes.
3
Optical Characteristics at 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Reference
Radiant Optical Power
HSDL-4220 PO19 mW IFDC = 50 mA
38 IFDC = 100 mA
HSDL-4230 PO16 mW IFDC = 50 mA
32 IFDC = 100 mA
Radiant On-Axis Intensity
HSDL-4220 IE22 38 60 mW/sr IFDC = 50 mA Fig. 3a
76 IFDC = 100 mA
190 IFPK = 250 mA Fig. 3b
HSDL-4230 IE39 75 131 mW/sr IFDC = 50 mA Fig. 3a
150 IFDC = 100 mA
375 IFPK = 250 mA Fig. 3b
Radiant On-Axis Intensity IE/T -0.35 %/°CI
FDC = 50 mA
Temperature Coefficient -0.35 IFDC = 100 mA
Viewing Angle
HSDL-4220 2θ1/2 30 deg IFDC = 50 mA Fig. 6
HSDL-4230 2θ1/2 17 deg IFDC = 50 mA Fig. 7
Peak Wavelength λPK 860 875 895 nm IFDC = 50 mA Fig. 1
Peak Wavelength ∆λ/T 0.25 nm/°CI
FDC = 50 mA
Temperature Coefficient
Spectral Width–at FWHM ∆λ 37 nm IFDC = 50 mA Fig. 1
Optical Rise and Fall tr/tf40 ns IFDC = 50 mA
Times, 10%-90%
Bandwidth fc9 MHz IF = 50 mA Fig. 8
±10 mA
Ordering Information
Part Number Lead Form Shipping Option
HSDL-4220 Straight Bulk
HSDL-4230 Straight Bulk
4
IFDC – MAX. DC FORWARD CURRENT – mA
0
0
TA – AMBIENT TEMPERATURE – °C
30 60
100
80
60
40
20
20 50 80
RθJA = 400 °C/W
4010 70
RθJA = 300 °C/W
RθJA = 500 °C/W
NORMALIZED RADIANT INTENSITY
300
I
FPK
– PEAK FORWARD CURRENT – mA
5000
1.5
2.0
100 400
0
0.5
200
1.0
NORMALIZED TO I
FPK
= 250 mA
VALID FOR PULSE
WIDTH = 1.6 µs
TO 100 µs
RELATIVE RADIANT INTENSITY
(NORMALIZED AT 50 mA)
40 100
0
IFDC – DC FORWARD CURRENT – mA
800
0.4
1.6
2.0
TA = 25 °C
20 60
0.8
1.2
RELATIVE RADIANT INTENSITY
850 950
0
λ – WAVELENGTH – nm
900800
0.5
1.0
1.5 T
A
= 25 °C
I
FDC
= 50 mA
V
F
– FORWARD VOLTAGE – V
20 80
1.0
T
A
– AMBIENT TEMPERATURE – °C
60-20
1.2
1.8
2.0
T
A
= 25 °C
040
1.4
1.6
I
FDC
= 100 mA
I
FDC
= 50 mA
I
FDC
= 1 mA
Figure 1. Relative Radiant Intensity
vs. Wavelength. Figure 2a. DC Forward Current vs.
Forward Voltage. Figure 2b. Peak Forward Current vs.
Forward Voltage.
Figure 2c. Forward Voltage vs
Ambient Temperature. Figure 3a. Relative Radiant Intensity
vs. DC Forward Current. Figure 3b. Normalized Radiant
Intensity vs. Peak Forward Current.
Figure 4. Maximum DC Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
Figure 5. Maximum Peak Forward
Current vs. Duty Factor.
IFPK – PEAK FORWARD CURRENT – mA
0.01
100
DUTY FACTOR
1,000
10.1
TA = 25 °C
PULSE WIDTH < 100 µs
IFPK – PEAK FORWARD CURRENT – mA
1.0
1,000
1
VF – FORWARD VOLTAGE – V
1.5 2.0 2.5 3.00.50
10
100 TA = 25 °C
IFDC – DC FORWARD CURRENT – mA
1.0
VF – FORWARD VOLTAGE – V
2.00
100
1,000
0.5 1.5
1
10
TA = 25 °C
5
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
RELATIVE RADIANT INTENSITY
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
100°90° 80° 70° 60° 50° 40° 30° 20° 10° 10° 20° 30° 40° 50° 60°70° 80° 90°100°
T = 25 °C
A
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
100°90° 80° 70° 60° 50° 40° 30° 20° 10° 10° 20° 30° 40° 50° 60°70° 80° 90°100°
T = 25 °C
A
RELATIVE RADIANT INTENSITY
RELATIVE RADIANT INTENSITY – dB
1E+6 1E+8
-10
f – FREQUENCY – Hz
1E+71E+5
-6
-2
2
T
A
= 25 °C
9 MHz
-9
-8
-7
-5
-4
-3
-1
0
1
Figure 8. Relative Radiant Intensity
vs. Frequency.
Figure 6. Relative Radiant Intensity vs.
Angular Displacement HSDL-4220.
Figure 7. Relative Radiant Intensity vs.
Angular Displacement HSDL-4230.
www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies Inc.
Obsoletes 5968-0956E (8/98)
5968-5912E (11/99)