L296
L296P
April1993
HIGH CURRENT SWITCHING REGULATORS
.4 AOUTPUT CURRENT
.5.1 V TO 40 V OUTPUT VOLTAGERANGE
.0 TO 100 % DUTY CYCLE RANGE
.PRECISE(±2 %)ON-CHIP REFERENCE
.SWITCHING FREQUENCY UP TO 200 KHz
.VERYHIGH EFFICIENCY (UP TO 90 %)
.VERYFEW EXTERNAL COMPONENTS
.SOFTSTART
.RESETOUTPUT
.EXTERNAL PROGRAMMABLE LIMITING
CURRENT (L296P)
.CONTROL CIRCUIT FOR CROWBAR SCR
.INPUT FOR REMOTE INHIBIT AND
SYNCHRONUS PWM
.THERMAL SHUTDOWN
DESCRIPTION
TheL296andL296Parestepdownpowerswitching
regulatorsdelivering 4 Aat a voltagevariable from
5.1 V to 40 V.
Featuresofthedevicesincludesoftstart,remotein-
hibit, thermal protection, a reset output for micro-
processors and a PWM comparator input for syn-
chronizationin multichip configurations.
The L296Pincudesexternalprogrammablelimiting
current.
TheL296and L296Paremountedin a15-leadMul-
tiwattplasticpowerpackageandrequiresveryfew
externalcomponents.
Efficient operation at switching frequencies up to
200 KHz allows a reductionin the size and costof
external filter components. A voltage sense input
and SCR drive output are provided for optional
crowbar overvoltage protection with an external
SCR.
Multiwatt
(15 lead)
ORDERING NUMBERS :
L296 (Vertical) L296HT (Horizontal)
L296P (Vertical) L296PHT (Horizontal)
PIN CONNECTION (top view)
1/21
PIN FUNCTIONS
N°Name Function
1 CROWBAR INPUT Voltage Sense Input for Crowbar Overvoltage Protection. Normally connected to the
feedback input thus triggering the SCR when V out exceeds nominal by 20 %. May
also monitor the input and a voltage divider can be added to increase the threshold.
Connected to ground when SCR not used.
2 OUTPUT Regulator Output
3 SUPPLY VOLTAGE Unrergulated Voltage Input. An internal Regulator Powers the L296s Internal Logic.
4 CURRENT LIMIT A resistor connected between this terminal and ground sets the current limiter
threshold. If this terminal is left unconnected the threshold is internally set (see
electrical characteristics).
5 SOFT START Soft Start Time Constant. A capacitor is connected between this terminal and ground
to define the soft start time constant. This capacitor also determines the average
short circuit output current.
6 INHIBIT INPUT TTL Level Remote Inhibit. A logic high level on this input disables the device.
7 SYNC INPUT Multiple L296s are synchronized by connecting the pin 7 inputs together and omitting
the oscillator RC network on all but one device.
8 GROUND Common Ground Terminal
9 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines the
regulation loop gain characteristics.
10 FEEDBACK INPUT The Feedback Terminal on the Regulation Loop. The output is connected directly to
this terminal for 5.1V operation ; it is connected via a divider for higher voltages.
11 OSCILLATOR A parallel RC networki connected to this terminal determines the switching frequency.
This pin must be connected to pin 7 input when the internal oscillator is used.
12 RESET INPUT Input of the Reset Circuit. The threshold is roughly 5 V. It may be connected to the
feedback point or via a divider to the input.
13 RESET DELAY A capacitor connected between this terminal and ground determines the reset signal
delay time.
14 RESET OUTPUT Open collector reset signal output. This output is high when the supply is safe.
15 CROWBAR OUTPUT SCR gate drive output of the crowbar circuit.
BLOCK DIAGRAM
L296 - L296P
2/21
CIRCUIT OPERATION
(refer to the block diagram)
The L296 and L296P are monolithic stepdown
switching regulatorsprovidingoutputvoltages from
5.1Vto 40V and delivering 4A.
Theregulationloopconsistsofasawtoothoscillator,
erroramplifier,comparatorandtheoutputstage.An
error signal is produced by comparing the output
voltagewithaprecise5.1Von-chipreference(zener
zaptrimmed to±2%).Thiserrorsignalisthencom-
paredwiththesawtoothsignalto generatethe fixed
frequencypulsewidthmodulatedpulseswhichdrive
theoutputstage.Thegainandfrequencystabilityof
theloopcanbeadjustedbyan externalRC network
connectedtopin9.Closingtheloopdirectlygivesan
outputvoltageof5.1V.Highervoltagesareobtained
byinserting a voltagedivider.
Outputovercurrents at switch on are preventedby
the soft start function. The error amplifier output is
initially clamped by the externalcapacitorCss and
allowedto rise, linearly, asthis capacitor is charged
bya constantcurrentsource.
Outputoverloadprotectionis providedin theformof
a current limiter. The load current is sensedby an
internal metal resistor connectedto a comparator.
When the loadcurrent exceedsa preset threshold
this comparator sets a flip flop which disables the
outputstageanddischargesthesoftstartcapacitor.
A second comparator resets the flip flop when the
voltage across the softstart capacitorhas fallen to
0.4V.The output stage is thus re-enabledand the
output voltage rises under control of the soft start
network.If theoverloadcondition is still presentthe
limiterwill triggeragain when the thresholdcurrent
is reached. The averageshort circuit current islim-
ited to a safe value by the dead time introduced by
the softstart network.
The reset circuit generates an output signal when
the supply voltage exceeds a threshold pro-
grammedbyan externaldivider. Theresetsignalis
generatedwitha delaytime programmed byan ex-
ternal capacitor. When the supply falls below the
threshold the reset output goes low immediately.
Thereset outputis anopen collector.
The scrowbar circuit sensesthe output voltageand
the crowbaroutput can providea currentof 100mA
toswitchonanexternalSCR. ThisSCRis triggered
when the output voltage exceeds the nominal by
20%. There is no internal connection between the
outputandcrowbar sense inputthereforethe crow-
bar can monitor either the input or the output.
ATTL -level inhibitinputisprovidedforapplications
suchasremoteon/offcontrol.Thisinputisactivated
byhighlogiclevel anddisablescircuitoperation.Af-
ter an inhibit the L296 restarts under control of the
soft startnetwork.
Thethermaloverload circuit disables circuit opera-
tion when the junction temperature reaches about
150 °C andhashysteresisto preventunstablecon-
ditions.
Figure 1 : Reset Output Waveforms
L296 - L296P
3/21
Figure 2 : SoftStartWaveforms
Figure 3 : CurrentLimiter Waveforms
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
ViInput Voltage (pin 3) 50 V
Vi–V
2Input to Output Voltage Difference 50 V
V2Output DC Voltage
Output Peak Voltage at t = 0.1 µsec f = 200KHz –1
–7 V
V
V
1
,V
12 Voltage at Pins 1, 12 10 V
V15 Voltage at Pin 15 15 V
V4,V
5
,V
7
,V
9
,V
13 Voltage at Pins 4, 5, 7, 9 and 13 5.5 V
V10,V
6Voltage at Pins 10 and 6 7 V
V14 Voltage at Pin 14 (I14 1 mA) Vi
I9Pin 9 Sink Current 1 mA
I11 Pin 11 Source Current 20 mA
I14 Pin 14 Sink Current (V14 < 5 V) 50 mA
Ptot Power Dissipation at Tcase 90 °C20W
T
j
,T
stg Junction and Storage Temperature 40 to 150 °C
L296 - L296P
4/21
THERMAL DATA
Symbol Parameter Value Unit
Rth j-case Thermal Resistance Junction-case Max. 3 °C/W
Rth j-amb Thermal Resistance Junction-ambient Max. 35 °C/W
ELECTRICAL CHARACTERISTICS
(refer to the test circuits Tj=25
o
C, Vi= 35V, unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
DYNAMIC CHARACTERISTICS (pin 6 to GND unless otherwise specified)
VoOutput Voltage Range Vi= 46V, Io=1A V
ref 40 V 4
ViInput Voltage Range Vo=V
ref to 36V, Io3A 9 46 V 4
ViInput Voltage Range Note (1), Vo=V
REF to 36V Io=4A 46 V 4
V
oLine Regulation Vi=10V to 40V, Vo=V
ref,I
o=2A 15 50 mV 4
V
oLoad Regulation Vo=V
ref
Io=2Ato4A
I
o= 0.5A to 4A 10
15 30
45
mV 4
Vref Internal Reference Voltage (pin 10) Vi= 9V to 46V, Io= 2A 5 5.1 5.2 V 4
Vref
TAverage Temperature Coefficient
of Reference Voltage Tj=0°C to 125°C, Io= 2A 0.4 mV/°C
VdDropout Voltage Between Pin 2
and Pin 3 Io=4A
I
o=2A 2
1.3 3.2
2.1 V
V4
4
I2L Current Limiting Threshold (pin 2) L296 - Pin 4 Open,
Vi= 9V to 40V, Vo=V
ref to 36V 4.5 7.5 A 4
L296P - Vi= 9V to 40V, Vo=V
ref
Pin 4 Open
RIim = 22k5
2.5 7
4.5
A4
I
SH Input Average Current Vi= 46V, Output Short-circuited 60 100 mA 4
ηEfficiency Io=3A
V
o=V
ref
Vo= 12V 75
85
%4
SVR Supply Voltage Ripple Rejection Vi=2V
rms,f
ripple = 100Hz
Vo=V
ref,I
o=2A 50 56 dB 4
f Switching Frequency 85 100 115 kHz 4
f
Vi
Voltage Stability of Switching
Frequency Vi= 9V to 46V 0.5 % 4
f
Tj
Temperature Stability of Switching
Frequency Tj=0°C to 125°C1%4
f
max Maximum Operating Switching
Frequency Vo=V
ref,I
o= 1A 200 kHz
Tsd Thermal Shutdown Junction
Temperature Note (2) 135 145 °C–
DC CHARACTERISTICS
I3Q Quiescent Drain Current Vi= 46V, V7= 0V, S1 : B, S2 : B
V6=0V
V
6=3V 66
30 85
40
mA
–I
2L Output Leakage Current Vi= 46V, V6= 3V, S1 : B, S2 : A,
V7=0V 2mA
Note (1) :Using min. 7 A schottky diode.
(2) :Guaranteed by design,not 100 % tested in production.
L296 - L296P
5/21
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
SOFT START
I5so Source Current V6= 0V, V5= 3V 80 130 150 µA6b
I
5si Sink Current V6= 3V, V5= 3V 50 70 120 µA6b
INHIBIT
V6L
V6H
Input Voltage
Low Level
High Level
Vi= 9V to 46V, V7= 0V,
S1 : B, S2 : B 0.3
20.8
5.5
V6a
–I
6L
–I
6H
Input Current
with Input Voltage
Low Level
High Level
Vi= 9V to 46V, V7= 0V,
S1 : B, S2 : B
V6= 0.8V
V6=2V 10
3
µA6a
ERROR AMPLIFIER
V9H High Level Output Voltage V10 = 4.7V, I9= 100µA,
S1 : A, S2 : A 3.5 V 6c
V9L Low Level Output Voltage V10 = 5.3V, I9= 100µA,
S1 : A, S2 : E 0.5 V 6c
I9si Sink Output Current V10 = 5.3V, S1 : A, S2 : B 100 150 µA6c
–I
9so Source Output Current V10 = 4.7V, S1 : A, S2 : D 100 150 µA6c
I
10 Input Bias Current V10 = 5.2V, S1 : B
V10 = 6.4V, S1 : B, L296P 2
210
10 µA
µA6c
6c
GvDC Open Loop Gain V9= 1V to 3V, S1 : A, S2 : C 46 55 dB 6c
OSCILLATOR AND PWM COMPARATOR
–I
7Input Bias Current of
PWM Comparator V7= 0.5V to 3.5V 5 µA6a
–I
11 Oscillator Source Current V11 = 2V, S1 : A, S2 : B 5 mA
RESET
V12 R Rising Threshold Voltage Vi= 9V to 46V,
S1 : B, S2 : B
Vref
-150mV Vref
-100mV Vref
-50mV V6d
V
12 F Falling Threshold Voltage 4.75 Vref
-150mV Vref
-100mV V6d
V
13 D Delay Thershold Voltage V12 = 5.3V, S1 : A, S2 : B 4.3 4.5 4.7 V 6d
V13 H Delay Threshold Voltage
Hysteresis 100 mV 6d
V14 S Output Saturation Voltage I14 = 16mA, V12 = 4.7V, S1, S2 : B 0.4 V 6d
I12 Input Bias Current V12 =0VtoV
ref,S1:B,S2:B 1 3 µA6d
–I
13 so
I13 si Delay Source Current
Delay Sink Current
V13 = 3V, S1 : A, S2 : B
V12 = 5.3V
V12 = 4.7V 70
10 110 140 µA
mA
6d
I14 Output Leakage Current Vi= 46V, V12 = 5.3V, S1 : B, S2 : A 100 µA6d
CROWBAR
V1Input Threshold Voltage S1 : B 5.5 6 6.4 V 6b
V15 Output Saturation Voltage Vi= 9V to 46V, Vi= 5.4V,
I15 = 5mA, S1 : A 0.2 0.4 V 6b
I1Input Bias Current V1= 6V, S1 : B 10 µA6b
–I
15 Output Source Current Vi= 9V to 46V, V1= 6.5V,
V15 = 2V, S1 : B 70 100 mA 6b
L296 - L296P
6/21
Figure 4 : DynamicTest Circuit
C7,C8 : EKR(ROE)
L1 : L = 300 µH at8 A Coretype : MAGNETICS58930 - A2 MPP
N°turns :43 Wire Gauge :1 mm (18 AWG) COGEMA 946044
(*) Minimumsuggested value (10 µF) toavoid oscillations. Ripple consideration leads to typical value of 1000 µF or higher.
Figure5 : PC.Board andComponent Layoutof the Circuit of Figure4 (1:1scale)
L296 - L296P
7/21
Figure 6 : DC Test Circuits.
Figure 6a. Figure 6b.
Figure 6c.
Figure 6d.
1 - Set V10 FORV9=1V
2 - Change V10 to obtain V9=3V
3-G
V=DV9=2V
V10 V10
L296 - L296P
8/21
Figure 7 : QuienscentDrain Current vs. Supply
Voltage(0 %Duty Cycle - see fig. 6a). Figure 8 : QuienscentDrain Current vs.Supply
Voltage(100 % Duty Cyclesee fig. 6a).
Figure 9 : QuiescentDrain Current vs. Junction
Temperature (0 % DutyCycle -
seefig.6a).
Figure 10 : QuiescentDrain Current vs. Junction
Temperature(100 % Duty Cycle -
see fig. 6a).
Figure 11 : ReferenceVoltage (pin 10) vs. VI
(seefig. 4). Figure12: ReferenceVoltage(pin 10)vs. Junction
Temperature(see fig. 4).
L296 - L296P
9/21
Figure 13 : OpenLoop FrequencyandPhase
Responseof Error Amplifier
(see fig. 6c).
Figure 14 : Switching Frequency vs. Input
Voltage(see fig.4).
Figure 15 : SwitchingFrequency vs. Junction
Temperature(seefig. 4). Figure 16 : Switching Frequency vs. R1
(see fig. 4).
Figure 17 : LineTransient Response(see fig.4). Figure 18 : Load Transient Response (see fig.4).
L296 - L296P
10/21
Figure 19 : SupplyVoltageRipple Rejectionvs.
Frequency(see fig. 4). Figure 20 : DropoutVoltageBetweenPin3 and
Pin2 vs. Current at Pin 2.
Figure 21 : DropoutVoltageBetweenPin 3 and
Pin 2 vs. Junction Temperature. Figure 22 : Power DissipationDerating Curve.
Figure 23 : PowerDissipation(device only) vs.
Input Voltage. Figure 24 : Power Dissipation(device only)vs.
Inputvoltage.
L296 - L296P
11/21
Figure 25 : PowerDissipation(device only) vs.
OutputVoltage(seefig. 4). Figure 26 : Power Dissipation(device only)vs.
OutputVoltage(see fig. 4).
Figure 28 : Efficiencyvs. OutputCurrent.
Figure 29 : Efficiency vs. OutputVoltage. Figure 30 : Efficiencyvs. OutputVoltage.
Figure27: VoltageandCurrentWaveformsatPin2
(seefig. 4).
L296 - L296P
12/21
Figure 31 : CurrentLimiting Thresholdvs. Rpin 4
(L296Ponly). Figure32: Current LimitingThresholdvs. Junction
Temperature.
Figure 33 : CurrentLimiting Thresholdvs.
SupplyVoltage.
L296 - L296P
13/21
APPLICATION INFORMATION
Figure 34 : TypicalApplicationCircuit.
(*) Minimum value (10 µF) to avoid oscillations ; ripple consideration leadsto typical value of 1000µF orhigher L1 : 58930 - MPP COGEMA
946044 ; GUP 20 COGEMA 946045
SUGGESTED INDUCTOR (L1)
Core Type No Turns Wire Gauge Air Gap
Magnetics 58930 A2MPP 43 1.0 mm
Thomson GUP 20 x 16 x 7 65 0.8 mm 1 mm
Siemens EC 35/17/10 (B6633& G0500 X127) 40 2 x 0.8 mm
VOGT 250 µH Toroidal Coil, Part Number 5730501800
Resistor Values for Standard Output Voltages
V0R8 R7
12 V
15 V
18 V
24 V
4.7 K
4.7 K
4.7 K
4.7 K
6.2 K
9.1 K
12 K
18 K
L296 - L296P
14/21
Figure35 : P.C.Boardand Component Layoutof the Circuit of fig. 34 (1:1 scale)
SELECTION OF COMPONENT VALUES (see fig. 34)
Component Recommended
Value Purpose Allowed Rage Notes
Min. Max.
R1
R2
100 kSet Input Voltage
Threshold for Reset. 220kR1/R2 Vi min
51
If output voltage is sensed R1 and
R2 may be limited and pin 12
connected to pin 10.
R3 4.3 kSets Switching Frequency 1 k100k
R4 10 kPull-down Resistor 22kMay be omitted and pin 6 grounded
if inhibit not used.
R5 15 kFrequency Compensation 10k
R6 Collector Load For Reset
Output VO
0.05A Omitted if reset function not used.
R7
R8
4.7 kDivider to Set Output
Voltage
1kR7/R8 = VOVREF
VREF -
Riim Sets Current Limit Level 7.5kIf Riim is omitted and pin 4 left open
the current limit is internally fixed.
C1 10 µF Stability 2.2µF
C2 2.2 µF Sets Reset Delay Omitted if reset function not used.
C3 2.2 nF Sets Switching Frequency 1 nF 3.3nF
C4 2.2 µF Soft Start 1 µF Also determines average short
circuit current.
C5 33 nF Frequency Compensation
C6 390 pF High Frequency
Compensation Not required for 5 V operation.
C7, C8
L1 100 µF
300 µHOutput Filter
100µH
Q1 Crowbar Protection The SCR must be able to withstand
the peak discharge current of the
output capacitor and the short
circuit current of the device.
D1 Recirculation Diode 7A Schottky or 35 ns trr Diode.
L296 - L296P
15/21
Figure 36 : A Minimal5.1 V Fixed Regulator.Very Few Componentsare Required.
Figure 37 : 12 V/10 A Power Supply.
L296 - L296P
16/21
Figure 38 : ProgrammablePowerSupply.
Vo= 5.1 to 15 V
Io= 4 A max. (min. load current = 100 mA)
ripple 20mV
load regulation (1 A to 4 A)= 10 mV(V o=5.1V)
lineregulation (220 V ±15 % and to Io= 3 A) = 15 mV(V o= 5.1 V)
Figure 39 : PreregulatorforDistributedSupplies.
(*)L2 and C2 are necessary to reduce the switching frequency spikes.
L296 - L296P
17/21
Figure 40 : InMultiple SuppliesSeveralL296s
canbe SynchronizedAs Shown. Figure 41 : VoltageSensing for RemoteLoad.
Figure 42 : A 5.1V/15 V/24 V Multiple Supply. Notethe Synchronization of theThree L296s.
L296 - L296P
18/21
Figure 43 : 5.1V/2APower SupplyusingExternal
Limiting CurrentResistor andCrow-
bar Protectionon the Supply Voltage
(L296Ponly)
SOFT-START AND REPETITIVE POWER-ON
Whenthedeviceisrepetitivelypowered-on,thesoft-
startcapacitor, CSS, must be dischargedrapidly to
ensurethateachstartis”soft”.Thiscanbeachieved
economicallyusingtheresetcircuit,asshowninFig-
ure44.
In this circuit thedividerR1, R2 connectedto pin 12
determines the minimum supply voltage, below
which theopencollectortransistoratthepin14out-
put discharges CSS.
Figure44
Figure 45
Figure 46
Theapproximatedischargetimesobtainedwith this
circuit are :
CSS (µF) tDIS (µs)
2.2
4.7
10
200
300
600
Ifthesetimesarestilltoolong,anexternalPNPtran-
sistor may be added, as shown in Figure45 ; with
this circuit discharge times of a few microseconds
may be obtained.
HOW TO OBTAIN BOTH RESET AND
POWER FAIL
Figure46illustrateshowitispossibletoobtainatthe
same time both the power fail and reset functions
simply by addingonediode(D) andoneresistor(R).
In this case the Reset delay time (pin 13) can only
start when theoutputvoltageis VOVREF - 100mV
and the voltageaccross R2 is higherthan 4.5V.
With thehysteresisresistor itis possibletofix thein-
put pin 12 hysteresis in order to increaseimmunity
to the 100Hz ripple present on the supplyvoltage.
Moreover, the power fail and reset delay time are
automaticallylocked to the soft-start.Soft-startand
delayedresetare thustwo sequentialfunctions.
The hysteresis resistor should be In the range of
aboit 100kandthe pull-up resistor of 1 to 2.2k.
L296 - L296P
19/21
PMMUL15V.EPS
MULTIWATT15 VERTICAL PACKAGE MECHANICAL DATA
Dimensions Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 22.1 22.6 0.870 0.890
L1 22 22.5 0.866 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.2 4.3 4.6 0.165 0.169 0.181
M1 4.5 5.08 5.3 0.177 0.200 0.209
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia. 1 3.65 3.85 0.144 0.152
MUL15V.TBL
L296 - L296P
20/21
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-
tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-
viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L296 - L296P
21/21
L4960
2.5APOWER SWITCHING REGULATOR
2.5AOUTPUTCURRENT
5.1V TO 40V OPUTPUT VOLTAGE RANGE
PRECISE (±2%)ON-CHIP REFERENCE
HIGHSWITCHING FREQUENCY
VERYHIGH EFFICIENCY (UPTO 90%)
VERY FEW EXTERNALCOMPONENTS
SOFTSTART
INTERNAL LIMITING CURRENT
THERMAL SHUTDOWN
DESCRIPTION
The L4960 is a monolithicpower switching regula-
tor delivering2.5A at avoltage variable from 5V to
40V in stepdown configuration.
Featuresof thedevice include currentlimiting, soft
start,thermal protection and 0 to 100% duty cycle
for continuousoperation mode.
April 1995
ORDERING NUMBERS: L4960 (Vertical)
L4960H (Horizontal)
HEPTAWATT
BLOCK DIAGRAM
TheL4960is mountedinaHeptawattplasticpower
package and requires very few external compo-
nents.
Efficient operation at switching frequencies up to
150KHz allows a reductionin the size and cost of
externalfilter components.
1/15
PIN CONNECTION (Top view)
2/15
N°NAME FUNCTION
1 SUPPLY VOLTAGE Unregulated voltage input. An internal regulator powers the
internal logic.
2 FEEDBACK INPUT The feedback terminal of the regulation loop. The output is
connected directly to this terminal for 5.1V operation; it is
connected via a dividerfor higher voltages.
3 FREQUENCY
COMPENSATION A series RC network connected between this terminal and
ground determines the regulation loop gain characteristics.
4 GROUND Common ground terminal.
5 OSCILLATOR A parallel RC network connected to this terminal determines the
switching frequency.
6 SOFT START Soft start time constant. A capacitor is connected between this
terminal and ground to define the soft start time constant. This
capacitor also determines the average short circuit output
current.
7 OUTPUT Regulator output.
PIN FUNCTIONS
Symbol Parameter Value Unit
V1Input voltage 50 V
V1-V
7Input to output voltage difference 50 V
V7Negative output DC voltage -1 V
Negative output peak voltage at t = 0.1µs; f = 100KHz -5 V
V3,V
6Voltage at pin 3 and 6 5.5 V
V2Voltage at pin 2 7V
I
3
Pin 3 sink current 1 mA
I5Pin 5 source current 20 mA
Ptot Power dissipation at Tcase 90°C15 W
Tj,T
stg Junction and storage temperature -40 to 150 °C
ABSOLUTE MAXIMUM RATINGS
L4960
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS
VoOutput voltage range Vi= 46V Io=1A V
ref 40 V
ViInput voltage range Vo=V
ref to 36V Io= 2.5A 9 46 V
VoLine regulation Vi= 10V to 40V Vo=V
ref Io=1A 15 50 mV
V
oLoad regulation Vo=V
ref Io= 0.5Ato 2A 10 30 mV
Vref Internal reference voltage
(pin 2) Vi= 9V to 46V Io= 1A 5 5.1 5.2 V
Vref
TAverage temperature
coefficient of refer voltage Tj=0°C to 125°C
Io=1A 0.4 mV/°C
VdDropout voltage Io= 2A 1.4 3 V
Iom Maximum operating load
current Vi= 9V to 46V
Vo=V
ref to 36V 2.5 A
I7L Current limiting threshold
(pin 7) Vi= 9V to 46V
Vo=V
ref to 36V 3 4.5 A
ISH Input average current Vi= 46V; output short-circuit 30 60 mA
ηEfficiency f = 100KHz Vo=V
ref 75 %
Io=2A V
o= 12V 85 %
SVR Supply voltage ripple
rejection Vi=2V
rms
fripple = 100Hz
Vo=V
ref Io = 1A
50 56 dB
f Switching frequency 85 100 115 KHz
f
Vi
Voltage stability of
switching frequency Vi= 9V to 46V 0.5 %
f
Tj
Temperature stability of
switching frequency Tj=0°C to 125°C1%
f
max Maximum operating
switching frequency Vo=V
ref Io= 2A 120 150 KHz
Tsd Thermal shutdown
junction temperature 150 °C
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, unless otherwise
specified)
Symbol Parameter Value Unit
Rth j-case Thermalresistance junction-case max 4 °C/W
Rth j-amb Thermalresistance junction-ambient max 50 °C/W
THERMAL DATA
3/15
L4960
4/15
Symbol Parameter TestConditions Min. Typ. Max. Unit
DC CHARACTERISTICS
I1Q Quiescent draincurrent 100% duty cycle
pins 5 and 7 open Vi= 46V
30 40 mA
0% duty cycle 15 20 mA
-I7L Output leakagecurrent 0% duty cycle 1 mA
SOFT START
I6SO Source current 100 140 180 µA
I6SI Sink current 50 70 120 µA
ERROR AMPLIFIER
V3H High leveloutput voltage V2= 4.7V I3= 100µA3.5 V
V3L Low leveloutput voltage V2= 5.3V I3= 100µA0.5 V
I3SI Sink output current V2= 5.3V 100 150 µA
-I3SO Source outputcurrent V2= 4.7V 100 150 µA
I2Input bias current V2= 5.2V 2 10 µA
GvDC open loop gain V3=1Vto3V 46 55 dB
OSCILLATOR
-I5Oscillator source current 5 mA
ELECTRICAL CHARACTERISTICS (continued)
L4960
CIRCUIT OPERATION (refer to the block diagram)
TheL4960isamonolithicstepdownswitchingregu-
latorprovidingoutputvoltagesfrom5.1Vto40Vand
delivering 2.5A.
The regulation loop consistsof a sawtooth oscilla-
tor, error amplifier, comparator and the output
stage.An errorsignalisproducedbycomparingthe
output voltage with a precise 5.1V on-chip refer-
ence (zener zap trimmedto ±2%).
Thiserrorsignalisthencomparedwiththesawtooth
signal to generatethe fixedfrequency pulse width
modulatedpulseswhich drivethe output stage.
The gain andfrequency stability of the loop can be
adjusted by an external RC network connected to
pin 3. Closing the loop directly gives an output
voltage of 5.1V. Higher voltages are obtained by
inserting a voltage divider.
Outputovercurrents at switch on are preventedby
the soft start function. The error amplifier output is
initially clamped by the external capacitor Css and
allowedto rise, linearly,asthiscapacitorischarged
by a constantcurrent source. Output overloadpro-
tection is providedin the form of a current limiter.
The load current is sensed by an internal metal
resistor connectedto a comparator. Whenthe load
currentexceedsa presetthresholdthiscomparator
sets a flip flop which disables the output stageand
dischargesthe soft startcapacitor. A second com-
parator resets the flipflop when the voltage across
the soft start capacitorhas fallen to 0.4V.
The output stage is thus re-enabled and the output
voltage risesunder controlof the soft startnetwork.
If the overload condition is still present the limiter
will trigger again when the threshold current is
reached.Theaverageshortcircuitcurrentislimited
to a safe value by the dead time introduced by the
softstart network.The thermaloverload circuit dis-
ables circuit operation when the junction tempera-
ture reaches about 150°C and has hysteresis to
preventunstable conditions.
Figure 1. Soft start waveforms
Figure 2. Current limiter waveforms
5/15
L4960
6/15
Figure 4. Quiescent drain
current vs.supply voltage (0%
duty cycle)
Figure 5. Quiescent drain
current vs. supply voltage
(100% duty cycle)
Figure 6. Quiescent drain
current vs. junction tem-
perature (0% duty cycle)
Figure 3. Test and applicationcircuit
C6, C7: EKR (ROE)
L1 = 150µH at 5A(COGEMA 946042)
CORE TYPE: MAGNETICS 58206-A2 MPP
N°TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
L4960
Figure 7. Quiescent drain
current vs. junction tem-
perature (100% duty cycle)
Figure 8. Reference voltage
(pin 2) vs. ViFigure 9. Reference voltage
versus junction temperature
(pin 2)
Figure 10. Open loop fre-
quency and phase responde
of error amplifier
Figure 11. Switching fre-
quency vs. input voltage Figure 12. Switching fre-
quency vs. junction tem-
perature
Figure 13. Switching fre-
quencyvs.R2(seetest circuit) Figure 14. Line transient
response Figure 15. Load transient
response
7/15
L4960
8/15
Figure 16. Supply voltage
ripple rejection vs. frequency Figure 17. Dropout voltage
between pin 1 and pin 7 vs.
current at pin 7
Figure 18. Dropout voltage
between pin 1 and 7 vs.
junction temperature
Figure 19. Power dissipation
derating curve Figure 20. Efficiency vs.
output current Figure 21. Efficiency vs.
output current
Figure 22. Efficiency vs.
output current Figure 23. Efficiency vs.
output voltage
L4960
APPLICATION INFORMATION
Figure 24. Typical application circuit
C1,C
6
,C
7
: EKR (ROE)
D1: BYW80 OR 5ASCHOTTKY DIODE
SUGGESTED INDUCTOR: L1= 150µHat5A
CORE TYPE: MAGNETICS 58206- A2 -MPP
N°TURNS: 45, WIRE GAUGE: 0.8mm (20 AWG), COGEMA 946042
U15/GUP15: N°TURNS: 60, WIRE GAUGE: 0.8mm (20 AWG), AIR GAP: 1mm, COGEMA 969051.
Figure 25. P.C. board and component layout of
the Fig. 24 (1 : 1 scale)
Resistor values for
standard output voltages
VoR3 R4
12V
15V
18V
24V
4.7K
4.7K
4.7K
4.7K
6.2K
9.1K
12K
18K
9/15
L4960
10/15
APPLICATION INFORMATION
Figure 26. A minimal 5.1V fixed regulator; Very few component are required
* COGEMA946042 (TOROID CORE)
969051 (U15 CORE)
** EKR (ROE)
Figure 27. Programmable power supply
Vo= 5.1V to 15V
Io= 2.5Amax
Loadregulation (1A to 2A) = 10mV (Vo= 5.1V)
L4960
APPLICATION INFORMATION (continued)
Figure 28. Microcomputer supply with + 5.1V, -5V, +12V and -12V outputs
11/15
L4960
12/15
APPLICATION INFORMATION (continued)
Figure 29. DC-DC converter5.1V/4A,±12V/2.5A;a suggestionhowtosynchronize anegativeoutput
L1, L3 = COGEMA946042 (969051)
L2 = COGEMA 946044 (946045)
D1,D
2
,D
3= BYW80
Figure 30. - In multiple supplies several L4960s can besynchronizedas shown
L4960
APPLICATION INFORMATION (continued)
Figure 31. Regulator for distributed supplies
MOUNTING INSTRUCTION
Thepowerdissipatedinthecircuitmustberemoved
by addingan external heatsink.
Thanks to the Heptawatt package attaching the
hetsink is very simple, a screw or a compression
spring (clip)being sufficient. Betweenthe heatsink
and thepackageit isbettertoinserta layerofsilicon
grease, to optimize the thermal contact, no electri-
cal isolationis needed between the two surfaces.
Figure 32. Mounting example
13/15
L4960
14/15
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189
C 1.37 0.054
D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022
F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.41 2.54 2.67 0.095 0.100 0.105
G1 4.91 5.08 5.21 0.193 0.200 0.205
G2 7.49 7.62 7.8 0.295 0.300 0.307
H2 10.4 0.409
H3 10.05 10.4 0.396 0.409
L 16.97 0.668
L1 14.92 0.587
L2 21.54 0.848
L3 22.62 0.891
L5 2.6 3 0.102 0.118
L6 15.1 15.8 0.594 0.622
L7 6 6.6 0.236 0.260
M 2.8 0.110
M1 5.08 0.200
Dia 3.65 3.85 0.144 0.152
HEPTAWATT PACKAGE MECHANICAL DATA
L4960
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products arenot authorized for useas critical components in life supportdevices or systems without express
written approvalof SGS-THOMSON Microelectronics.
1995 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil -France - Germany - Hong Kong - Italy - Japan- Korea - Malaysia -Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan -Thaliand - United Kingdom - U.S.A.
15/15
L4960
L4962
1.5APOWER SWITCHING REGULATOR
1.5AOUTPUTCURRENT
5.1VTO 40V OUTPUT VOLTAGE RANGE
PRECISE (±2%) ON-CHIP REFERENCE
HIGH SWITCHING FREQUENCY
VERYHIGH EFFICIENCY (UP TO 90%)
VERYFEW EXTERNAL COMPONENTS
SOFTSTART
INTERNALLIMITINGCURRENT
THERMAL SHUTDOWN
DESCRIPTION
The L4962is a monolithic powerswitching regula-
tor delivering 1.5A at a voltagevariable from5V to
40Vin stepdown configuration.
Featuresof the device include current limiting, soft
start,thermal protection and 0 to 100% duty cycle
for continuousoperating mode.
March 1996
ORDERING NUMBERS : L4962/A(12+2+2Powerdip)
L4962E/A (Heptawatt)
L4962EH/A (Horizontal
Heptawatt)
TheL4962ismountedina16-leadPowerdipplastic
packageandHeptawattpackageandrequiresvery
few externalcomponents.
Efficient operation at switching frequencies up to
150KHz allows a reduction in the size and cost of
externalfilter components.
HEPTAWATT
POWERDIP
(12 + 2 + 2)
BLOCK DIAGRAM
Pin X = Powerdip
Pin (X) = Heptawatt
1/15
PIN CONNECTION (Top view)
2/15
Symbol Parameter Heptawatt Powerdip
Rth j-case Thermal resistance junction-case max 4°C/W -
Rth j-pins Thermal resistance junction-pins max - 14°C/W
Rth j-amb Thermal resistance junction-ambient max 50°C/W 80°C/W*
* Obtained with the GND pins soldered to printed circuit with minimized copper area.
THERMAL DATA
HEPTAWATT POWERDIP NAME FUNCTION
1 7 SUPPLY VOLTAGE Unregulated voltage input. An internal regulator powers
the internallogic.
2 10 FEEDBACK INPUT The feedback terminal of theregulation loop. The output
is connected directly to this terminal for 5.1V operation;
it is connected via a divider for higher voltages.
3 11 FREQUENCY
COMPENSATION A series RC network connected between this terminal
and ground determines the regulation loop gain
characteristics.
PIN FUNCTIONS
Symbol Parameter Value Unit
V7Inputvoltage 50 V
V7-V
2Inputto output voltagedifference 50 V
V2Negativeoutput DC voltage -1 V
Output peak voltage at t = 0.1µs; f = 100KHz -5 V
V11,V
15 Voltage at pin 11,15 5.5 V
V10 Voltage at pin 10 7 V
I11 Pin 11 sink current 1 mA
I14 Pin 14 source current 20 mA
Ptot Power dissipation at Tpins 90°C (Powerdip)
Tcase 90°C (Heptawatt) 4.3
15 W
W
Tj,T
stg Junctionand storage temperature -40 to 150 °C
ABSOLUTE MAXIMUM RATINGS
L4962
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS
VoOutput voltage range Vi= 46V Io=1A V
ref 40 V
ViInput voltage range Vo=V
ref to 36V Io= 1.5A 9 46 V
VoLine regulation Vi= 10V to 40V Vo=V
ref Io=1A 15 50 mV
V
oLoad regulation Vo=V
ref Io= 0.5A to 1.5A 8 20 mV
Vref Internal reference voltage
(pin 10) Vi= 9V to 46V Io= 1A 5 5.1 5.2 V
Vref
TAverage temperature
coefficient of refer. voltage Tj=0°C to 125°C
Io=1A 0.4 mV/°C
VdDropout voltage Io= 1.5A 1.5 2 V
Iom Maximum operating load
current Vi= 9V to 46V
Vo=V
ref to 36V 1.5 A
I2L Current limiting threshold
(pin 2) Vi= 9V to 46V
Vo=V
ref to 36V 2 3.3 A
ISH Input average current Vi= 46V; output short-circuit 15 30 mA
ηEfficiency f = 100KHz Vo=V
ref 70 %
Io=1A V
o= 12V 80 %
SVR Supply voltage ripple
rejection Vi=2V
rms
fripple = 100Hz
Vo=V
ref Io = 1A
50 56 dB
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, unless otherwise
specified)
HEPTAWATT POWERDIP NAME FUNCTION
4 4, 5, 12, 13 GROUND Common ground terminal.
5 14 OSCILLATOR A parallel RC network connected to this terminal
determines the switching frequency. This pin must be
connected to pin 7 input when the internal oscillator is
used.
6 15 SOFT START Soft start time constant. A capacitor is connected
between this terminal and ground to define the soft start
time constant. This capacitor also determines the
average short circuit output current.
7 2 OUTPUT Regulator output.
1, 3,6,
8, 9, 16 N.C.
PIN FUNCTIONS (cont’d)
3/15
L4962
4/15
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS (cont’d)
f Switching frequency 85 100 115 KHz
f
ViVoltagestability of
switching frequency Vi= 9V to 46V 0.5 %
f
TjTemperature stability of
switching frequency Tj=0°C to 125°C1%
f
max Maximum operating
switching frequency Vo=V
ref Io= 1A 120 150 KHz
Tsd Thermal shutdown
junction temperature 150 °C
DC CHARACTERISTICS
I7Q Quiescent drain current 100% duty cycle
pins 2 and 14 open Vi= 46V
30 40 mA
0% duty cycle 15 20 mA
-I2L Output leakage current 0% duty cycle 1 mA
SOFTSTART
I15SO Source current 100 140 180 µA
I15SI Sink current 50 70 120 µA
ERROR AMPLIFIER
V11H High level output voltage V10 = 4.7V I11 = 100µA 3.5 V
V11L Low level output voltage V10 = 5.3V I11 = 100µA 0.5 V
I11SI Sink output current V10 = 5.3V 100 150 µA
-I11SO Source output current V10 = 4.7V 100 150 µA
I10 Input bias current V10 = 5.2V 2 10 µA
GvDC open loop gain V11 =1Vto3V 46 55 dB
OSCILLATOR
-I14 Oscillator source current 5 mA
ELECTRICALCHARACTERISTICS (continued)
L4962
CIRCUIT OPERATION (refer tothe block diagram)
TheL4962isamonolithicstepdownswitchingregu-
latorprovidingoutputvoltagesfrom5.1Vto40Vand
delivering 1.5A.
The regulation loop consistsof a sawtoothoscilla-
tor, error amplifier, comparator and the output
stage.Anerrorsignalisproducedbycomparingthe
output voltage with a precise 5.1V on-chip refer-
ence (zenerzap trimmed to ±2%).
Thiserrorsignalisthencomparedwiththesawtooth
signal to generate the fixed frequency pulse width
modulatedpulses which drive the output stage.
The gain and frequencystability of theloop can be
adjusted by an external RC network connected to
pin 11. Closing the loop directly gives an output
voltage of 5.1V. Higher voltages are obtained by
inserting a voltagedivider.
Output overcurrents at switch on are prevented by
the soft start function. The error amplifier output is
initially clamped by the external capacitor Css and
allowedto rise, linearly,as this capacitoris charged
by a constant currentsource. Output overloadpro-
tection is provided in the form of a current limiter.
The load current is sensed by an internal metal
resistorconnectedto a comparator.When theload
current exceedsa presetthresholdthis comparator
sets a flip flop which disables the output stage and
dischargesthe soft start capacitor. Asecond com-
parator resets the flip flop when the voltage across
the soft start capacitorhas fallento 0.4V.
The output stage is thus re-enabledand theoutput
voltagerises undercontrolof thesoftstart network.
If the overload condition is still present the limiter
will trigger again when the threshold current is
reached.Theaverageshortcircuitcurrentis limited
to a safevalue by the dead time introducedby the
soft start network.The thermal overload circuit dis-
ables circuit operation when the junction tempera-
ture reaches about 150°C and has hysteresis to
prevent unstableconditions.
Figure 1. Softstart waveforms
Figure 2. Current limiter waveforms
5/15
L4962
6/15
Figure 4. Quiescent drain
currentvs.supplyvoltage(0%
duty cycle)
Figure 5. Quiescent drain
current vs. supply voltage
(100% duty cycle)
Figure 6. Quiescent drain
current vs. junction tem-
perature (0% duty cycle)
Figure 3. Test and applicationcircuit (Powerdip)
1) D1: BYW98 or 3A Schottky diode, 45V of VRRM;
2) L1: CORE TYPE- MAGNETICS 58120 - A2 MPP
N°TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
3) C6,C
7
: ROE, EKR 220µF 40V
L4962
Figure 7. Quiescent drain
current vs. junction tem-
perature(100% duty cycle)
Figure 8. Reference voltage
(pin 10) vs. Virdip) vs. ViFigure 9. Reference voltage
(pin 10 ) vs. junction tem-
perature
Figure 10. Open loop fre-
quency and phase re- sponse
of error amplifier
Figure 11. Switching fre-
quency vs. input voltage Figure 12. Switching fre-
quency vs. junction tem-
perature
Figure 13. Switching fre-
quencyvs.R2(seetestcircuit) Figure 15. Load transient
response
Figure 14. Line transient
response
7/15
L4962
8/15
Figure 16. Supply voltage
ripple rejectionvs. frequency Figure 17. Dropout voltage
between pin 7 and pin 2 vs.
current at pin 2
Figure 18. Dropout voltage
between pin 7 and 2 vs.
junction temperature
Figure 19. Efficiency vs.
output current Figure 20. Efficiency vs.
output current Figure 21. Efficiency vs.
output current
Figure 22. Efficiency vs.
output voltage Figure 23. Efficiency vs.
output voltage Figure 24. Maximum allow-
able power dissipationvs.am-
bient temperature(Powerdip)
L4962
APPLICATION INFORMATION
Figure 25. Typical application circuit
C1,C
6
,C
7
: EKR (ROE)
D1: BYW98 OR VISK340 (SCHOTTKY)
SUGGESTED INDUCTORS: (L1) = MAGNETICS 58120 - A2MPP- 45 TURNS - WIRE GAUGE 0.8mm (20AWG)
COGEMA946043
OR U15, GUP15, 60 TURNS 1mm, AIR GAP 0.8mm (20 AWG) - COGEMA969051.
Figure 26. P.C.board and component layout of the circuit of Fig. 25 (1 : 1 scale)
Resistor valuesfor
standard output 7 voltages
VoR3 R4
12V
15V
18V
24V
4.7K
4.7K
4.7K
4.7K
6.2K
9.1K
12K
18K
9/15
L4962
10/15
APPLICATION INFORMATION (continued)
Figure 27. - Aminimal 5.1V fixed regulator; Veryfew component arerequired
* COGEMA946043 (TOROID CORE)
969051 (U15 CORE)
** EKR (ROE)
Figure 28. Programmablepower supply
Vo= 5.1V to 15V
Io= 1.5Amax
Load regulation (0.5A to 1.5A) = 10mV (Vo= 5.1V)
Line regulation (220V ±15% and to Io= 1A) = 15mV (Vo= 5.1V)
L4962
APPLICATION INFORMATION (continued)
Figure 29. DC-DC converter 5.1V/4A,±12V/1A.A suggestion how to synchronize a negative output
L1, L3 = COGEMA 946043 (969051)
L2 = COGEMA946044 (946045)
Figure 30. In multiple suppliesseveral
L4962s can be synchronizedas shown Figure 31. Preregulator for distributedsupplies
* L2 and C2 are necessary to reduce the switchingfrequency spikes
when linear regulators are remote from L4962
11/15
L4962
12/15
MOUNTING INSTRUCTION
The Rth-j-amb of the L4962 can be reduced by
solderingtheGND pinsto a suitablecopperareaof
the printed circuit board (Fig. 32).
The diagram of figure 33 shows the Rth-j-amb as a
function of the side ”l” of two equal square copper
areashavingthethicknessof35µ(1.4mils). During
soldering the pins temperature must not exceed
260°C and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper are
must be connected to electrical ground.
Figure 32.Exampleof P.C.boardcopperareawhichis used
as heatsink Figure 33. Maximum dissipable
power and junction to ambient
thermal resistance vs. side ”l”
L4962
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 20.0 0.787
E 8.80 0.346
e 2.54 0.100
e3 17.78 0.700
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
POWERDIPPACKAGE MECHANICAL DATA
13/15
L4962
14/15
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189
C 1.37 0.054
D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022
F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.41 2.54 2.67 0.095 0.100 0.105
G1 4.91 5.08 5.21 0.193 0.200 0.205
G2 7.49 7.62 7.8 0.295 0.300 0.307
H2 10.4 0.409
H3 10.05 10.4 0.396 0.409
L 16.97 0.668
L1 14.92 0.587
L2 21.54 0.848
L3 22.62 0.891
L5 2.6 3 0.102 0.118
L6 15.1 15.8 0.594 0.622
L7 6 6.6 0.236 0.260
M 2.8 0.110
M1 5.08 0.200
Dia 3.65 3.85 0.144 0.152
HEPTAWATT PACKAGE MECHANICAL DATA
L4962
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is grantedby implication orotherwise under anypatent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are notauthorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.
1996 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil -France - Germany- Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden- Switzerland - Taiwan- Thaliand - United Kingdom - U.S.A.
15/15
L4962
L4963
L4963D
1.5ASWITCHING REGULATOR
October 1991
Thisisadvanced informationon anewproduct now in development or underogin evaluation. Details aresubject tochange withoutnotice.
1.5AOUTPUTLOADCURRENT
5.1 TO 36V OUTPUT VOLTAGERANGE
DISCONTINUOUS VARIABLE FREQUENCY
MODE
PRECISE (+/–2%) ON CHIP REFERENCE
VERYHIGH EFFICIENCY
VERYFEW EXTERNALCOMPONENTS
NO FREQ. COMPENSATION REQUIRED
RESET AND POWER FAIL OUTPUT FOR MI-
CROPROCESSOR
INTERNALCURRENT LIMITING
THERMAL SHUTDOWN
DESCRIPTION
The L4963is a monolithicpower switching regulator
delivering1.5Aat5.1V.The outputvoltageis adjust-
able from 5.1V to 36V, working in discontinuous
variable frequency mode. Features of the device
include remote inhibit, internal current limiting and
thermal protection, reset and power fail outputs for
microprocessor.
BLOCKDIAGRAM
Powerdip12+3+3 SO20
ORDERING NUMBERS:
L4963W L4963D
The L4963is mounted in a 12+3+3lead Powerdip
(L4963) and SO20 large (L4963D) plastic pack-
ages and requires very few external components.
1/17
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
SO20 Powerdip
ViInput Voltage (pin 1 and pin 3 connected togheter) 47 V
V3–V2Input to Output VoltageDifference 47 V
V2Negative Output DC Voltage –1 V
V2Negative Output Peak Voltageat t=0.2 µs, f=50kHz –5 V
V8V7Power FailInput 25 V
V9,V
11 V8,V
10 Reset and Power Fail Output Vi
V10 V9Reset Delay Input 5.5 V
V13,V
18 V12,V
16 Feedback and Inhibit Inputs 7V
V
19,V
20 V17,V
18 Oscillator Inputs 5.5 V
Ptot TotalPower Dissipation Tpins 90°C (Power DIP)
(Tamb =70°C no copper area on PCB)
(Tamb =70°C, 4cm2copper area on PCB)
5
1.3
2
W
W
W
Tstg,T
jStorage & JunctionTemperature
(Tamb = 70°C 6cm2copper area on PCB) –40 to 150
1.45 °C
W
Ptot TotalPower Dissipation Tpins 90°C (SO20L) 4W
PIN CONNECTION (top view)
Powerdip18
SO20
L4963 - L4963D
2/17
PIN FUNCTIONS
SO20L Power DIP Name Description
11
SIGNAL SUPPLY VOLTAGE Must be Connected to pin 3
2 2 OUTPUT Regulator output
33
SUPPLY VOLTAGE Unregulated voltage input. An internal regulator
powers the internal logic.
4, 5, 6, 7
14, 15, 16, 17 4, 5, 6
13, 14, 15 GROUND Common ground terminal
87
POWER FAILINPUT Input of the power fail circuit. The threshold can be
modified introducing an externalvoltage divider
between the Supply Voltageand GND.
98
POWER FAILOUTPUT Open collector power fail signal output. This output
is high when the supplyvoltage is safe.
10 9 RESET DELAY Acapacitor connected between this terminal and
ground determines the reset signal delay time.
11 10 RESET OUTPUT Open collector reset signal output. This output is
high when the output voltage value is correct.
12 11 REFERENCE VOLTAGE Reference voltage output.
13 12 FEEDBACK INPUT Feedback terminal of the regulation loop.
The output is connected directly to this terminal for
5.1V operation; it is connected via a divider for
higher voltages.
18 16 INHIBIT INPUT TTLlevel remote inhibit. A logic low level on this
input disables the device.
19 17 C OSCILLATOR Oscillator waveform. A capacitor connected
between this terminal and ground modifies the
maximum oscillator frequency.
20 18 R OSCILLATOR FREQ. Aresistor connected betweenthis terminal and
ground defines the maximum switching frequency.
THERMAL DATA
Symbol Parameter SO20 Powerdip Unit
Rth j-pins Thermal Resistance Junction to Pins max. 15 12 °C/W
Rth j-amb Thermal Resistance Junction to Ambient (*) max. 85 80 °C/W
(*) See Fig. 28
L4963 - L4963D
3/17
CIRCUIT DESCRIPTION (Refer to Block Dia-
gram)
The L4963 is a monolithic stepdown regulatorpro-
viding 1.5A at 5.1V working in discontinuousvari-
able frequency mode. In normal operation the
device resonatesata frequencydepending primar-
ily on the inductance value, the input and output
voltage and theloadcurrent. Themaximum switch-
ing howevercan be limited byaninternaloscillator,
which can be programmed by only one external
resistor.
The fondamental regulation loop consists of two
comparators, a precision 5.1V on-chip reference
and adrive latch. Briefly the operation is as follows:
when the choke ends its discharge the catch free-
wheeling recirculation filter diode begins to come
out of forward conductionso the output voltage of
the device approaches ground. When the output
voltagereaches–0.1Vtheinternalcomparatorsets
the latch and the power stage is turned on. Then
the inductor current rises linearly until the voltage
sensed at the feedback input reaches the 5.1V
reference.
The second comparator then resets the latch and
the output stage is turned off. The current in the
choke falls linearly until it is fully discharged, then
the cyclerepeats.Closing the loop directlygivesan
output voltage of 5.1V. Higher output voltages are
obtained by inserting a voltage divider and this
method of controlrequires no frequencycompen-
sation network. At output voltages greater than
5.1V the availableoutput current must be derated
due to the increased power dissipation of the de-
vice.
Outputoverload protectionis provided byan inter-
nal current limiter. The load currentis sensed by a
on-chip metal resistor connected to a comparator
which resetsthe latchandturnsoff the powerstage
in overloadcondition.The reset circuits (see fig. 1)
generates an output high signal when the output
voltage value is correct. It has an open collector
output and the output signal delay time can be
programmed with an external capacitor. A power-
fail circuit is also available and is used to monitor
the supply voltage. Its output goes high when the
supplyvoltagereachesapre-programmedtreshold
set by a voltagedividerto its inputfrom thesupply
to ground. With the input left open the thresholdis
approximately equal to 5.1V. The output of the
powerfail is anopen collector.
ATTLlevel inhibit isprovided for applicationssuch
as remote on/off control. This input is activatedby
a low logic level and disables circuits operation.
The thermal overload circuit disables the device
when thejunction temperature is about 150°C and
has hysteresisto preventunstable conditions.
Figure 1: Reset and Power Fail Function
L4963 - L4963D
4/17
ELECTRICAL CHARACTERISTIC (Refer to the test circuit Vi=30VT
j=25°C unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
DYNAMIC CHARACTERISTICS
VoOutput Voltage Range Vi= 46V Io= 0.5A Vref 36 V 2
ViInputVoltage Range Vo=V
ref to 36V Io= 0.5A 946V2
V
12 Feedback Voltage Vi= 9 to 46V Io= 0.5A 5 5.1 5.2 V 2
I12 InputBias Current Vi= 15V V12 =6V
V
17f =5V 520µA3a
V
OS12 InputOffsetVoltage 5 10 mV 3a
VoLineRegulation Vi= 9 to 46V Vo=V
ref
Io= 0.5A 15 50 mV 2
VoLoadRegulation Vo=V
ref
Io= 0.5 to 1.5A 15 45 mV 2
VdDropoutVoltage Between
pin 3 and pin 2 I2=3A
V
i= 20V 1.5 2 V 2
I2L Current Limiting Vi= 9 to 46V
Vo=V
ref to 28V 3.5 6.5 A 2
IoMaximum Operating Load
Current Vi= 9 to 46V Vo=V
ref 1.5 A 2
SVR SupplyVoltage Ripple
Rejection Vi= 2Vrms Vo=V
ref
fripple= 100Hz Io= 1.5A 50 56 dB 2
V11 Reference Voltage Vi= 9 to 46V
O<I
11 < 5mA 5 5.1 5.2 V 3a
AverageTemperature
Coefficient of Ref. Volt. Tj= 0 to 125 °C0.4 mV/°C–
V
11 Vref Line Regulation Vi= 9 to 46V 10 20 mV 3a
V11 Vref Line Regulation Iref = 0 to 5mA
Vi= 46V Rosc = 51K65
69 715mV3a
ηEfficiency Io= 1.5AVo=V
ref 65 75 % 2
Tsd Thermal Shutdown
JunctionTemperature 145 150 °C–
Hysteresis 30 °C–
DC CHARACTERISTICS
IqQuescentDrain Current Vi= 46V
Io= 0mA V16 =V
12 = 0 14 20 mA 3a
V16 =V
ref
V12 = 5.3V 11 16 mA 3a
INHIBIT
V16L Low Input Voltage Vi= 9 to 46V 0.3 0.8 V 2
V16H HighInput Voltage Vi= 9 to 46V 2 5.5 V 2
I16L InputCurrent with Low
InputVoltage V16 = 0.8V 50 100 µA2
I
16L InputCurrent with High
InputVoltage V16 =2V 10 20 µA2
L4963 - L4963D
5/17
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
RESET
V12 Rising Threshold Voltage Vi= 9 to 46V Vref
–150 Vref
–100 Vref
–50 mV 3b
V12 FallingThreshold Voltage Vi= 9 to 46V Vref
–150 Vref
–200 Vref
–250 mV 3b
V9D DelayRising Thereshold
Voltage V7= OPEN 4.3 4.5 4.7 V 3b
V9F DelayFalling Thereshold
Voltage 1 1.5 2 V 3b
–I9SO DelaySource Current V9= 4.7V V12 = 5.3V 70 110 140 µA3b
I
9SI DelaySink Current V9= 4.7V V12 = 4.7V 10 mA 3b
I10 Output Leakage Current Vi= 46V V7= 8.5V 50 µA3b
V
10 Output Saturation Volt. I10 = 15mA; VI= 3 to 46V 0.4 V 3b
POWER FAIL
VRRising Threshold Voltage Pin7 = open 17.5 19 20.5 V 3C
VFFalling Threshold Voltage Pin7 = open 14.25 15 15.75 V 3c
V7Rising Threshold Voltage Vi= 20V 4.14 4.5 4.86 V
V7FallingThreshold Voltage Vi= 20V 3.325 3.5 3.675 V
VsOutput Saturation Volt. Ia= 5mA 0.4 V 3c
IsOutput Leakage Current Vi= 46V 50 µA3c
OSCILLATOR
f Oscillator Frequency RT= 51K46 60 79 kHz
fOscillator Frequency VI= 9 to 46V
Tj= 0 to 125°C
RT= 51K42 83 kHz
ELECTRICALCHARACTERISTIC (Continued)
L4963 - L4963D
6/17
Figure 2: TestCircuit
Figure 3: DC TestCircuit
Figure 3a
Figure 3b
L4963 - L4963D
7/17
Figure 3c
Figure 4: QuiescentDrain Current vs. Supply
Voltage(0% Duty Cycle) Figure5: QuiescentDrain Current vs. Supply
Voltage (100%Duty Cycle)
Figure 6: QuiescentDrain Current vs. Junction
Temperature(0% Duty Cycle) Figure 7: QuiescentDrain Current vs. Junction
Temperature(100% Duty Cycle)
L4963 - L4963D
8/17
Figure 8: Reference Voltage vs. ViFigure 9: ReferenceVoltagevs. Tj
Figure 10: Line TransientResponse Figure 11: Load Transient
Figure 12: SupplyVoltage Ripple Rejection vs.
Frequency Figure 13: Dropout VoltageBetween pi3 and 2
vs. Current at pin2
L4963 - L4963D
9/17
Figure 14: DropoutVoltage Between pin3 and 2
vs. JunctionTemperature Figure15: Maximum AllowablePowerDissipation
vs. AmbientTemperature(Powerdip
PackageOnly)
Figure 16: PowerDissipation (deviceonly) vs. In-
put Voltage(Powerdip PackageOnly) Figure 17: PowerDissipation (deviceonly) vs.
Output Voltage (Powerdip Package
Only)
Figure 18: Voltageand CurrentWaveform at pin2 Figure19: Efficiencyvs. Output Current (Power-
dip PackageOnly)
L4963 - L4963D
10/17
Figure 20: Efficiency vs. Output Voltage(Power-
dip Package Only) Figure 21: CurrentLimit vs. JunctionTempera-
ture Vi=30V
Figure 22: CurrentLimit vs. InputVoltage Figure 23: Oscillator Frequencyvs. R2 (see fig. 26)
Figure 24: Oscillator Frequency vs. Junction
Temperature Figure 25: Oscillator Frequency vs. InputVoltage
L4963 - L4963D
11/17
Figure 26: EvaluationBoard Circuit
PART LIST
CAPACITOR
C1 1000µF 50V EKR (*)
C2 2.2mF 16V
C3 1000µF 40V with low ESR
C4 1µF 50V film
RESISTOR
R1 1K
R2 51K
R3 1K
R4 1K
R5, R6 see table
Resistor Values for Standard Output Voltages
VOR6 R5
12 4.7K6.2K
15 4.7K9.1KW
18 4.7K12KW
24 4.7K18KW
Diode: BYW98
Core: L=40µHMagnetics58121-A2MPP34Turns
0.9mm (20AWG)
(*) Minimum100µFifV
iis apreregulated offline SMPS outputor 1000µF if a50Hz transformer plus rectifiers isused.
L4963 - L4963D
12/17
Figure 28: ThermalCharacteristics
Figure 27: P.C. Board and Component Layout of the Circuit of fig. 26 (Powerdip Package)(1:1 scale).
Figure 29: Junctionto Ambient Thermal Resis-
tance vs. Areaon Board Heatsink
(SO20)
L4963 - L4963D
13/17
Figure 30: AMinimal 5.1 Fixed Regulator Very Few Componentsare Required
Figure 31: AMinimal Componentscount forVO= 12V
L4963 - L4963D
14/17
POWERDIP18 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 24.80 0.976
E 8.80 0.346
e 2.54 0.100
e3 20.32 0.800
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 2.54 0.100
L4963 - L4963D
15/17
SO20 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.65 0.104
a1 0.1 0.3 0.004 0.012
a2 2.45 0.096
b 0.35 0.49 0.014 0.019
b1 0.23 0.32 0.009 0.013
C 0.5 0.020
c1 45 (typ.)
D 12.6 13.0 0.496 0.512
E 10 10.65 0.394 0.419
e 1.27 0.050
e3 11.43 0.450
F 7.4 7.6 0.291 0.299
L 0.5 1.27 0.020 0.050
M 0.75 0.030
S 8 (max.)
L4963 - L4963D
16/17
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such informationnor for any infringementof patents or other rights of third parties which may result from its use.No
license is grantedby implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are notauthorized foruse ascritical components inlife support devices or systems without express
written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France -Germany -Hong Kong - Italy- Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4963 - L4963D
17/17
L4970A
10A SWITCHING REGULATOR
10A OUTPUT CURRENT
5.1V TO 40V OUTPUT VOLTAGERANGE
0 TO 90% DUTY CYCLE RANGE
INTERNAL FEED-FORWARD LINE REGULA-
TION
INTERNAL CURRENT LIMITING
PRECISE 5.1V ±2% ON CHIP REFERENCE
RESETAND POWER FAIL FUNCTIONS
SOFT START
INPUT/OUTPUT SYNC PIN
UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
VERYHIGH EFFICIENCY
SWITCHING FREQUENCY UP TO 500KHz
THERMAL SHUTDOWN
CONTINUOUS MODE OPERATION
DESCRIPTION
The L4970A is a stepdown monolithic power
switching regulator delivering 10A at a voltage
variable from5.1 to 40V.
Realized with BCD mixed technology, the device
usesa DMOSoutput transistorto obtain very high
efficiency and very fast switching times. Features
of the L4970A include reset and power fail for mi-
croprocessors, feed forward line regulation, soft
start, limiting current and thermal protection. The
device is mounted in a 15-lead multiwatt plastic
power package and requiresfew external compo-
nents. Efficient operation at switching frequencies
up to 500KHz allows reduction in the size and
cost of external filter components.
This isadvanced information on anew productnow in development or undergoing evaluation. Details are subject to change without notice.
November 1991
BLOCK DIAGRAM
Multiwatt15V
ORDERING NUMBER: L4970A
MULTIPOWER BCD TECHNOLOGY
1/21
PIN CONNECTION (Top view)
ABSOLUTE MAXIMUMRATINGS
Symbol Parameter Value Unit
V9Input Voltage 55 V
V9Input Operating Voltage 50 V
V7Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200KHz -1
-7 V
V
I7Maximum Output Current Internally Limited
V6Bootstrap Voltage
Bootstrap Operating Voltage 65
V9+15 V
V
V
3
,V
12 Input Voltage at Pins 3, 12 12 V
V4Reset Output Voltage 50 V
I4Reset Output Sink Current 50 mA
V5,V
10, V11, V13 Input Voltage at Pin 5, 10, 11, 13 7 V
I5Reset Delay Sink Current 30 mA
I10 Error Amplifier Output Sink Current 1 A
I12 Soft Start Sink Current 30 mA
Ptot Total Power Dissipation at Tcase < 120°C30W
T
j
,T
stg Junction and Storage Temperature -40 to 150 °C
THERMAL DATA
Symbol Parameter Value Unit
Rth j-case
Rth j-amb Thermal Resistance Junction-case max
Thermal Resistance Junction-ambient max 1
35 °C/W
°C/W
L4970A
2/21
CIRCUIT OPERATION (refer to the block dia-
gram)
The L4970A is a 10A monolithic stepdownswitching
regulatorworking in continuousmode realized in the
new BCD Technology.This technologyallows thein-
tegrationof isolated vertical DMOS power transistors
plusmixed CMOS/Bipolartransistors.
The device can deliver 10A at an output voltage
adjustable from 5.1V to 40V, and contains diag-
nostic and control functions that make it particu-
larlysuitable for microprocessor based systems.
BLOCK DIAGRAM
The block diagram shows the DMOS power tran-
sistor and the PWM control loop. Integrated func-
tions include a referencevoltage trimmed to 5.1V
±2%, soft start, undervoltage lockout, oscillator
with feedforward control, pulse by pulse current
limit, thermal shutdown and finally the reset and
power fail circuit. The reset and power fail circuit
provides an output signal for a microprocessor in-
dicating the statusof the system.
Device turn on is around 11V with a typical 1V
hysteresis, this threshold provides a correct volt-
age for the driving stage of the DMOS gate and
the hysteresisprevents instabilities.
An external bootstrap capacitor charged to 12V
by an internal voltage reference is needed to pro-
vide correct gate drive to the power DMOS. The
driving circuit is able to source and sink peak cur-
rents of around 0.5A to the gate of the DMOS
transistor. A typical switching time of the current
in the DMOS transistor is 50ns. Due to the fast
commutation switching frequencies up to 500kHz
arepossible.
The PWM control loop consists of a sawtooth os-
cillator, error amplifier, comparator, latch and the
output stage. An error signal is produced by com-
paring the output voltage with the precise 5.1V ±
2% on chip reference. This error signal is then
compared with the sawtooth oscillator, in order to
generatea fixedfrequencypulse width modulated
drive for the output stage. A PWM latch is in-
cluded to eliminate multiple pulsing within a pe-
riod even in noisy environments. The gain and
PIN FUNCTIONS
NoName Function
1 OSCILLATOR Rosc. External resistor connected to ground determines the constant charging
current of Cosc.
2 OSCILLATOR Cosc. External capacitor connected to grounddetermines (with Rosc) the
switching frequency.
3 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a
dividerto the input for power failfunction. It must be connected to the pin 14 an
external 30Kresistorwhen power fail signal not required.
4 RESET OUT Open Collector Reset/power Fail Signal Output. This output is high when the
supply and the output voltages are safe.
5 RESET DELAY A Cdcapacitor connected between this terminal and ground determines the
reset signaldelay time.
6 BOOTSTRAP A Cboot capacitor connected between thisterminal and the output allows to
drive properly the internal D-MOS transistor.
7 OUTPUT Regulator Output.
8 GROUND Common Ground Terminal
9 SUPPLY VOLTAGE UnregulatedInput Voltage.
10 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines
the regulation loop gain characteristics.
11 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected
directly to this terminal for 5.1V operation; It is connected via a divider for higher
voltages.
12 SOFT START Soft Start Time Constant. A capacitor is connected between thi sterminal and
ground to define the soft start time constant.
13 SYNC INPUT Multiple L4970A are synchronized by connecting pin 13inputs together or via
an external syncr. pulse.
14 Vref 5.1V Vref Device Reference Voltage.
15 Vstart Internal Start-up Circuit to Drive the Power Stage.
L4970A
3/21
Figure1: FeedforwardWaveform
Figure3: LimitingCurrent Function
Figure2: Soft Start Function
L4970A
4/21
stability of the loop can be adjusted by an exter-
nal RC network connected to the output of the er-
ror amplifier. A voltage feedforward control has
been added to the oscillator, this maintains supe-
rior line regulation over a wide input voltage
range. Closing the loop directly gives an output
voltage of 5.1V, higher voltages are obtained by
inserting a voltagedivider.
At turn on output overcurrents are prevented by
the soft start function(fig. 2). The error amplifieris
initiallyclamped by an external capacitorCss and
allowed to rise linearly under the charge of an in-
ternal constant current source.
Output overload protection is provided by a cur-
rentlimit circuit (fig. 3). Theload current is sensed
by an internal metal resistor connected to a com-
parator. When the load current exceeds a preset
threshold the output of the comparator sets a flip
flop which turns off the power DMOS. The next
clock pulse, from an internal 40kHz oscillator will
reset the flip flop and the power DMOS will again
conduct. This current protection method, ensures
a constant current output when the system is
overloaded or short circuited and limits the
switching frequency,in this condition,to 40kHz.
The Reset and Power fail circuitry (fig 4) gener-
ates an output signal when the supply voltage ex-
ceeds a threshold programmed by an external
voltage divider. The reset signal, is generated
with a delay time programmed by an external ca-
pacitor on the delay pin. Whenthe supply voltage
falls below the threshold or the output voltage
goes below 5V the reset output goes low immedi-
ately. The reset output is an open collector-drain.
Fig 4A shows the case when the supply voltage is
higher than the threshold, but the output voltage
isnot yet 5V.
Fig 4B shows the case when the output is 5.1V
but the supply voltage is not yet higher than the
fixedthreshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has an hysterysis to prevent unstable
conditions.
Figure4: Reset and Power Fail Functions.
A
B
L4970A
5/21
ELECTRICALCHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, R4= 16K,
C9= 2.2nF, fSW = 200KHz typ, unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
Viinput Voltage Range (pin 9) Vo=V
ref to 40V
Io= 10A 15 50 V 5
VoOutput Votage Vi= 15V to 50V
Io= 5A; Vo=V
ref5 5.1 5.2 V 5
VoLine Regulation Vi= 15V to 50V
Io= 5A; Vo=V
ref12 30 mV 5
VoLoad Regulation Vo=V
ref
Io=3Ato6A
I
o= 2A to 10A 10
20 30
50 mV
mV
5
VdDropout VoltageBetween
Pin 9 and 7 Io=5A
I
o= 10A 0.55
1.1 0.8
1.6 V
V5
I7L Max. LimitingCurrent Vi= 15 to 50V 11 13 15 A 5
ηEfficiency Io=5A
V
o=V
ref
Vo= 12V 80 85
92 %
%
5
Io= 10A
Vo=V
ref
Vo= 12V 75 80
87 %
%
5
SVR Supply Voltage Ripple
Reject. Vi= 2VRMS; Io=5A
f = 100Hz; Vo=V
ref 56 60 dB 5
f Switching Frequency 180 200 220 KHz 5
f
ViVoltage Stability of
Swiching Frequency Vi= 15V to 45V 2 6 % 5
f
TjTemperature Stability of
Swiching Frequency Tj= 0 to 125°C1%5
f
max Maximum Operating
Switching Frequency Vo=V
ref;R
4= 10K
Io= 10A; C9= 1nF 500 KHz 5
Vref SECTION(pin 14)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 5 5.1 5.2 V 7
V14 Line Regulation Vi= 15V to 50V 10 25 mV 7
V14 Load Regulation I14 = 0 to 1mA 20 40 mV 7
V14
TAverage Temperature
CoefficientReference
Voltage
Tj=0°C to 125°C 0.4 mV/°C7
I
14 short Short Circuit Current Limit V14 = 0 70 mA 7
VSTART SECTION(pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V15 Reference Voltage 11.4 12 12.6 V 7
V15 Line Regulation Vi= 15 to 50V 0.6 1.4 V 7
V15 Load Regulation I15 = 0 to 1mA 50 200 mV 7
I15 short Short Circuit Current Limit V15 =0V 80 mA 7
L4970A
6/21
ELECTRICALCHARACTERISTICS (continued)
DCCHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V9on Turn-on Threshold 10 11 12 V 7A
V9 Hyst Turn-off Hysteresys 1 V 7A
I9Q Quiescent Current V12 =0; S1=D 13 19 mA 7A
I
9OQ Operating SupplyCurrent V12 = 0; S1 = C; S2 = B 16 23 mA 7A
I7L Out Leak Current Vi= 55V; S3 = A; V12 =0 2 mA 7A
SOFTSTART
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I12 Soft Start Source Current V12 = 3V; V11 = 0V 70 100 130 µA7B
V
12 Output Saturation Voltage I12 = 20mA; V9= 10V
I12 = 200µA; V9= 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10H High Level Out Voltage I10 = -100µA; S1 = C
V11 = 4.7V 6V7C
V
10L Low Level Out Voltage I10 = +100µA; S1 = C
V11 = 5.3V; 1.2 V 7C
I10H Source Output Current V10 = 1V; S1 = E
V11 = 4.7V 100 150 µA7C
I
10L Sink Output Current V10 = 6V; S1 = D
V11 = 5.3V 100 150 µA7C
I
11 Input Bias Current RS= 10K0.4 3 µA–
G
VDC Open Loop Gain VVCM = 4V;
RS=1060 dB
SVR Supply Voltage Rejection 15 < Vi< 50V;
RS=1060 80 dB
VOS Input Offset Voltage RS=50210mV
RAMP GENERATOR(pin 2)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V2Ramp Valley S1 = C; S2 = B 1.2 1.5 V 7A
V2Ramp Peak S1 = C; Vi= 15V
S2 = B; Vi= 45V 2.5
5.5 V
V7A
7A
I2Min. Ramp Current S1 = A; I1= 100µA 270 300 µA7A
I
2Max. Ramp Current S1 = A; I1 = 1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Low Input Voltage Vi= 15V to 50V; V12 =0;
S1 = C; S2 = B; S4 = B –0.3 0.9 V 7A
V13 High Input voltage V12 =0;
S1 = C; S2 = B; S4 = B 3.5 5.5 V 7A
I13L Sync Input Current with
Low Input Voltage V13 =V
2
= 0.9V; S4 = A;
S1 = C; S2 = B 0.4 mA 7A
I13H Input Current with High
Input Voltage V13 = 3.5V; S4 = A;
S1 = C; S2 = B 1.5 mA 7A
V13 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4970A
7/21
ELECTRICALCHARACTERISTICS (continued)
RESETAND POWERFAIL FUNCTIONS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11R Rising Threshold Voltage
(pin 11) Vi= 15 to 50V
V3= 5.3V Vref
–120 Vref
–100 Vref
–80 V
mV 7D
V11F Falling Threshold Voltage
(pin 11) Vi = 15 to 50V
V3= 5.3V 4.77 Vref
–200 Vref
–160 V
mV 7D
V5H Delay High Threshold
Voltage Vi= 15 to 50V
V14 =V
11 V3= 5.3V 4.95 5.1 5.25 V 7D
V5L Delay Low Threshold
Voltage Vi = 15 to 50V
V14 =V
11 V3= 5.3V 1 1.1 1.2 V 7D
–I5SO Delay Source Current V3= 5.3V; V5=3V 406080µA7D
I
5SI Delay Sink Current V3= 4.7V; V5=3V 10 mA 7D
V
4S Out Saturation Voltage I4= 15mA; S1 = B
V3= 4.7V 0.4 V 7D
I4Output Leak Current V4= 50V; S1 = A
V3= 5.3V 100 µA7D
V
3R Rising Threshold Voltage V11 =V
14 4.95 5.1 5.25 V 7D
V3H Hysteresys 0.4 0.5 0.6 V 7D
I3Input Bias Current 1 3 µA7D
Figure5: Test andEvaluationBoard Circuit
TYPICAL PERFORMANCES (using evaluationboard) :
n =83% (Vi=35V ; Vo=VREF ;I
o=10A ; fSW = 200KHz)
Vo RIPPLE =30mV (at 10A)with output filter capacitorESR 60m
Line regulation = 5mV (Vi=15 to 50V)
Load regulation= 15mV (Io= 2 to 10A)
For componentvalues,refer to test circuit partlist.
L4970A
8/21
PARTS LIST
R1= 30KC1,C
2= 3300µF 63VLEYF (ROE
R2= 10KC3,C
4
,C
5
,C
6= 2.2µF
R3= 15KC7= 390pF Film
R4= 16KC8= 22nF MKT 1817 (ERO)
R5=220,5W
R6= 4K7 C9= 2.2nF KP1830
R7=10C
10 = 220nF MKT
R8= see tab. A C11 = 2.2nF MP1830
R9= OPTION **C12,C
13,C
14 = 220µF 40VLEKR
R10 = 4K7 C15 =1µF Film
R11 =10
D1 = MBR 1560CT (or 16A/60V or equivalent)
L1 = 40µH core 58071 MAGNETICS
27 TURNS Ø 1,3mm (AWG 16)
COGEMA 949178
* 2 capacitors in parallel to increase input RMS current capability
** 3 capacitorsin parallel to reduce total outputESR
Table B
SUGGESTEDBOOTSTRAP CAPACITORS
Operating Frequency Bootstrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f = 100KHz 330nF
f = 200KHz 220nF
f = 500KHz 100nF
Figure6a: P.C. Board (componentsside) and Components Layout of Figure 5 (1:1 scale).
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12k
18k
L4970A
9/21
Figure7: DC Test Circuits
Figure6b: P.C. Board(Back side) and ComponentsLayoutof the Circuit of Fig.5. (1:1 scale)
L4970A
10/21
Figure7A
Figure7B
L4970A
11/21
Figure7C
Figure7D
L4970A
12/21
Figure8: QuiescentDrain Current vs. Supply
Voltage (0% duty cycle - see fig. 7A).
Figure10: QuiescentDrain Current vs. Duty
Cycle
Figure12: ReferenceVoltage (pin 14) vs.
Junction Temperature(see fig.7)
Figure 9: QuiescentDrain Current vs. Junction
Temperature(0% duty cycle).
Figure 11: ReferenceVoltage(pin14) vs. Vi(see
fig. 7)
Figure 13: ReferenceVoltage(pin15) vs. Vi(see
fig. 7)
L4970A
13/21
Figure14: ReferenceVoltage (pin 15) vs.
Junction Temperature(see fig.7)
Figure16: SwitchingFrequencyvs. Input
Voltage (see fig. 5)
Figure18: SwitchingFrequencyvs. R4 (see fig. 5)
Figure 15: Reference Voltage 5.1V (pin 14)
SupplyVoltageRipple Rejection vs.
Frequency
Figure 17: SwitchingFrequency vs. Junction
Temperature(see fig 5)
Figure 19: Max.Duty Cyclevs. Frequency
L4970A
14/21
Figure20: SupplyVoltage Ripple Rejectionvs.
Frequency (see fig. 5)
Figure22: Load Transient Response(see fig. 5)
Figure24: DropoutVoltage Between Pin 9 and
Pin 7 vs. Junction Temperature
Figure 21: Line TransientResponse(see fig. 5)
Figure 23: DropoutVoltageBetween Pin 9 and
Pin 7 vs. Current at Pin 7
Figure 25: PowerDissipation (device only) vs.
InputVoltage
L4970A
15/21
Figure26: PowerDissipation(device only) vs.
OutputVoltage
Figure28: Efficiency vs. OutputCurrent
Figure30: Efficiency vs. OutputVoltage
Figure 27: Heatsink Used to Derive the Device’s
PowerDissipation
Rth -Heatsink = TcaseTamb
Pd
Figure 29: Efficiency vs. Output Voltage
Figure 31: Open Loop Frequency andPhase
Responseof ErrorAmplifier (see
fig.7C)
L4970A
16/21
Figure32: PowerDissipationDerating Curve
Figure33: A5.1V/12VMultiple Supply. Note the Synchronizationbetween the L4970A and the L4974A
L4970A
17/21
Figure34: 5.1V/ 10A Low CostApplication
Figure35: 10ASwitchingRegulator, Adjustable from 0V to 25V.
L4970A
18/21
Figure36: L4970A’sSync. Example
L4970A
19/21
MULTIWATT15 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 22.1 22.6 0.870 0.890
L1 22 22.5 0.866 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.2 4.3 4.6 0.165 0.169 0.181
M1 4.5 5.08 5.3 0.177 0.200 0.209
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
L4970A
20/21
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may resultfrom itsuse. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-
tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without ex-
press written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All RightsReserved
MULTIWATTis a Registered Trademark of SGS-THOMSON Microelectronics
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil- France -Germany - Hong Kong - Italy - Japan - Korea -Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4970A
21/21
L4972A
L4972AD
January1995
2A SWITCHINGREGULATOR
.2A OUTPUT CURRENT
.5.1V TO40V OUTPUT VOLTAGERANGE
.0 TO90% DUTY CYCLE RANGE
.INTERNAL FEED-FORWARD LINEREG.
.INTERNAL CURRENT LIMITING
.PRECISE 5.1V ±2%ON CHIP REFERENCE
.RESET AND POWER FAILFUNCTIONS
.INPUT/OUTPUTSYNCPIN
.UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
.PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
.VERY HIGH EFFICIENCY
.SWITCHING FREQUENCY UP TO 200KHz
.THERMAL SHUTDOWN
.CONTINUOUS MODE OPERATION
DESCRIPTION
TheL4972Aisastepdownmonolithicpowerswitch-
ingregulatordelivering2Aata voltagevariablefrom
5.1to 40V.
Realized with BCD mixed technology, the device
uses a DMOS output transistorto obtain very high
efficiencyandveryfastswitching times. Featuresof
BLOCK DIAGRAM
POWERDIP
(16 + 2 + 2)
the L4972A include reset and power fail for micro-
processors,feed forward line regulation, soft start,
limiting current and thermal protection. The device
ismountedinaPowerdip 16+2 +2 andSO20large
plastic packagesand requires few externalcompo-
nents. Efficient operation at switching frequencies
up to 200KHz allows reductionin the size and cost
of externalfilter component.
ORDERING NUMBERS : L4972A (Powerdip)
L4972AD (SO20)
1/23
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
SO20
MULTIPOWER BCD TECHNOLOGY
PIN CONNECTION (top view)
THERMAL DATA
Symbol Parameter Powerdip SO-20
Rthj-pins
Rth j-amb ThermalResistance Junction-Pins max
ThermalResistance Junction-ambient max 12°C/W
60°C/W 16°C/W
80°C/W
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V11 InputVoltage 55 V
V11 Input Operating Voltage 50 V
V20 Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200khz -1
-5 V
V
I20 Maximum Output Current Internally Limited
VIBoostrapVoltage
BoostrapOperating Voltage 65
V11 +15 V
V
V4
,V
8InputVoltage at Pins 4, 12 12 V
V3Reset OutputVoltage 50 V
I3Reset OutputSink Current 50 mA
V2,V
7
,V
9
,V
10 InputVoltage at Pin2, 7, 9, 10 7 V
I2Reset Delay Sink Current 30 mA
I7Error Amplifier OutputSink Current 1 A
I8Soft StartSink Current 30 mA
Ptot Total Power Dissipation at TPINS 90°C
at Tamb=70°C(No copperarea on PCB) 5 / 3.75(*)
1.3/1(*) W
W
TJ,T
stg Junction and Storage Temperature -40 to 150 °C
(*) SO-20
L4972A-L4972AD
2/23
PINFUNCTIONS
NoName Function
1 BOOTSTRAP A Cboot capacitor connected between this terminal and the output allows to drive
properly the internalD-MOS transistor.
2 RESET DELAY A Cdcapacitor connected between this terminal and ground determines the reset
signaldelay time.
3 RESET OUT Open Collector Reset/power Fail Signal Output. This output ishigh when the supply
and the output voltages are safe.
4 RESET INPUT Inputof PowerFail Circuit. The thresholdis 5.1V. It may be connected via a divider
to theinput for power fail function. Itmust be connected tothe pin 14an external 30K
resistorwhen power fail signal not required.
5, 6
15, 16 GROUND Common Ground Terminal
7 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines the
regulation loop gain characteristics.
8 SOFT START Soft StartTime Constant. A capacitor is connected between thisterminal and ground
to define the soft start time constant.
9 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected directly to
thisterminal for 5.1V operation; It isconnected via a dividerfor higher voltages.
10 SYNC INPUT Multiple L4972A’s are synchronized by connecting pin 10 inputs together or via an
external syncr. pulse.
11 SUPPLY VOLTAGE Unregulated Input Voltage.
12, 19 N.C. Not Connected.
13 Vref 5.1VVref Device Reference Voltage.
14 Vstart Internal Start-up Circuit to Drive the PowerStage.
17 OSCILLATOR Rosc. External resistor connected toground determines theconstant charging current
of Cosc.
18 OSCILLATOR Cosc. External capacitor connected to ground determines (with Rosc) the switching
frequency.
20 OUTPUT Regulator Output.
L4972A-L4972AD
3/23
TheL4972Ais a 2A monolithicstepdownswitching
regulatorworkingincontinuousmoderealizedinthe
new BCD Technology. This technology allows the
integration of isolated vertical DMOSpower transi-
storsplusmixed CMOS/Bipolar transistors.
The device can deliver 2A at an output voltage ad-
justablefrom 5.1V to 40V and contains diagnostic
andcontrolfunctionsthat make it particularly suita-
ble for microprocessor basedsystems.
BLOCKDIAGRAM
The block diagram shows theDMOS powertran-
sistors and the PWM control loop. Integratedfun-
ctions include a referencevoltagetrimmed to 5.1V
±2%,softstart,undervoltagelockout,oscillatorwith
feedforward control, pulse by pulse current limit,
thermal shutdown and finally the reset and power
fail circuit. The reset and power fail circuit provides
an outputsignalfora microprocessor indicatingthe
statusof thesystem.
Device turn on is around 11V with a typical 1V hy-
sterysis,thisthresholdporvidesacorrectvoltagefor
thedriving stage of the DMOS gateand the hyste-
rysis preventsinstabilities.
Anexternalbootstrapcapacitorchargeto12Vbyan
internalvoltagereferenceis neededto providecor-
rect gatedrive to the power DMOS. The driving cir-
cuit is able to source and sink peak currents of
around0.5A to the gate of the DMOS transistor.A
typical switching time of the current in the DMOS
transistoris50ns.Duetothefastcommutationswit-
ching frequenciesup to 200kHzare possible.
ThePWM controlloopconsists of a sawtoothoscil-
lator, error amplifier,comparator,latchand theout-
putstage.Anerrorsignalis producedbycomparing
theoutputvoltagewiththeprecise5.1V±2%onchip
reference. This error signal is then compared with
the sawtooth oscillator in order to generate frixed
frequencypulse width modulateddrive forthe out-
putstage.APWMlatchisincludedtoeliminatemul-
tiple pulsing within a period even in noisy
environments.
Thegain andstability oftheloopcanbe adjustedby
an externalRC network connectedto the output of
the error amplifier. A voltage feedforward control
has been addedto the oscillator, thismaintainssu-
periorline regulationover a wide input voltageran-
ge.Closingtheloopdirectlygivesanoutputvol-tage
of 5.1V,higher voltages are obtainedby inserting a
voltage divider.
Atturn on,outputovercurrentsare preventedby the
soft start function (fig. 2). The error amplifier is in-
itiallyclampedbyan externalcapacitor,Css,andal-
lowedtorise linearlyunderthechargeof aninternal
constant current source.
Outputoverload protection isprovided bya current
limit circuit. The loadcurrent is sensed bya internal
metalresistorconnectedtoacomparator.Whenthe
load current exceedsa presetthreshold, theoutput
of the comparator setsa flipflop which turns off the
powerDMOS.Thenextclockpulse,fromaninternal
40kHzoscillator,willresettheflipflopandthepower
DMOS will again conduct. This current protection
method,ensuresaconstantcurrentoutputwhenthe
systemisoverloadedorshortcircuitedandlimitsthe
switchingfrequency,inthiscondition,to40kHz.The
Reset and Power fail circuit (fig. 4), generates an
output signal when the supply voltage exceeds a
threshold programmed by an external voltage di-
vider. The reset signal, is generated with a delay
timeprogrammedbya externalcapacitoronthede-
lay pin. When the supply voltage falls below the
thresholdor the outputvoltage goes below 5V, the
resetoutputgoeslowimmediately.The resetoutput
is anopen drain.
Fig. 4A shows the case when the supplyvoltage is
higher than the threshold,but the output voltage is
not yet 5V.
Fig. 4Bshowsthecasewhentheoutputis5.1V,but
the supply voltage is not yet higher than the fixed
threshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has a hysterysis to prevent unstable
conditions.
CIRCUIT OPERATION
L4972A-L4972AD
4/23
Figure 1 : FeedforwardWaveform.
Figure 2 : Soft StartFunction.
Figure 3 : Limiting Current Function.
L4972A-L4972AD
5/23
Figure 4 : Reset andPower Fail Functions.
B
A
L4972A-L4972AD
6/23
ELECTRICAL CHARACTERISTICS (referto the test circuit, TJ=25°C, Vi= 35V,R4=30K,
C9= 2.7nF, fSW = 100KHztyp,unlessotherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
ViInput Volt. Range (pin 11) Vo=V
ref to 40V
Io=2A(**) 15 50 V 5
VoOutput Voltage Vi=15V to 50V
Io= 1A;Vo=V
ref 5 5.1 5.2 V 5
VoLineRegulation Vi= 15Vto 50V
Io= 0.5A; Vo=V
ref 12 30 mV
VoLoadRegulation Vo=V
ref Io=0.5A to2A 7 20 mV
VdDropout Voltage between
Pin 11 and 20 Io= 2A 0.25 0.4 V
I20L Max Limiting Current Vi= 15Vto 50V
Vo=V
ref to 40V 2.5 2.8 3.5 A
ηEfficiency (*) Io= 2A,f = 100KHz
Vo=V
ref
Vo= 12V 75 85
90 %
%
SVR Supply Voltage Ripple
Rejection Vi= 2VRMS;Io=1A
f = 100Hz;Vo=V
ref 56 60 dB 5
f Switching Frequency 90 100 110 KHz 5
f/Vi Voltage Stability of
Switching
Frequency
Vi= 15Vto 45V 2 6 % 5
f/TjTemperature Stability of
Switching Frequency Tj=0 to 125°C1%5
f
max Maximum Operating
Switching Frequency Vo=V
ref R4=15K
I
o=2AC
9= 2.2nF 200 KHz 5
(*) Only for DIP version (**) Pulse testing with a low duty cycle
Vref SECTION(pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Reference Voltage 5 5.1 5.2 V 7
V13 LineRegulation Vi= 15Vto 50V 10 25 mV 7
V13 LoadRegulation I13 = 0 to 1mA 20 40 mV 7
V13
TAverage Temperature
Coefficient Reference
Voltage
Tj=0°C to 125°C 0.4 mV/°C7
I
13 short Short CircuitCurrent Limit V13 = 0 70 mA 7
VSTART SECTION (pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 11.4 12 12.6 V 7
V14 LineRegulation Vi= 15to 50V 0.6 1.4 V 7
V14 LoadRegulation I14 = 0to 1mA 50 200 mV 7
I14 short Short CircuitCurrent Limit V15 =0V 80 mA 7
L4972A-L4972AD
7/23
ELECTRICAL CHARACTERISTICS (continued)
DC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11on Turn-on Threshold 10 11 12 V 7A
V11 Hyst Turn-off Hysteresys 1 V 7A
I11Q Quiescent Current V8=0; S1=D 13 19 mA 7A
I
11OQ Operating Supply Current V8= 0; S1= B; S2 = B 16 23 mA 7A
I20L Out Leak Current Vi= 55V; S3 = A; V8=0 2 mA 7A
SOFTSTART(pin 8)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I8Soft Start Source Current V8= 3V; V9= 0V 80 115 150 µA7B
V
8Output Saturation Voltage I8= 20mA; V11 =10V
I8= 200µA; V11 = 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V7H High Level Out Voltage I7= 100µA; S1 = C
V9= 4.7V 6V7C
V
7L Low Level Out Voltage I7= 100µA; S1 = C
V9= 5.3V; 1.2 V 7C
I7H Source Output Current V7= 1V;V7= 4.7V 100 150 µA7C
-I7L Sink Output Current V7= 6V;V9= 5.3V 100 150 µA7C
I
9InputBias Current S1 = B; RS=10K0.4 3 µA7C
G
VDC Open Loop Gain S1 = A; RS=1060 dB 7C
SVR Supply Voltage Rejection 15 < Vi< 50V 60 80 dB 7C
VOS Input Offset Voltage RS=50S1 = A 2 10 mV 7C
RAMP GENERATOR (pin 18)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V18 Ramp Valley S1 = B; S2 = B 1.2 1.5 V 7A
V18 Ramp Peak S1 = B Vi= 15V
S2 = B Vi=45V 2.5
5.5 V
V7A
7A
I18 Min.Ramp Current S1 = A; I17 =100µA 270 300 µA7A
I
18 Max. Ramp Current S1 = A; I17 =1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 10)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10 Low Input Voltage Vi= 15Vto 50V; V8=0;
S1 = B; S2 = B; S4 = B –0.3 0.9 V 7A
V10 HighInput voltage V8 = 0;
S1 = B; S2 = B; S4 = B 2.5 5.5 V 7A
I10L SyncInput Current withLow
InputVoltage V10 =V
18 = 0.9V; S4 = B;
S1 = B; S2= B 0.4 mA 7A
I10H Input Current with High
InputVoltage V10 = 2.5V 1.5 mA 7A
V10 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4972A-L4972AD
8/23
RESETAND POWER FAIL FUNCTIONS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
V9R Rising Thereshold Voltage
(pin 9) Vi=15 to 50V
V4= 5.3V Vref
-130 Vref
-100 Vref
-80 V
mV 7D
V9F Falling Thereshold Voltage
(pin 9) Vi = 15 to 50V
V4= 5.3V 4.77 Vref
-200 Vref
-160 V
mV 7D
V2H Delay High Threshold Volt. Vi = 15 to 50V
V4= 5.3V V9=V
13 4.95 5.1 5.25 V 7D
V2L Delay Low Threshold Volt. Vi = 15 to 50V
V4=4.7V V9=V
13 1 1.1 1.2 V 7D
I2SO DelaySource Current V4=5.3V; V2=3V 306080µA7D
I
2SI Delay Source Sink Current V4=4.7V; V2=3V 10 mA 7D
V
3S Output Saturation Voltage I3= 15mA; S1 = B V4= 4.7V 0.4 V 7D
I3Output Leak Current V3 = 50V; S1 = A 100 µA7D
V
4R Rising Threshold Voltage V9 = V13 4.95 5.1 5.25 V 7D
V4H Hysteresis 0.4 0.5 0.6 V 7D
I4Input Bias Current 1 3 µA7D
ELECTRICAL CHARACTERISTICS (continued)
F
TYPICALPERFORMANCES (usingevaluationboard) :
n = 83% (Vi=35V ; Vo=VREF;I
o=2A;f
sw =100KHz)
V
o RIPPLE = 30mV (at 1A)
Lineregulation = 12mV(Vi= 15 to 50V)
Loadregulation = 7mV (Io=0.5 to2A)
for componentvalues Refer to the fig. 5 (Part list).
L4972A-L4972AD
9/23
PART LIST
R1= 30K
R2= 10K
R3= 15K
R4= 30K
R5=22
R
6= 4.7K
R7= see table A
R8= OPTION
R9= 4.7K
*C
1=C
2=1000µF 63V EYF (ROE)
C3=C
4=C
5=C6=2,2µF 50V
C7= 390pF Film
C8= 22nF MKT 1837 (ERO)
C9= 2.7nF KP 1830 (ERO)
C10 = 0.33µF Film
C11 =1nF
** C12 =C
13 =C
14 =100µF 40V EKR(ROE)
C15 =1µF Film
D1 = SB 560 (OR EQUIVALENT)
L1 = 150µH
core 58310MAGNETICS
45 TURNS 0.91mm (AWG 19)
COGEMA 949181
* 2 capacitors in parallel to increase input RMS current capability.
* * 3 capacitors in parallel to reduce total output ESR.
Note:
In the Test and Application Circuit for L4972D are not
mounted C2, C14 and R8.
Table B
SUGGESTEDBOOSTRAP CAPACITORS
Operating Frequency Boostrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f =100KHz 330nF
f =200KHz 220nF
f =500KHz 100nF
Figure 6a : ComponentLayout of fig.5 (1 : 1scale). Evaluation Board Available (only forDIP version)
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12
18
L4972A-L4972AD
10/23
Figure 7 : DCTest Circuits.
Figure 6b: P.C. Board and Component Layout of the Circuit of Fig. 5. (1:1 scale)
L4972A-L4972AD
11/23
Figure 7C.
Figure 7B.
Figure 7A.
L4972A-L4972AD
12/23
Figure 7D.
Figure 8 : QuiescentDrain Current vs.Supply
Voltage (0% duty cycle - seefig. 7A). Figure 9 : QuiescentDrain Currentvs. Junction
Temperature(0% dutycycle).
L4972A-L4972AD
13/23
Figure 10 : QuiescentDrain Current vs. Duty Cy-
cle. Figure 11 : ReferenceVoltage (pin 13)vs. Vi
(see fig. 7).
Figure 12 : ReferenceVoltage(pin 13) vs. Junc-
tion Temperature(see fig. 7). Figure 13 : ReferenceVoltage (pin 14) vs. Vi
(seefig. 7).
Figure 14 : ReferenceVoltage (pin14) vs. Junc-
tion Temperature(see fig. 7). Figure 15 : ReferenceVoltage5.1V(pin 13)Sup-
ply Voltage RippleRejection vs. Fre-
SVR
(dB)
L4972A-L4972AD
14/23
Figure 16 : Switching Frequencyvs. Input Voltage
(see fig.5). Figure 17 : Switching Frequency vs. Junction
Temperature(see fig.5).
Figure 18 : Switching Frequencyvs. R4
(see fig.5). Figure 19 : Maximum DutyCycle vs. Frequency.
Figure 20 : SupplyVoltage Ripple Rejection vs.
Frequency(see fig.5). Figure 21 : Efficiency vs. Output Voltage.
L4972A-L4972AD
15/23
Figure 22 : LineTransient Response(see fig. 5). Figure 23 : LoadTransient Response(see fig. 5).
Figure 24 : Dropout VoltagebetweenPin 11 and
Pin 20 vs. Current at Pin 20. Figure 25 : .DropoutVoltagebetweenPin 11 and
Pin 20 vs. JunctionTemperature.
Figure 26 : Power Dissipation (device only) vs.
Input Voltage. Figure 27 : PowerDissipation (device only) vs.
InputVoltage.
L4972A-L4972AD
16/23
Figure 28 : Power Dissipation (device only) vs.
OutputVoltage. Figure 29 : Power Dissipation (device only) vs.
OutputVoltage.
Figure 30 : Power Dissipation (device only) vs.
OutputCurrent. Figure 31 : Power Dissipation (deviceonly) vs.
OutputCurrent.
Figure 32 : Efficiency vs. OutputCurrent. Figure33 : TestPCB ThermalCharacteristic.
L4972A-L4972AD
17/23
Figure 34 : Junctionto AmbientThermal Resistance
vs.AreaonBoardHeatsink(DIP16+2+2) Figure 35: JunctiontoAmbient ThermalResistance
vs.Area on Board Heatsink(SO20)
Figure 36: Maximum Allowable Power Dissipa-
tion vs. Ambient Temperature (Pow-
erdip)
Figure 37: Maximum Allowable Power Dissipa-
tion vs. Ambient Temperature
(SO20)
Figure 38: Open LoopFrequencyandPhase of Er-
ror Amplifier (see fig. 7C).
L4972A-L4972AD
18/23
Figure 39 : 2A 5.1VLow Cost ApplicationCircuit.
Figure 40 : A 5.1V/12VMultiple Supply.Note the Synchronizationbetweenthe L4972Aand L4970A.
L4972A-L4972AD
19/23
Figure 41 : L4972A’sSync.Example.
Figure 42: 1A/24V Multiple Supply. Note the synchronization between the L4972A and L4962
L4972A-L4972AD
20/23
POWERDIP20 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 24.80 0.976
E 8.80 0.346
e 2.54 0.100
e3 22.86 0.900
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
L4972A-L4972AD
21/23
SO20PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.65 0.104
a1 0.1 0.3 0.004 0.012
a2 2.45 0.096
b 0.35 0.49 0.014 0.019
b1 0.23 0.32 0.009 0.013
C 0.5 0.020
c1 45 (typ.)
D 12.6 13.0 0.496 0.512
E 10 10.65 0.394 0.419
e 1.27 0.050
e3 11.43 0.450
F 7.4 7.6 0.291 0.299
L 0.5 1.27 0.020 0.050
M 0.75 0.030
S 8 (max.)
L4972A-L4972AD
22/23
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-
tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-
viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore-
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4972A-L4972AD
23/23
L4974A
January1995
3.5A SWITCHINGREGULATOR
.3.5A OUTPUT CURRENT
.5.1V TO40V OUTPUT VOLTAGERANGE
.0 TO90% DUTY CYCLE RANGE
.INTERNAL FEED-FORWARD LINEREG.
.INTERNAL CURRENT LIMITING
.PRECISE 5.1V ±2%ON CHIP REFERENCE
.RESET AND POWER FAILFUNCTIONS
.INPUT/OUTPUTSYNCPIN
.UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
.PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
.VERY HIGH EFFICIENCY
.SWITCHING FREQUENCY UP TO 200KHz
.THERMAL SHUTDOWN
.CONTINUOUS MODE OPERATION
DESCRIPTION
TheL4974Aisastepdownmonolithicpowerswitch-
ing regulator delivering 3.5A at a voltage variable
from5.1 to 40V.
Realized with BCD mixed technology, the device
uses a DMOS output transistorto obtain very high
efficiencyandveryfastswitching times. Featuresof
BLOCK DIAGRAM
POWERDIP (16+2+2)
the L4974Ainclude reset and power fail for micro-
processors, feed forward line regulation, soft start,
limiting current and thermal protection. The device
is mountedinaPowerdip16+2+2 plasticpackage
and requires few external components. Efficient
operationatswitching frequenciesup to200KHzal-
lows reduction in the size andcost of externalfilter
component.
ORDERING NUMBER : L4974A
1/22
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
MULTIPOWER BCD TECHNOLOGY
PIN CONNECTION (top view)
THERMAL DATA
Symbol Parameter Value Unit
Rthj-pins
Rth j-amb ThermalResistance Junction-Pins max
ThermalResistance Junction-ambient max 12
60 °C/W
°C/W
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V11 InputVoltage 55 V
V11 Input Operating Voltage 50 V
V20 Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200khz -1
-5 V
V
I20 Maximum Output Current Internally Limited
VIBoostrapVoltage
BoostrapOperating Voltage 65
V11 +15 V
V
V4
,V
8InputVoltage at Pins 4, 12 12 V
V3Reset OutputVoltage 50 V
I3Reset OutputSink Current 50 mA
V2,V
7
,V
9
,V
10 InputVoltage at Pin2, 7, 9, 10 7 V
I2Reset Delay Sink Current 30 mA
I7Error Amplifier OutputSink Current 1 A
I8Soft StartSink Current 30 mA
Ptot Total Power Dissipation at TPINS 90°C
at Tamb=70°C(No copperarea on PCB) 5
1.3 W
W
TJ,T
stg Junction and Storage Temperature -40 to 150 °C
L4974A
2/22
PINFUNCTIONS
NoName Function
1 BOOTSTRAP A Cboot capacitor connected between this terminal and the output allows to drive
properly the internalD-MOS transistor.
2 RESET DELAY A Cdcapacitor connected between this terminal and ground determines the reset
signaldelay time.
3 RESET OUT Open Collector Reset/power Fail Signal Output. This output ishigh when the supply
and the output voltages are safe.
4 RESET INPUT Inputof PowerFail Circuit. The thresholdis 5.1V. It may be connected via a divider
to theinput for power fail function. Itmust be connected tothe pin 14an external 30K
resistorwhen power fail signal not required.
5, 6
15, 16 GROUND Common Ground Terminal
7 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines the
regulation loop gain characteristics.
8 SOFT START Soft StartTime Constant. A capacitor is connected between thisterminal and ground
to define the soft start time constant.
9 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected directly to
thisterminal for 5.1V operation; It isconnected via a dividerfor higher voltages.
10 SYNC INPUT Multiple L4974A’s are synchronized by connecting pin 10 inputs together or via an
external syncr. pulse.
11 SUPPLY VOLTAGE Unregulated Input Voltage.
12, 19 N.C. Not Connected.
13 Vref 5.1VVref Device Reference Voltage.
14 Vstart Internal Start-up Circuit to Drive the PowerStage.
17 OSCILLATOR Rosc. External resistor connected toground determines theconstant charging current
of Cosc.
18 OSCILLATOR Cosc. External capacitor connected to ground determines (with Rosc) the switching
frequency.
20 OUTPUT Regulator Output.
L4974A
3/22
The L4974A is a 3.5A monolithic stepdown swit-
chingregulatorworkingincontinuousmoderealized
inthenewBCDTechnology.Thistechnologyallows
theintegrationofisolatedverticalDMOSpowertran-
sistors plus mixed CMOS/Bipolar transistors.
Thedevicecandeliver3.5Aatanoutputvoltagead-
justablefrom 5.1V to 40V and contains diagnostic
andcontrolfunctionsthat make it particularly suita-
ble for microprocessor basedsystems.
BLOCKDIAGRAM
The block diagram shows theDMOS powertran-
sistors and the PWM control loop. Integratedfun-
ctions include a referencevoltagetrimmed to 5.1V
±2%,softstart,undervoltagelockout,oscillatorwith
feedforward control, pulse by pulse current limit,
thermal shutdown and finally the reset and power
fail circuit. The reset and power fail circuit provides
an outputsignalfora microprocessor indicatingthe
statusof thesystem.
Device turn on is around 11V with a typical 1V hy-
sterysis,thisthresholdporvidesacorrectvoltagefor
thedriving stage of the DMOS gateand the hyste-
rysis preventsinstabilities.
Anexternalbootstrapcapacitorchargeto12Vbyan
internalvoltagereferenceis neededto providecor-
rect gatedrive to the power DMOS. The driving cir-
cuit is able to source and sink peak currents of
around0.5A to the gate of the DMOS transistor.A
typical switching time of the current in the DMOS
transistoris50ns.Duetothefastcommutationswit-
ching frequenciesup to 200kHzare possible.
ThePWM controlloopconsists of a sawtoothoscil-
lator, error amplifier,comparator,latchand theout-
putstage.Anerrorsignalis producedbycomparing
theoutputvoltagewiththeprecise5.1V±2%onchip
reference. This error signal is then compared with
the sawtooth oscillator in order to generate frixed
frequencypulse width modulateddrive forthe out-
putstage.APWMlatchisincludedtoeliminatemul-
tiple pulsing within a period even in noisy
environments.
Thegain andstability oftheloopcanbe adjustedby
an externalRC network connectedto the output of
the error amplifier. A voltage feedforward control
has been addedto the oscillator, thismaintainssu-
periorline regulationover a wide input voltageran-
ge.Closingtheloopdirectlygivesanoutputvol-tage
of 5.1V,higher voltages are obtainedby inserting a
voltage divider.
Atturn on,outputovercurrentsare preventedby the
soft start function (fig. 2). The error amplifier is in-
itiallyclampedbyan externalcapacitor,Css,andal-
lowedtorise linearlyunderthechargeof aninternal
constant current source.
Outputoverload protection isprovided bya current
limit circuit. The loadcurrent is sensed bya internal
metalresistorconnectedtoacomparator.Whenthe
load current exceedsa presetthreshold, theoutput
of the comparator setsa flipflop which turns off the
powerDMOS.Thenextclockpulse,fromaninternal
40kHzoscillator,willresettheflipflopandthepower
DMOS will again conduct. This current protection
method,ensuresaconstantcurrentoutputwhenthe
systemisoverloadedorshortcircuitedandlimitsthe
switchingfrequency,inthiscondition,to40kHz.The
Reset and Power fail circuit (fig. 4), generates an
output signal when the supply voltage exceeds a
threshold programmed by an external voltage di-
vider. The reset signal, is generated with a delay
timeprogrammedbya externalcapacitoronthede-
lay pin. When the supply voltage falls below the
thresholdor the outputvoltage goes below 5V, the
resetoutputgoeslowimmediately.The resetoutput
is anopen drain.
Fig. 4A shows the case when the supplyvoltage is
higher than the threshold,but the output voltage is
not yet 5V.
Fig. 4Bshowsthecasewhentheoutputis5.1V,but
the supply voltage is not yet higher than the fixed
threshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has a hysterysis to prevent unstable
conditions.
CIRCUIT OPERATION
L4974A
4/22
Figure 1 : FeedforwardWaveform.
Figure 2 : Soft StartFunction.
Figure 3 : Limiting Current Function.
L4974A
5/22
Figure 4 : Reset andPower Fail Functions.
B
A
L4974A
6/22
ELECTRICAL CHARACTERISTICS (referto the test circuit, TJ=25°C, Vi= 35V,R4=30K,
C9= 2.7nF, fSW = 100KHztyp,unlessotherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
ViInput Volt. Range (pin 11) Vo=V
ref to 40V
Io= 3.5A (*) 15 50 V 5
VoOutput Voltage Vi=15V to 50V
Io= 2A;Vo=V
ref 5 5.1 5.2 V 5
VoLineRegulation VI= 15V to 50V
Io= 1A; Vo=V
ref 12 30 mV
VoLoadRegulation VO=V
ref Io= 1Ato 3.5A
Io=2Ato3A 825mV
410mV
V
dDropout Voltage between
Pin 11 and 20 Io=2A
I
o= 3.5A 0.25
0.45 0.4
0.7 V
I20L Max Limiting Current Vi= 15Vto 50V
Vo=V
ref to 40V 4 4.75 5.5 A
ηEfficiency Io= 3.5A, f = 100KHz
Vo=V
ref
Vo= 12V 80 85
90 %
%
SVR Supply Voltage Ripple
Rejection Vi= 2VRMS;Io=5A
f = 100Hz;Vo=V
ref 56 60 dB 5
f Switching Frequency 90 100 110 KHz 5
f/Vi Voltage Stability of
Switching
Frequency
Vi= 15Vto 45V 2 6 % 5
f/TjTemperature Stability of
Switching Frequency Tj=0 to 125°C1%5
f
max Maximum Operating
Switching Frequency Vo=V
ref R4=15K
I
o= 3.5A C9= 2.2nF 200 KHz 5
(*) Pulse testing with a low duty cycle
Vref SECTION(pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Reference Voltage 5 5.1 5.2 V 7
V13 LineRegulation Vi= 15Vto 50V 10 25 mV 7
V13 LoadRegulation I13 = 0 to 1mA 20 40 mV 7
V13
TAverage Temperature
Coefficient Reference
Voltage
Tj=0°C to 125°C 0.4 mV/°C7
I
13 short Short CircuitCurrent Limit V13 = 0 70 mA 7
VSTART SECTION (pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 11.4 12 12.6 V 7
V14 LineRegulation Vi= 15to 50V 0.6 1.4 V 7
V14 LoadRegulation I14 = 0to 1mA 50 200 mV 7
I14 short Short CircuitCurrent Limit V15 =0V 80 mA 7
L4974A
7/22
ELECTRICAL CHARACTERISTICS (continued)
DC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11on Turn-on Threshold 10 11 12 V 7A
V11 Hyst Turn-off Hysteresys 1 V 7A
I11Q Quiescent Current V8=0; S1=D 13 19 mA 7A
I
11OQ Operating Supply Current V8= 0; S1 = B; S2 = B 16 23 mA 7A
I20L Out Leak Current Vi= 55V; S3 = A; V8=0 2 mA 7A
SOFTSTART(pin 8)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I8Soft Start Source Current V8= 3V; V9= 0V 80 115 150 µA7B
V
8Output Saturation Voltage I8= 20mA; V11 =10V
I8= 200µA; V11 = 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V7H High Level Out Voltage I7=-100µA; S1 = C
V9= 4.7V 6V7C
V
7L Low Level Out Voltage I7= 100µA; S1 = C
V9= 5.3V; 1.2 V 7C
I7H Source Output Current V7= 1V;V7= 4.7V 100 150 µA7C
-I7L Sink Output Current V7= 6V;V9= 5.3V 100 150 µA7C
I
9InputBias Current S1 = B; RS=10K0.4 3 µA7C
G
VDC Open Loop Gain S1 = A; RS=1060 dB 7C
SVR Supply Voltage Rejection 15 < Vi< 50V 60 80 dB 7C
VOS Input Offset Voltage RS=50S1 = A 2 10 mV 7C
RAMP GENERATOR (pin 18)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V18 Ramp Valley S1 = B; S2 = B 1.2 1.5 V 7A
V18 Ramp Peak S1 = B Vi= 15V
S2 = B Vi=45V 2.5
5.5 V
V7A
7A
I18 Min.Ramp Current S1 = A; I17 =100µA 270 300 µA7A
I
18 Max. Ramp Current S1 = A; I17 =1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 10)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10 Low Input Voltage Vi= 15Vto 50V; V8=0;
S1 = B; S2 = B; S4 = B –0.3 0.9 V 7A
V10 HighInput voltage V8=0;
S1 = B; S2 = B; S4 = B 2.5 5.5 V 7A
+I10L SyncInput Current withLow
InputVoltage V10 =V
18 = 0.9V; S4 = B;
S1 = B; S2= B 0.4 mA 7A
+I10H Input Current with High
InputVoltage V10 = 2.5V 1.5 mA 7A
V10 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4974A
8/22
RESETAND POWER FAIL FUNCTIONS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
V9R Rising Thereshold Voltage
(pin 9) Vi=15 to 50V
V4= 5.3V Vref
-130 Vref
-100 Vref
-80 V
mV 7D
V9F Falling Thereshold Voltage
(pin 9) Vi = 15 to 50V
V4= 5.3V 4.77 Vref
-200 Vref
-160 V
mV 7D
V2H Delay High Threshold Volt. Vi = 15 to 50V
V4= 5.3V V9=V
13 4.95 5.1 5.25 V 7D
V2L Delay Low Threshold Volt. Vi = 15 to 50V
V4=4.7V V9=V
13 1 1.1 1.2 V 7D
I2SO DelaySource Current V4=5.3V; V2=3V 306080µA7D
I
2SI Delay Source Sink Current V4=4.7V; V2=3V 10 mA 7D
V
3S Output Saturation Voltage I3= 15mA; S1 = B V4= 4.7V 0.4 V 7D
I3Output Leak Current V3 = 50V; S1 = A 100 µA7D
V
4R Rising Threshold Voltage V9 = V13 4.955 5.1 5.25 V 7D
V4H Hysteresis 0.4 0.5 0.6 V 7D
I4Input Bias Current 1 3 µA7D
ELECTRICAL CHARACTERISTICS (continued)
Figure 5 : Testand EvaluationBoardCircuit.
TYPICALPERFORMANCES (usingevaluationboard) :
n = 83% (Vi=35V ; Vo=VREF;I
o= 3.5A; fsw =100KHz)
Vo RIPPLE = 30mV (at 1A)
Lineregulation = 12mV(Vi= 15 to 50V)
Loadregulation = 8mV (Io=1 to 3.5A)
for componentvalues Refer to the fig. 5 (Part list).
L4974A
9/22
PART LIST
R1= 30K
R2= 10K
R3= 15K
R4= 30K
R5=22
R
6= 4.7K
R7= see table A
R8= OPTION
R9= 4.7K
*C
1=C
2=1000µF 63V EYF (ROE)
C3=C
4=C
5=C6=2,2µF 50V
C7= 390pF Film
C8= 22nF MKT 1837 (ERO)
C9= 2.7nF KP 1830 (ERO)
C10 = 0.33µF Film
C11 =1nF
** C12 =C
13 =C
14 =100µF 40V EKR(ROE)
C15 =1µF Film
D1 = SB 560 (OR EQUIVALENT)
L1 = 150µH
core 58310MAGNETICS
45 TURNS 0.91mm (AWG 19)
COGEMA 949181
* 2 capacitors in parallel to increase input RMS current capability.
* * 3 capacitors in parallel to reduce total output ESR.
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12
18
Table B
SUGGESTEDBOOSTRAP CAPACITORS
Operating Frequency Boostrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f =100KHz 330nF
f =200KHz 220nF
f =500KHz 100nF
Figure 6a : ComponentLayout of fig.5 (1 : 1scale). Evaluation Board Available
L4974A
10/22
Figure 7 : DCTest Circuits.
Figure 6b: P.C. Board and Component Layout of the Circuit of Fig. 5. (1:1 scale)
L4974A
11/22
Figure 7C.
Figure 7B.
Figure 7A.
L4974A
12/22
Figure 7D.
Figure 8 : QuiescentDrain Current vs.Supply
Voltage (0% duty cycle - seefig. 7A). Figure 9 : QuiescentDrain Currentvs. Junction
Temperature(0% dutycycle).
L4974A
13/22
Figure 10 : QuiescentDrain Current vs. Duty Cy-
cle. Figure 11 : ReferenceVoltage (pin 13)vs. Vi
(see fig. 7).
Figure 12 : ReferenceVoltage(pin 13) vs. Junc-
tion Temperature(see fig. 7). Figure 13 : ReferenceVoltage (pin 14) vs. Vi
(seefig. 7).
Figure 14 : ReferenceVoltage (pin14) vs. Junc-
tion Temperature(see fig. 7). Figure 15 : ReferenceVoltage5.1V(pin 13)Sup-
ply Voltage RippleRejection vs. Fre-
SVR
(dB)
L4974A
14/22
Figure 16 : Switching Frequencyvs. Input Voltage
(see fig.5). Figure 17 : Switching Frequency vs. Junction
Temperature(see fig.5).
Figure 18 : Switching Frequencyvs. R4
(see fig.5). Figure 19 : Maximum DutyCycle vs. Frequency.
Figure 20 : SupplyVoltage Ripple Rejection vs.
Frequency(see fig.5). Figure 21 : Efficiency vs. Output Voltage.
L4974A
15/22
Figure 22 : LineTransient Response(see fig. 5). Figure 23 : LoadTransient Response(see fig. 5).
Figure 24 : Dropout VoltagebetweenPin 11 and
Pin 20 vs. Current at Pin 20. Figure 25 : .DropoutVoltagebetweenPin 11 and
Pin 20 vs. JunctionTemperature.
Figure 26 : Power Dissipation (device only) vs.
Input Voltage. Figure 27 : PowerDissipation (device only) vs.
InputVoltage.
L4974A
16/22
Figure 28 : Power Dissipation (device only) vs.
OutputVoltage. Figure 29 : Power Dissipation (device only) vs.
OutputVoltage.
Figure 30 : Power Dissipation (device only) vs.
OutputCurrent. Figure 31 : Power Dissipation (deviceonly) vs.
OutputCurrent.
Figure 32 : Efficiency vs. OutputCurrent. Figure33 : TestPCB ThermalCharacteristic.
L4974A
17/22
Figure 34 : Junctionto AmbientThermal Resistance
vs.AreaonBoardHeatsink(DIP16+2+2) Figure 35: Maximum Allowable Power Dissipa-
tion vs. Ambient Temperature (Pow-
erdip)
Figure 36: Open LoopFrequencyandPhase of Er-
ror Amplifier (see fig. 7C).
L4974A
18/22
Figure 37 : 3.5A 5.1VLow Cost ApplicationCircuit.
Figure 38 : A 5.1V/12VMultiple Supply.Note the Synchronizationbetweenthe L4974Aand L4970A.
L4974A
19/22
Figure 39 : L4974A’sSync.Example.
Figure 40: 1A/24V Multiple Supply. Note the synchronization between the L4974A and L4962
L4974A
20/22
POWERDIP20 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 24.80 0.976
E 8.80 0.346
e 2.54 0.100
e3 22.86 0.900
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
L4974A
21/22
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-
tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-
viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore-
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4974A
22/22
L4975A
5A SWITCHING REGULATOR
5A OUTPUT CURRENT
5.1V TO 40V OUTPUT VOLTAGERANGE
0 TO 90% DUTY CYCLE RANGE
INTERNAL FEED-FORWARD LINE REGULA-
TION
INTERNAL CURRENT LIMITING
PRECISE 5.1V ±2% ON CHIP REFERENCE
RESETAND POWER FAIL FUNCTIONS
SOFT START
INPUT/OUTPUT SYNC PIN
UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
VERYHIGH EFFICIENCY
SWITCHING FREQUENCY UP TO 500KHz
THERMAL SHUTDOWN
CONTINUOUS MODE OPERATION
DESCRIPTION
The L4975A is a stepdown monolithic power
switching regulator delivering 5A at a voltagevari-
able from 5.1 to 40V.
Realized with BCD mixed technology, the device
usesa DMOSoutput transistorto obtain very high
efficiency and very fast switching times. Features
of the L4975A include reset and power fail for mi-
croprocessors, feed forward line regulation, soft
start, limiting current and thermal protection. The
device is mounted in a 15-lead multiwatt plastic
power package and requiresfew external compo-
nents. Efficient operation at switching frequencies
up to 500KHz allows reduction in the size and
cost of external filter components.
This isadvanced information on anew productnow in development or undergoing evaluation. Details are subject to change without notice.
November 1991
BLOCK DIAGRAM
Multiwatt15V
ORDERING NUMBER: L4975A
MULTIPOWER BCD TECHNOLOGY
1/21
PIN CONNECTION (Top view)
ABSOLUTE MAXIMUMRATINGS
Symbol Parameter Value Unit
V9Input Voltage 55 V
V9Input Operating Voltage 50 V
V7Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200KHz -1
-7 V
V
I7Maximum Output Current Internally Limited
V6Bootstrap Voltage
Bootstrap Operating Voltage 65
V9+15 V
V
V
3
,V
12 Input Voltage at Pins 3, 12 12 V
V4Reset Output Voltage 50 V
I4Reset Output Sink Current 50 mA
V5,V
10, V11, V13 Input Voltage at Pin 5, 10, 11, 13 7 V
I5Reset Delay Sink Current 30 mA
I10 Error Amplifier Output Sink Current 1 A
I12 Soft Start Sink Current 30 mA
Ptot Total Power Dissipation at Tcase < 120°C30W
T
j
,T
stg Junction and Storage Temperature -40 to 150 °C
THERMAL DATA
Symbol Parameter Value Unit
Rth j-case
Rth j-amb Thermal Resistance Junction-case max
Thermal Resistance Junction-ambient max 1
35 °C/W
°C/W
L4975A
2/21
CIRCUIT OPERATION (refer to the block dia-
gram)
The L4975Ais a 5A monolithicstepdownswitching
regulator working in continuous mode realized in
the new BCD Technology. This technology allows
the integration of isolated vertical DMOS power
transistors plus mixed CMOS/Bipolar transistors.
The device can deliver 5A at an output voltage
adjustable from 5.1V to 40V, and contains diag-
nostic and control functions that make it particu-
larlysuitable for microprocessor based systems.
BLOCK DIAGRAM
The block diagram shows the DMOS power tran-
sistor and the PWM control loop. Integrated func-
tions include a referencevoltage trimmed to 5.1V
±2%, soft start, undervoltage lockout, oscillator
with feedforward control, pulse by pulse current
limit, thermal shutdown and finally the reset and
power fail circuit. The reset and power fail circuit
provides an output signal for a microprocessor in-
dicating the statusof the system.
Device turn on is around 11V with a typical 1V
hysteresis, this threshold provides a correct volt-
age for the driving stage of the DMOS gate and
the hysteresisprevents instabilities.
An external bootstrap capacitor charged to 12V
by an internal voltage reference is needed to pro-
vide correct gate drive to the power DMOS. The
driving circuit is able to source and sink peak cur-
rents of around 0.5A to the gate of the DMOS
transistor. A typical switching time of the current
in the DMOS transistor is 50ns. Due to the fast
commutation switching frequencies up to 500kHz
arepossible.
The PWM control loop consists of a sawtooth os-
cillator, error amplifier, comparator, latch and the
output stage. An error signal is produced by com-
paring the output voltage with the precise 5.1V ±
2% on chip reference. This error signal is then
compared with the sawtooth oscillator, in order to
generatea fixedfrequencypulse width modulated
drive for the output stage. A PWM latch is in-
cluded to eliminate multiple pulsing within a pe-
riod even in noisy environments. The gain and
PIN FUNCTIONS
NoName Function
1 OSCILLATOR Rosc. External resistor connected to ground determines the constant charging
current of Cosc.
2 OSCILLATOR Cosc. External capacitor connected to grounddetermines (with Rosc) the
switching frequency.
3 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a
dividerto the input for power failfunction. It must be connected to the pin 14 an
external 30Kresistorwhen power fail signal not required.
4 RESET OUT Open Collector Reset/power Fail Signal Output. This output is high when the
supply and the output voltages are safe.
5 RESET DELAY A Cdcapacitor connected between this terminal and ground determines the
reset signaldelay time.
6 BOOTSTRAP A Cboot capacitor connected between thisterminal and the output allows to
drive properly the internal D-MOS transistor.
7 OUTPUT Regulator Output.
8 GROUND Common Ground Terminal
9 SUPPLY VOLTAGE UnregulatedInput Voltage.
10 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines
the regulation loop gain characteristics.
11 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected
directly to this terminal for 5.1V operation; It is connected via a divider for higher
voltages.
12 SOFT START Soft Start Time Constant. A capacitor is connected between thi sterminal and
ground to define the soft start time constant.
13 SYNC INPUT Multiple L4975A are synchronized by connecting pin 13inputs together or via
an external syncr. pulse.
14 Vref 5.1V Vref Device Reference Voltage.
15 Vstart Internal Start-up Circuit to Drive the Power Stage.
L4975A
3/21
Figure1: FeedforwardWaveform
Figure3: LimitingCurrent Function
Figure2: Soft Start Function
L4975A
4/21
stability of the loop can be adjusted by an exter-
nal RC network connected to the output of the er-
ror amplifier. A voltage feedforward control has
been added to the oscillator, this maintains supe-
rior line regulation over a wide input voltage
range. Closing the loop directly gives an output
voltage of 5.1V, higher voltages are obtained by
inserting a voltagedivider.
At turn on output overcurrents are prevented by
the soft start function(fig. 2). The error amplifieris
initiallyclamped by an external capacitorCss and
allowed to rise linearly under the charge of an in-
ternal constant current source.
Output overload protection is provided by a cur-
rentlimit circuit (fig. 3). Theload current is sensed
by an internal metal resistor connected to a com-
parator. When the load current exceeds a preset
threshold the output of the comparator sets a flip
flop which turns off the power DMOS. The next
clock pulse, from an internal 40kHz oscillator will
reset the flip flop and the power DMOS will again
conduct. This current protection method, ensures
a constant current output when the system is
overloaded or short circuited and limits the
switching frequency,in this condition,to 40kHz.
The Reset and Power fail circuitry (fig 4) gener-
ates an output signal when the supply voltage ex-
ceeds a threshold programmed by an external
voltage divider. The reset signal, is generated
with a delay time programmed by an external ca-
pacitor on the delay pin. Whenthe supply voltage
falls below the threshold or the output voltage
goes below 5V the reset output goes low immedi-
ately. The reset output is an open collector-drain.
Fig 4A shows the case when the supply voltage is
higher than the threshold, but the output voltage
isnot yet 5V.
Fig 4B shows the case when the output is 5.1V
but the supply voltage is not yet higher than the
fixedthreshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has an hysterysis to prevent unstable
conditions.
Figure4: Reset and Power Fail Functions.
A
B
L4975A
5/21
ELECTRICALCHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, R4= 16K,
C9= 2.2nF, fSW = 200KHz typ, unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
Viinput Voltage Range (pin 9) Vo=V
ref to 40V
Io=5A 15 50 V 5
VoOutput Votage Vi= 15V to 50V
Io= 3A; Vo=V
ref5 5.1 5.2 V 5
VoLine Regulation Vi= 15V to 50V
Io= 2A; Vo=V
ref12 30 mV 5
VoLoad Regulation Vo=V
ref
Io=2Ato4A
I
o=1Ato5A 10
20 30
50 mV
mV
5
VdDropout VoltageBetween
Pin 9 and 7 Io=3A
I
o=5A 0.4
0.55 0.6
0.8 V
V5
I7L Max. LimitingCurrent Vi= 15 to 50V
Vo=V
ref to 40V 5.5 6.5 7.5 A 5
ηEfficiency Io=3A
V
o=V
ref
Vo= 12V 70 75
80 %
%
5
Io=5A
V
o=V
ref
Vo= 12V 80 85
92 %
%
5
SVR Supply Voltage Ripple
Reject. Vi= 2VRMS; Io=3A
f = 100Hz; Vo=V
ref 56 60 dB 5
f Switching Frequency 180 200 220 KHz 5
f
ViVoltage Stability of
Swiching Frequency Vi= 15V to 45V 2 6 % 5
f
TjTemperature Stability of
Swiching Frequency Tj= 0 to 125°C1%5
f
max Maximum Operating
Switching Frequency Vo=V
ref;R
4= 10K
Io= 5A; C9= 1nF 500 KHz 5
Vref SECTION(pin 14)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 5 5.1 5.2 V 7
V14 Line Regulation Vi= 15V to 50V 10 25 mV 7
V14 Load Regulation I14 = 0 to 1mA 20 40 mV 7
V14
TAverage Temperature
CoefficientReference
Voltage
Tj=0°C to 125°C 0.4 mV/°C7
I
14 short Short Circuit Current Limit V14 = 0 70 mA 7
VSTART SECTION(pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V15 Reference Voltage 11.4 12 12.6 V 7
V15 Line Regulation Vi= 15 to 50V 0.6 1.4 V 7
V15 Load Regulation I15 = 0 to 1mA 50 200 mV 7
I15 short Short Circuit Current Limit V15 =0V 80 mA 7
L4975A
6/21
ELECTRICALCHARACTERISTICS (continued)
DCCHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V9on Turn-on Threshold 10 11 12 V 7A
V9 Hyst Turn-off Hysteresys 1 V 7A
I9Q Quiescent Current V12 =0; S1=D 13 19 mA 7A
I
9OQ Operating SupplyCurrent V12 = 0; S1 = C; S2 = B 16 23 mA 7A
I7L Out Leak Current Vi= 55V; S3 = A; V12 =0 2 mA 7A
SOFTSTART
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I12 Soft Start Source Current V12 = 3V; V11 = 0V 70 100 130 µA7B
V
12 Output Saturation Voltage I12 = 20mA; V9= 10V
I12 = 200µA; V9= 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10H High Level Out Voltage I10 = -100µA; S1 = C
V11 = 4.7V 6V7C
V
10L Low Level Out Voltage I10 = +100µA; S1 = C
V11 = 5.3V; 1.2 V 7C
I10H Source Output Current V10 = 1V; S1 = E
V11 = 4.7V 100 150 µA7C
I
10L Sink Output Current V10 = 6V; S1 = D
V11 = 5.3V 100 150 µA7C
I
11 Input Bias Current RS= 10K0.4 3 µA–
G
VDC Open Loop Gain VVCM = 4V;
RS=1060 dB
SVR Supply Voltage Rejection 15 < Vi< 50V;
RS=1060 80 dB
VOS Input Offset Voltage RS=50210mV
RAMP GENERATOR(pin 2)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V2Ramp Valley S1 = C; S2 = B 1.2 1.5 V 7A
V2Ramp Peak S1 = C Vi= 15V
S2 = B Vi= 45V 2.5
5.5 V
V7A
7A
I2Min. Ramp Current S1 = A; I1= 100µA 270 300 µA7A
I
2Max. Ramp Current S1 = A; I1 = 1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Low Input Voltage Vi= 15V to 50V; V12 =0;
S1 = C; S2 = B; S4 = B –0.3 0.9 V 7A
V13 High Input voltage V12=0;
S1 = C; S2 = B; S4 = B 3.5 5.5 V 7A
I13L Sync Input Current with
Low Input Voltage V2=V
13 = 0.9V; S4 = A;
S1 = C; S2 = B 0.4 mA 7A
I13H Input Current with High
Input Voltage V13 = 3.5V; S4 = A;
S1 = C; S2 = B 1.5 mA 7A
V13 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4975A
7/21
ELECTRICALCHARACTERISTICS (continued)
RESETAND POWERFAIL FUNCTIONS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11R Rising Threshold Voltage
(pin 11) Vi= 15 to 50V
V3= 5.3V Vref
–120 Vref
–100 Vref
–80 V
mV 7D
V11F Falling Threshold Voltage
(pin 11) Vi = 15 to 50V
V3= 5.3V 4.77 Vref
–200 Vref
–160 V
mV 7D
V5H Delay High Threshold
Voltage Vi= 15 to 50V
V11 =V
14 4.95 5.1 5.25 V 7D
V5L Delay Low Threshold
Voltage Vi = 15 to 50V
V11 =V
14 V3= 5.3V 1 1.1 1.2 V 7D
–I5SO Delay Source Current V3= 5.3V; V5=3V 406080µA7D
I
5SI Delay Sink Current V3= 4.7V; V5=3V 10 mA 7D
V
4S Out Saturation Voltage I4= 15mA; S1 = B
V3= 4.7V 0.4 V 7D
I4Output Leak Current V4= 50V; S1 = A
V3= 5.3V 100 µA7D
V
3R Rising Threshold Voltage V11 =V
14 4.95 5.1 5.25 V 7D
V3H Hysteresys 0.4 0.5 0.6 V 7D
I3Input Bias Current 1 3 µA7D
Figure5: Test andEvaluationBoard Circuit
TYPICAL PERFORMANCES (using evaluationboard) :
n =83% (Vi=35V ; Vo=VREF ;I
o=5A;fSW =200KHz)
Vo RIPPLE =30mV (at 5A)with output filter capacitor ESR 60m
Line regulation = 5mV (Vi=15 to 50V)
Load regulation= 15mV (Io= 2 to 5A)
For componentvalues,refer to test circuit partlist.
L4975A
8/21
PARTS LIST
R1= 30KC1,C
2= 3300µF 63VLEYF (ROE
R2= 10KC3,C
4
,C
5
,C
6= 2.2µF
R3= 15KC7= 390pF Film
R4= 16KC8= 22nF MKT 1817 (ERO)
R5=220,5W
R6= 4K7 C9= 2.2nF KP1830
R7=10C
10 = 220nF MKT
R8= see tab. A C11 = 2.2nF MP1830
R9= OPTION **C12,C
13,C
14 = 220µF 40VLEKR
R10 = 4K7 C15 =1µF Film
R11 =10
D1 = MBR 760CT (or 7.5A/60Vor equivalent)
L1 = 80µH core 58930 MAGNETICS
24 TURNS Ø 1.1mm (AWG 17)
COGEMA 949178
* 2 capacitors in parallel to increase input RMS current capability
** 3 capacitorsin parallel to reduce total outputESR
Table B
SUGGESTEDBOOTSTRAP CAPACITORS
Operating Frequency Bootstrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f = 100KHz 330nF
f = 200KHz 220nF
f = 500KHz 100nF
Figure6a: P.C. Board (componentsside) and Components Layout of Figure 5 (1:1 scale).
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12k
18k
L4975A
9/21
Figure7: DC Test Circuits
Figure6b: P.C. Board(Back side) and ComponentsLayoutof the Circuit of Fig.5. (1:1 scale)
L4975A
10/21
Figure7A
Figure7B
L4975A
11/21
Figure7C
Figure7D
L4975A
12/21
Figure8: QuiescentDrain Current vs. Supply
Voltage (0% duty cycle - see fig. 7A).
Figure10: QuiescentDrain Current vs. Duty
Cycle
Figure12: ReferenceVoltage (pin 14) vs.
Junction Temperature(see fig.7)
Figure 9: QuiescentDrain Current vs. Junction
Temperature(0% duty cycle).
Figure 11: ReferenceVoltage(pin14) vs. Vi(see
fig. 7)
Figure 13: ReferenceVoltage(pin15) vs. Vi(see
fig. 7)
L4975A
13/21
Figure14: ReferenceVoltage (pin 15) vs.
Junction Temperature(see fig.7)
Figure16: SwitchingFrequencyvs. Input
Voltage (see fig. 5)
Figure18: SwitchingFrequencyvs. R4 (see fig. 5)
Figure 15: Reference Voltage 5.1V (pin 14)
SupplyVoltageRipple Rejection vs.
Frequency
Figure 17: SwitchingFrequency vs. Junction
Temperature(see fig 5)
Figure 19: Max.Duty Cyclevs. Frequency
L4975A
14/21
Figure20: SupplyVoltage Ripple Rejectionvs.
Frequency (see fig. 5)
Figure22: Load Transient Response(see fig. 5)
Figure24: DropoutVoltage Between Pin 9 and
Pin 7 vs. Junction Temperature
Figure 21: Line TransientResponse(see fig. 5)
Figure 23: DropoutVoltageBetween Pin 9 and
Pin 7 vs. Current at Pin 7
Figure 25: PowerDissipation (device only) vs.
InputVoltage
L4975A
15/21
Figure26: PowerDissipation(device only) vs.
OutputVoltage
Figure28: Efficiency vs. OutputCurrent
Figure30: Efficiency vs. OutputVoltage
Figure 27: Heatsink Used to Derive the Device’s
PowerDissipation
Rth -Heatsink = TcaseTamb
Pd
Figure 29: Efficiency vs. Output Voltage
Figure 31: Open Loop Frequency andPhase
Responseof ErrorAmplifier (see
fig.7C)
L4975A
16/21
Figure32: PowerDissipationDerating Curve
Figure33: 5.1V/12VMultiple Supply. Note the Synchronizationbetween the L4975A and theL4974A
L4975A
17/21
Figure34: 5.1V/ 5A Low CostApplication
Figure35: 5A Switching Regulator, Adjustable from 0V to 25V.
L4975A
18/21
Figure36: L4975A’sSync. Example
L4975A
19/21
MULTIWATT15 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 22.1 22.6 0.870 0.890
L1 22 22.5 0.866 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.2 4.3 4.6 0.165 0.169 0.181
M1 4.5 5.08 5.3 0.177 0.200 0.209
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
L4975A
20/21
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may resultfrom itsuse. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-
tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without ex-
press written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All RightsReserved
MULTIWATTis a Registered Trademark of SGS-THOMSON Microelectronics
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil- France -Germany - Hong Kong - Italy - Japan - Korea -Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4975A
21/21
L4977A
7A SWITCHING REGULATOR
7A OUTPUT CURRENT
5.1V TO 40V OUTPUT VOLTAGERANGE
0 TO 90% DUTY CYCLE RANGE
INTERNAL FEED-FORWARD LINE REGULA-
TION
INTERNAL CURRENT LIMITING
PRECISE 5.1V ±2% ON CHIP REFERENCE
RESETAND POWER FAIL FUNCTIONS
SOFT START
INPUT/OUTPUT SYNC PIN
UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
VERYHIGH EFFICIENCY
SWITCHING FREQUENCY UP TO 500KHz
THERMAL SHUTDOWN
CONTINUOUS MODE OPERATION
DESCRIPTION
The L4977A is a stepdown monolithic power
switching regulator delivering 7A at a voltagevari-
able from 5.1 to 40V.
Realized with BCD mixed technology, the device
usesa DMOSoutput transistorto obtain very high
efficiency and very fast switching times. Features
of the L4977A include reset and power fail for mi-
croprocessors, feed forward line regulation, soft
start, limiting current and thermal protection. The
device is mounted in a 15-lead multiwatt plastic
power package and requiresfew external compo-
nents. Efficient operation at switching frequencies
up to 500KHz allows reduction in the size and
cost of external filter components.
This isadvanced information on anew productnow in development or undergoing evaluation. Details are subject to change without notice.
November 1991
BLOCK DIAGRAM
Multiwatt15V
ORDERING NUMBER: L4977A
MULTIPOWER BCD TECHNOLOGY
1/21
PIN CONNECTION (Top view)
ABSOLUTE MAXIMUMRATINGS
Symbol Parameter Value Unit
V9Input Voltage 55 V
V9Input Operating Voltage 50 V
V7Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200KHz -1
-7 V
V
I7Maximum Output Current Internally Limited
V6Bootstrap Voltage
Bootstrap Operating Voltage 65
V9+15 V
V
V
3
,V
12 Input Voltage at Pins 3, 12 12 V
V4Reset Output Voltage 50 V
I4Reset Output Sink Current 50 mA
V5,V
10, V11, V13 Input Voltage at Pin 5, 10, 11, 13 7 V
I5Reset Delay Sink Current 30 mA
I10 Error Amplifier Output Sink Current 1 A
I12 Soft Start Sink Current 30 mA
Ptot Total Power Dissipation at Tcase < 120°C30W
T
j
,T
stg Junction and Storage Temperature -40 to 150 °C
THERMAL DATA
Symbol Parameter Value Unit
Rth j-case
Rth j-amb Thermal Resistance Junction-case max
Thermal Resistance Junction-ambient max 1
35 °C/W
°C/W
L4977A
2/21
CIRCUIT OPERATION (refer to the block dia-
gram)
The L4977Ais a 7A monolithicstepdownswitching
regulator working in continuous mode realized in
the new BCD Technology. This technology allows
the integration of isolated vertical DMOS power
transistors plus mixed CMOS/Bipolar transistors.
The device can deliver 7A at an output voltage
adjustable from 5.1V to 40V, and contains diag-
nostic and control functions that make it particu-
larlysuitable for microprocessor based systems.
BLOCK DIAGRAM
The block diagram shows the DMOS power tran-
sistor and the PWM control loop. Integrated func-
tions include a referencevoltage trimmed to 5.1V
±2%, soft start, undervoltage lockout, oscillator
with feedforward control, pulse by pulse current
limit, thermal shutdown and finally the reset and
power fail circuit. The reset and power fail circuit
provides an output signal for a microprocessor in-
dicating the statusof the system.
Device turn on is around 11V with a typical 1V
hysteresis, this threshold provides a correct volt-
age for the driving stage of the DMOS gate and
the hysteresisprevents instabilities.
An external bootstrap capacitor charged to 12V
by an internal voltage reference is needed to pro-
vide correct gate drive to the power DMOS. The
driving circuit is able to source and sink peak cur-
rents of around 0.5A to the gate of the DMOS
transistor. A typical switching time of the current
in the DMOS transistor is 50ns. Due to the fast
commutation switching frequencies up to 500kHz
arepossible.
The PWM control loop consists of a sawtooth os-
cillator, error amplifier, comparator, latch and the
output stage. An error signal is produced by com-
paring the output voltage with the precise 5.1V ±
2% on chip reference. This error signal is then
compared with the sawtooth oscillator, in order to
generatea fixedfrequencypulse width modulated
drive for the output stage. A PWM latch is in-
cluded to eliminate multiple pulsing within a pe-
riod even in noisy environments. The gain and
PIN FUNCTIONS
NoName Function
1 OSCILLATOR Rosc. External resistor connected to ground determines the constant charging
current of Cosc.
2 OSCILLATOR Cosc. External capacitor connected to grounddetermines (with Rosc) the
switching frequency.
3 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a
dividerto the input for power failfunction. It must be connected to the pin 14 an
external 30Kresistorwhen power fail signal not required.
4 RESET OUT Open Collector Reset/power Fail Signal Output. This output is high when the
supply and the output voltages are safe.
5 RESET DELAY A Cdcapacitor connected between this terminal and ground determines the
reset signaldelay time.
6 BOOTSTRAP A Cboot capacitor connected between thisterminal and the output allows to
drive properly the internal D-MOS transistor.
7 OUTPUT Regulator Output.
8 GROUND Common Ground Terminal
9 SUPPLY VOLTAGE UnregulatedInput Voltage.
10 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines
the regulation loop gain characteristics.
11 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected
directly to this terminal for 5.1V operation; It is connected via a divider for higher
voltages.
12 SOFT START Soft Start Time Constant. A capacitor is connected between thi sterminal and
ground to define the soft start time constant.
13 SYNC INPUT Multiple L4977A are synchronized by connecting pin 13inputs together or via
an external syncr. pulse.
14 Vref 5.1V Vref Device Reference Voltage.
15 Vstart Internal Start-up Circuit to Drive the Power Stage.
L4977A
3/21
Figure1: FeedforwardWaveform
Figure3: LimitingCurrent Function
Figure2: Soft Start Function
L4977A
4/21
stability of the loop can be adjusted by an exter-
nal RC network connected to the output of the er-
ror amplifier. A voltage feedforward control has
been added to the oscillator, this maintains supe-
rior line regulation over a wide input voltage
range. Closing the loop directly gives an output
voltage of 5.1V, higher voltages are obtained by
inserting a voltagedivider.
At turn on output overcurrents are prevented by
the soft start function(fig. 2). The error amplifieris
initiallyclamped by an external capacitorCss and
allowed to rise linearly under the charge of an in-
ternal constant current source.
Output overload protection is provided by a cur-
rentlimit circuit (fig. 3). Theload current is sensed
by an internal metal resistor connected to a com-
parator. When the load current exceeds a preset
threshold the output of the comparator sets a flip
flop which turns off the power DMOS. The next
clock pulse, from an internal 40kHz oscillator will
reset the flip flop and the power DMOS will again
conduct. This current protection method, ensures
a constant current output when the system is
overloaded or short circuited and limits the
switching frequency,in this condition,to 40kHz.
The Reset and Power fail circuitry (fig 4) gener-
ates an output signal when the supply voltage ex-
ceeds a threshold programmed by an external
voltage divider. The reset signal, is generated
with a delay time programmed by an external ca-
pacitor on the delay pin. Whenthe supply voltage
falls below the threshold or the output voltage
goes below 5V the reset output goes low immedi-
ately. The reset output is an open collector-drain.
Fig 4A shows the case when the supply voltage is
higher than the threshold, but the output voltage
isnot yet 5V.
Fig 4B shows the case when the output is 5.1V
but the supply voltage is not yet higher than the
fixedthreshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has an hysterysis to prevent unstable
conditions.
Figure4: Reset and Power Fail Functions.
A
B
L4977A
5/21
ELECTRICALCHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, R4= 16K,
C9= 2.2nF, fSW = 200KHz typ, unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
Viinput Voltage Range (pin 9) Vo=V
ref to 40V
Io=7A 15 50 V 5
VoOutput Votage Vi= 15V to 50V
Io= 3A; Vo=V
ref5 5.1 5.2 V 5
VoLine Regulation Vi= 15V to 50V
Io= 2A; Vo=V
ref12 30 mV 5
VoLoad Regulation Vo=V
ref
Io=3Ato5A
I
o=2Ato7A 10
20 25
40 mV
mV
5
VdDropout VoltageBetween
Pin 9 and 7 Io=5A
I
o=7A 0.4
0.8 0.6
1.1 V
V5
I7L Max. LimitingCurrent Vo=V
ref to 40V
Vi= 15 to 50V 8 9.5 11 A 5
ηEfficiency Io=3A
V
o=V
ref
Vo= 12V 70 75
80 %
%
5
Io=7A
V
o=V
ref
Vo= 12V 75 80
87 %
%
5
SVR Supply Voltage Ripple
Reject. Vi= 2VRMS; Io=3A
f = 100Hz; Vo=V
ref 56 60 dB 5
f Switching Frequency 180 200 220 KHz 5
f
ViVoltage Stability of
Swiching Frequency Vi= 15V to 45V 2 6 % 5
f
TjTemperature Stability of
Swiching Frequency Tj= 0 to 125°C1%5
f
max Maximum Operating
Switching Frequency Vo=V
ref;R
4= 10K
Io= 7A; C9= 1nF 500 KHz 5
Vref SECTION(pin 14)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 5 5.1 5.2 V 7
V14 Line Regulation Vi= 15V to 50V 10 25 mV 7
V14 Load Regulation I14 = 0 to 1mA 20 40 mV 7
V14
TAverage Temperature
CoefficientReference
Voltage
Tj=0°C to 125°C 0.4 mV/°C7
I
14 short Short Circuit Current Limit V14 = 0 70 mA 7
VSTART SECTION(pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V15 Reference Voltage 11.4 12 12.6 V 7
V15 Line Regulation Vi= 15 to 50V 0.6 1.4 V 7
V15 Load Regulation I15 = 0 to 1mA 50 200 mV 7
I15 short Short Circuit Current Limit V15 =0V 80 mA 7
L4977A
6/21
ELECTRICALCHARACTERISTICS (continued)
DCCHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V9on Turn-on Threshold 10 11 12 V 7A
V9 Hyst Turn-off Hysteresys 1 V 7A
I9Q Quiescent Current V12 =0; S1=D 13 19 mA 7A
I
9OQ Operating SupplyCurrent V12 = 0; S1 = C; S2 = B 16 23 mA 7A
I7L Out Leak Current Vi= 55V; S3 = A; V12 =0 2 mA 7A
SOFTSTART
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I12 Soft Start Source Current V12 = 3V; V11 = 0V 70 100 130 µA7B
V
12 Output Saturation Voltage I12 = 20mA; V9= 10V
I12 = 200µA; V9= 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10H High Level Out Voltage I10 = -100µA; S1 = C
V11 = 4.7V 6V7C
V
10L Low Level Out Voltage I10 = +100µA; S1 = C
V11 = 5.3V; 1.2 V 7C
I10H Source Output Current V10 = 1V; S1 = E
V11 = 4.7V 100 150 µA7C
I
10L Sink Output Current V10 = 6V; S1 = D
V11 = 5.3V 100 150 µA7C
I
11 Input Bias Current RS= 10K0.4 3 µA–
G
VDC Open Loop Gain VVCM = 4V;
RS=1060 dB
SVR Supply Voltage Rejection 15 < Vi< 50V;
RS=1060 80 dB
VOS Input Offset Voltage RS=50210mV
RAMP GENERATOR(pin 2)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V2Ramp Valley S1 = C; S2 = B 1.2 1.5 V 7A
V2Ramp Peak S1 = C Vi= 15V
S2 = B Vi= 45V 2.5
5.5 V
V7A
7A
I2Min. Ramp Current S1 = A; I1= 100µA 270 300 µA7A
I
2Max. Ramp Current S1 = A; I1= 1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Low Input Voltage Vi= 15V to 50V; V12 =0;
S1 = C; S2 = B; S4 = B –0.3 0.9 V 7A
V13 High Input voltage V12 =0;
S1 = C; S2 = B; S4 = B 3.5 5.5 V 7A
I13L Sync Input Current with
Low Input Voltage V13 =V
2
= 0.9V; S4 = A;
S1 = C; S2 = B 0.4 mA 7A
I13H Input Current with High
Input Voltage V13 = 3.5V; S4 = A;
S1 = C; S2 = B 1.5 mA 7A
V13 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4977A
7/21
ELECTRICALCHARACTERISTICS (continued)
RESETAND POWERFAIL FUNCTIONS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11R Rising Threshold Voltage
(pin 11) Vi= 15 to 50V
V3= 5.3V Vref
–120 Vref
–100 Vref
–80 V
mV 7D
V11F Falling Threshold Voltage
(pin 11) Vi = 15 to 50V
V3= 5.3V 4.77 Vref
–200 Vref
–160 V
mV 7D
V5H Delay High Threshold
Voltage Vi= 15 to 50V
V11 =V
14 V3= 5.3V 4.95 5.1 5.25 V 7D
V5L Delay Low Threshold
Voltage Vi = 15 to 50V
V11 =V
14 V3= 5.3V 1 1.1 1.2 V 7D
–I5SO Delay Source Current V3= 5.3V; V5=3V 406080µA7D
I
5SI Delay Sink Current V3= 4.7V; V5=3V 10 mA 7D
V
4S Out Saturation Voltage I4= 15mA; S1 = B
V3= 4.7V 0.4 V 7D
I4Output Leak Current V4= 50V; S1 = A
V3= 5.3V 100 µA7D
V
3R Rising Threshold Voltage V11 =V
14 4.95 5.1 5.25 V 7D
V3H Hysteresys 0.4 0.5 0.6 V 7D
I3Input Bias Current 1 3 µA7D
Figure5: Test andEvaluationBoard Circuit
TYPICAL PERFORMANCES (using evaluationboard) :
n =83% (Vi=35V ; Vo=VREF ;I
o=7A;fSW =200KHz)
Vo RIPPLE =30mV (at 7A)with output filter capacitor ESR 60m
Line regulation = 5mV (Vi=15 to 50V)
Load regulation= 15mV (Io= 2 to 7A)
For componentvalues,refer to test circuit partlist.
L4977A
8/21
PARTS LIST
R1= 30KC1,C
2= 3300µF 63VLEYF (ROE
R2= 10KC3,C
4
,C
5
,C
6= 2.2µF
R3= 15KC7= 390pF Film
R4= 16KC8= 22nF MKT 1817 (ERO)
R5=220,5W
R6= 4K7 C9= 2.2nF KP1830
R7=10C
10 = 220nF MKT
R8= see tab. A C11 = 2.2nF MP1830
R9= OPTION **C12,C
13,C
14 = 220µF 40VLEKR
R10 = 4K7 C15 =1µF Film
R11 =10
D1 = MBR 1560CT (or 16A/60V or equivalent)
L1 = 40µH core 58071 MAGNETICS
27 TURNS Ø 1,3mm (AWG 16)
COGEMA 949178
* 2 capacitors in parallel to increase input RMS current capability
** 3 capacitorsin parallel to reduce total outputESR
Table B
SUGGESTEDBOOTSTRAP CAPACITORS
Operating Frequency Bootstrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f = 100KHz 330nF
f = 200KHz 220nF
f = 500KHz 100nF
Figure6a: P.C. Board (componentsside) and Components Layout of Figure 5 (1:1 scale).
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12k
18k
L4977A
9/21
Figure7: DC Test Circuits
Figure6b: P.C. Board(Back side) and ComponentsLayoutof the Circuit of Fig.5. (1:1 scale)
L4977A
10/21
Figure7A
Figure7B
L4977A
11/21
Figure7C
Figure7D
L4977A
12/21
Figure8: QuiescentDrain Current vs. Supply
Voltage (0% duty cycle - see fig. 7A).
Figure10: QuiescentDrain Current vs. Duty
Cycle
Figure12: ReferenceVoltage (pin 14) vs.
Junction Temperature(see fig.7)
Figure 9: QuiescentDrain Current vs. Junction
Temperature(0% duty cycle).
Figure 11: ReferenceVoltage(pin14) vs. Vi(see
fig. 7)
Figure 13: ReferenceVoltage(pin15) vs. Vi(see
fig. 7)
L4977A
13/21
Figure14: ReferenceVoltage (pin 15) vs.
Junction Temperature(see fig.7)
Figure16: SwitchingFrequencyvs. Input
Voltage (see fig. 5)
Figure18: SwitchingFrequencyvs. R4 (see fig. 5)
Figure 15: Reference Voltage 5.1V (pin 14)
SupplyVoltageRipple Rejection vs.
Frequency
Figure 17: SwitchingFrequency vs. Junction
Temperature(see fig 5)
Figure 19: Max.Duty Cyclevs. Frequency
L4977A
14/21
Figure20: SupplyVoltage Ripple Rejectionvs.
Frequency (see fig. 5)
Figure22: Load Transient Response(see fig. 5)
Figure24: DropoutVoltage Between Pin 9 and
Pin 7 vs. Junction Temperature
Figure 21: Line TransientResponse(see fig. 5)
Figure 23: DropoutVoltageBetween Pin 9 and
Pin 7 vs. Current at Pin 7
Figure 25: PowerDissipation (device only) vs.
InputVoltage
L4977A
15/21
Figure26: PowerDissipation(device only) vs.
OutputVoltage
Figure28: Efficiency vs. OutputCurrent
Figure30: Efficiency vs. OutputVoltage
Figure 27: Heatsink Used to Derive the Device’s
PowerDissipation
Rth -Heatsink = TcaseTamb
Pd
Figure 29: Efficiency vs. Output Voltage
Figure 31: Open Loop Frequency andPhase
Responseof ErrorAmplifier (see
fig.7C)
L4977A
16/21
Figure32: PowerDissipationDerating Curve
Figure33: A5.1V/12VMultiple Supply. Note the Synchronizationbetween the L4977A and the L4974A
L4977A
17/21
Figure34: 5.1V/ 7A Low CostApplication
Figure35: 7A Switching Regulator, Adjustable from 0V to 25V.
L4977A
18/21
Figure36: L4977A’sSync. Example
L4977A
19/21
MULTIWATT15 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 22.1 22.6 0.870 0.890
L1 22 22.5 0.866 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.2 4.3 4.6 0.165 0.169 0.181
M1 4.5 5.08 5.3 0.177 0.200 0.209
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
L4977A
20/21
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may resultfrom itsuse. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-
tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without ex-
press written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All RightsReserved
MULTIWATTis a Registered Trademark of SGS-THOMSON Microlectronics
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil- France -Germany - Hong Kong - Italy - Japan - Korea -Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4977A
21/21
SG2525A/2527A
SG3525A/3527A
December 1995
REGULATING PULSE WIDTH MODULATORS
.8 TO 35 V OPERATION
.5.1 V REFERENCE TRIMMED TO ±1%
.100Hz TO 500 KHz OSCILLATORRANGE
.SEPARATEOSCILLATORSYNC TERMINAL
.ADJUSTABLEDEADTIME CONTROL
.INTERNAL SOFT-START
.PULSE-BY-PULSESHUTDOWN
.INPUT UNDERVOLTAGE LOCKOUT WITH
HYSTERESIS
.LATCHING PWM TO PREVENT MULTIPLE
PULSES
.DUAL SOURCE/SINK OUTPUT DRIVERS
DESCRIPTION
The SG3525A/3527Aseries ofpulsewidthmodula-
torintegratedcircuitsaredesignedtoofferimproved
performanceandloweredexternalpartscountwhen
usedin designing all types of switching power sup-
plies.The on-chip + 5.1 V referenceis trimmed to±
1 % and the input common-mode rangeof theerror
amplifierincludes the referencevoltage eliminating
external resistors. A sync input to the oscillator al-
lowsmultiple unitstobe slavedor asingle unittobe
synchronizedto an externalsystem clock. A single
resistorbetweentheCTandthedischargeterminals
provide a wide range of dead time ad- justment.
Thesedevicesalsofeaturebuilt-insoft-startcircuitry
with only an external timing capacitor required. A
shutdownterminalcontrolsboth thesoft-startcircu-
ity and the output stages, providing instantaneous
turn off through the PWM latch with pulsed shut-
down, aswell as soft-startrecycle with longer shut-
down commands. Thesefunctionsare also control-
led byanundervoltagelockoutwhichkeeps theout-
puts off and the soft-start capacitor discharged for
sub-normalinputvoltages. This lockoutcircuitry in-
cludesapproximately500mVofhysteresisforjitter-
free operation.Another feature of these PWM cir-
cuits is a latch following the comparator. Once a
PWM pulses has been terminated for any reason,
the outputswill remain offfor the durationof the pe-
riod. The latch is reset with each clock pulse. The
output stages are totem-pole designs capable of
sourcing or sinking in excess of 200 mA. The
SG3525AoutputstagefeaturesNOR logic, giving a
LOWoutputforanOFFstate.TheSG3527Autilizes
OR logicwhich results in aHIGH output level when
OFF.
DIP16 16(Narrow)
Type Plastic DIP SO16
SG2525A SG2525AN SG2525AP
SG2527A SG2527AN SG2527AP
SG3525A SG3525AN SG3525AP
SG3527A SG3527AN SG3527AP
PIN CONNECTIONS AND ORDERING NUMBERS (top view)
1/12
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
ViSupply Voltage 40 V
VCCollector Supply Voltage 40 V
IOSC Oscillator Charging Current 5 mA
IoOutput Current, Source or Sink 500 mA
IRReference Output Current 50 mA
ITCurrent through CTTerminal
Logic Inputs
Analog Inputs
5
0.3 to + 5.5
0.3 to Vi
mA
V
V
Ptot Total Power Dissipation at Tamb =70°C 1000 mW
TjJunction Temperature Range 55 to 150 °C
Tstg Storage Temperature Range 65 to 150 °C
Top Operating Ambient Temperature : SG2525A/27A
SG3525A/27A –– 25 to 85
0to70 °C
°C
THERMAL DATA
Symbol Parameter SO16 DIP16 Unit
Rth j-pins
Rth j-amb
Rth j-alumina
Thermal Resistance Junction-pins Max
Thermal Resistance Junction-ambient Max
Thermal Resistance Junction-alumina (*) Max 50
50
80 °C/W
°C/W
°C/W
*Thermal resistancejunction-alumina withthedevice solderedon themiddleofanalumina supportingsubstratemeasuring 15×20mm ; 0.65mm
thickness with infinite heatsink.
BLOCK DIAGRAM
SG2525A/27A-SG3525A/27A
2/12
ELECTRICAL CHARACTERISTICS
(V# i = 20 V, and over operating temperature, unless otherwise specified)
Symbol Parameter Test Conditions SG2525A
SG2527A SG3525A
SG3527A Unit
Min. Typ. Max. Min. Typ. Max.
REFERENCE SECTION
VREF Output Voltage Tj=25°C 5.05 5.1 5.15 5 5.1 5.2 V
VREF Line Regulation Vi= 8 to 35 V 10 20 10 20 mV
VREF Load Regulation IL= 0 to 20 mA 20 50 20 50 mV
VREF/T* Temp. Stability Over Operating Range 20 50 20 50 mV
* Total Output Variation Line, Load and
Temperature 5 5.2 4.95 5.25 V
Short Circuit Current VREF =0T
j=25°C 80 100 80 100 mA
* Output Noise Voltage 10 Hz f10 kHz,
Tj=25°C40 200 40 200 µVrms
VREF* Long Term Stability Tj= 125 °C, 1000 hrs 20 50 20 50 mV
OSCILLATOR SECTION * *
*, Initial Accuracy Tj=25°C±2±6±2±6%
*, Voltage Stability Vi= 8 to 35 V ±0.3 ±1±1±2%
f/T* Temperature Stability Over Operating Range ±3±6±3±6%
f
MIN Minimum Frequency RT= 200 KCT= 0.1 µF 120 120 Hz
fMAX Maximum Frequency RT=2KC
T= 470 pF 400 400 KHz
Current Mirror IRT = 2 mA 1.7 2 2.2 1.7 2 2.2 mA
*, Clock Amplitude 3 3.5 3 3.5 V
*, Clock Width Tj=25°C 0.3 0.5 1 0.3 0.5 1 µs
Sync Threshold 1.2 2 2.8 1.2 2 2.8 V
Sync Input Current Sync Voltage = 3.5 V 1 2.5 1 2.5 mA
ERROR AMPLIFIER SECTION (VCM = 5.1 V)
VOS Input Offset Voltage 0.5 5 2 10 mV
IbInput Bias Current 1 10 1 10 µA
Ios Input Offset Current 1 1 µA
DC Open Loop Gain RL10 M60 75 60 75 dB
* Gain Bandwidth
Product Gv= 0 dB Tj=25°C1 2 1 2 MHz
*, DC Transconduct. 30 KRL1M
T
j=25°C1.1 1.5 1.1 1.5 ms
Output Low Level 0.2 0.5 0.2 0.5 V
Output High Level 3.8 5.6 3.8 5.6 V
CMR Comm. Mode Reject. VCM = 1.5 to 5.2 V 60 75 60 75 dB
PSR Supply Voltage
Rejection Vi= 8 to 35 V 50 60 50 60 dB
SG2525A/27A-SG3525A/27A
3/12
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Conditions SG2525A
SG2527A SG3525A
SG3527A Unit
Min. Typ. Max. Min. Typ. Max.
PWM COMPARATOR
Minimum Duty-cycle 0 0 %
Maximum Duty-cycle 45 49 45 49 %
Input Threshold Zero Duty-cycle 0.7 0.9 0.7 0.9 V
Maximum Duty-cycle 3.3 3.6 3.3 3.6 V
* Input Bias Current 0.05 1 0.05 1 µA
SHUTDOWN SECTION
Soft Start Current VSD = 0 V, VSS =0V 255080255080 µA
Soft Start Low Level VSD = 2.5 V 0.4 0.7 0.4 0.7 V
Shutdown Threshold To outputs, VSS = 5.1 V
Tj=25°C0.6 0.8 1 0.6 0.8 1 V
Shutdown Input Current VSD = 2.5 V 0.4 1 0.4 1 mA
* Shutdown Delay VSD = 2.5 V Tj=25°C 0.2 0.5 0.2 0.5 µs
OUTPUT DRIVERS (each output) (VC=20V)
Output Low Level Isink = 20 mA 0.2 0.4 0.2 0.4 V
Isink = 100 mA 1 2 1 2 V
Output High Level Isource =20mA 18 19 18 19 V
I
source = 100 mA 17 18 17 18 V
Under-Voltage Lockout Vcomp and Vss = High 6 7 8 6 7 8 V
ICCollector Leakage VC= 35 V 200 200 µA
tr* Rise Time CL= 1 nF, Tj=25°C 100 600 100 600 ns
tf* Fall Time CL= 1 nF, Tj=25°C 50 300 50 300 ns
TOTAL STANDBY CURRENT
IsSupply Current Vi= 35 V 14 20 14 20 mA
*These parameters, although guaranteed over the recommended operating conditions, arenot 100% tested in production.
Testedat fosc =40 KHz (RT=3.6K,C
T=0.1µF, RD=0). Approximate oscillator frequency is defined by :
1
f= C
T(0.7 RT+3R
D
)
.DC transconductance (gM) relatestoDC open-loop voltage gain (Gv) according to thefollowingequation :Gv=g
MRLwhereRLis the resistance
from pin 9 to ground. The minimumgMspecificationis used to calculate minimum Gvwhen the erroramplifier output isloaded.
SG2525A/27A-SG3525A/27A
4/12
TEST CIRCUIT
SG2525A/27A-SG3525A/27A
5/12
Figure 1 : Oscillator Charge Time vs. RT
and CT.Figure 2 : Oscillator Discharge Time vs. RD
and CT.
RECOMMENDED OPERATING CONDITIONS ()
Parameter Value
Input Voltage (Vi)8to35V
Collector Supply Voltage (VC) 4.5 to 35 V
Sink/Source Load Current (steady state) 0 to 100 mA
Sink/Source Load Current (peak) 0 to 400 mA
Reference Load Current 0to20mA
Oscillator Frequency Range 100 Hz to 400 KHz
Oscillator Timing Resistor 2 Kto 150 K
Oscillator Timing Capacitor 0.001 µF to 0.1 µF
Dead Time Resistor Range 0 to 500
() Range over which the device is functional and parameter limitsare guaranteed.
Figure3 : SG1525A OutputSaturation
Characteristics. Figure 4 :Error AmplifierVoltageGainand
Phasevs. Frequency.
SG2525A/27A-SG3525A/27A
6/12
SHUTDOWN OPTIONS(see Block Diagram)
Since both the compensation and soft-start termi-
nals (Pins 9 and 8) have current source pull-ups,
either can readily accept a pull-down signal which
onlyhastosinkamaximumof 100
µA
toturnoffthe
outputs.Thisis subject totheaddedrequirementof
dischargingwhatever externalcapacitancemay be
attachedto thesepins.
Analternateapproachistheuseoftheshutdowncir-
cuitry of Pin 10 which has been improved to en-
hance the available shutdown options. Activating
this circuit by applying a positive signal on Pin 10
performstwo functions: the PWM latchis immedi-
ately set providing the fastestturn-off signalto the
outputs; and a 150 µA current sink begins to dis-
chargethe external soft-startcapacitor. If the shut-
down command is short, the PWM signal is termi-
nated without significant discharge of the soft-start
capacitor,thus,allowing, for example,a convenient
implementation of pulse-by-pulse current limiting.
Holding Pin 10 high for a longerduration,however,
will ultimately dischargethisexternalcapacitor,re-
cycling slow turn-on uponrelease.
Pin 10 should not be left floating as noise pickup
couldconceivablyinterruptnormal operation.
Figure 5 : SG1525AError Amplifier.
PRINCIPLES OF OPERATION
SG2525A/27A-SG3525A/27A
7/12
Figure7:SG1525A Output Circuit (1/2 circuit shown).
Figure6 : SG1525AOscillator Schematic.
SG2525A/27A-SG3525A/27A
8/12
Figure 10. Figure 11.
For single-ended supplies, the driver outputs are
grounded.The VCterminalis switchedto groundby
thetotem-polesourcetransistorson alternateoscil-
latorcycles.
In conventional push-pull bipolar designs, forward
base drive is controlled by R1-R
3
. Rapid turn-off
times for the power devices are achieved with
speed-upcapacitors C1and C2.
Thelowsourceimpedanceoftheoutputdriverspro-
vides rapid charging of Power Mos input capaci-
tancewhile minimizing externalcomponents.
Low power transformers can be driven directly by
the SG1525A.Automatic reset occurs during dead
time, when both ends of the primary winding are
switched to ground.
Figure8. Figure 9.
SG2525A/27A-SG3525A/27A
9/12
DIP16 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.77 1.65 0.030 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787
E 8.5 0.335
e 2.54 0.100
e3 17.78 0.700
F 7.1 0.280
I 5.1 0.201
L 3.3 0.130
Z 1.27 0.050
SG2525A/27A-SG3525A/27A
10/12
SO16 NARROW PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 1.75 0.069
a1 0.1 0.25 0.004 0.009
a2 1.6 0.063
b 0.35 0.46 0.014 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.020
c1 45°(typ.)
D 9.8 10 0.386 0.394
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 8.89 0.350
F 3.8 4.0 0.150 0.157
L 0.4 1.27 0.150 0.050
M 0.62 0.024
S8°(max.)
SG2525A/27A-SG3525A/27A
11/12
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-
tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-
viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of SGS-THOMSON Microelectronics.
1996 SGS-THOMSON Microelectronics All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland- Taiwan - Thaliand - United Kingdom - U.S.A.
SG2525A/27A-SG3525A/27A
12/12
UC2842/3/4/5
UC3842/3/4/5
May 1995
CURRENTMODE PWM CONTROLLER
.OPTIMIZED FOR OFF-LINE AND DC TO DC
CONVERTERS
.LOWSTART-UP CURRENT (< 1 mA)
.AUTOMATIC FEED FORWARD COMPENSA-
TION
.PULSE-BY-PULSECURRENT LIMITING
.ENHANCED LOAD RESPONSE CHARAC-
TERISTICS
.UNDER-VOLTAGELOCKOUTWITH HYSTER-
ESIS
.DOUBLE PULSE SUPPRESSION
.HIGHCURRENT TOTEM POLEOUTPUT
.INTERNALLY TRIMMED BANDGAP REFER-
ENCE
.500 KHz OPERATION
.LOWROERROR AMP
DESCRIPTION
TheUC3842/3/4/5familyofcontrolICsprovidesthe
necessaryfeatures to implement off-line or DC to
DC fixed frequencycurrent mode controlschemes
with aminimalexternalpartscount.Internallyimple-
mentedcircuitsincludeundervoltagelockoutfeatur-
ingstart-up current less than1 mA, a precision ref-
erencetrimmed for accuracyat theerror ampinput,
logic to insure latchedoperation, aPWM compara-
torwhichalsoprovidescurrentlimit control,andato-
tem pole output stage designed to source or sink
high peak current. The output stage, suitable for
driving N-ChannelMOSFETs, islowin the off-state.
Differencesbetweenmembersof thisfamilyare the
under-voltage lockout thresholds and maximum
duty cycle ranges.The UC3842 and UC3844 have
UVLO thresholdsof 16V (on) and 10V (off), ideally
suited off-line applications The corresponding
thresholdsfor the UC3843 and UC3845 are 8.5 V
and 7.9 V. The UC3842and UC3843 can operate
to duty cycles approaching 100%. A range of the
zero to < 50 % is obtained by the UC3844 and
UC3845bytheadditionof an internaltoggleflip flop
which blankstheoutput off every otherclock cycle.
BLOCK DIAGRAM (toggle flip flop used only in U3844 and UC3845)
Minidip SO14
1/11
*Allvoltages are with respect to pin 5, all currents are positive intothe specified terminal.
PIN CONNECTIONS (top views)
SO14 Minidip
ORDERING NUMBERS
Type Minidip SO14
UC2842
UC3843
UC2844
UC2845
UC2842N
UC2843N
UC2844N
UC2845N
UC2842D
UC2843D
UC2844D
UC2845D
UC3842
UC3843
UC3844
UC3845
UC3842N
UC3843N
UC3844N
UC3845N
UC3842D
UC3843D
UC3844D
UC3845D
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
ViSupply Voltage (low impedance source) 30 V
ViSupply Voltage (Ii < 30mA) Self Limiting
IOOutput Current ±1A
E
O
Output Energy (capacitive load) 5 µJ
Analog Inputs (pins 2, 3) 0.3 to 6.3 V
Error Amplifier Output Sink Current 10 mA
Ptot Power Dissipation at Tamb 50 °C (minidip, DIP-14) 1 W
Ptot Power Dissipation at Tamb 25 °C (SO14) 725 mW
Tstg Storage Temperature Range 65 to 150 °C
TLLead Temperature (soldering 10s) 300 °C
THERMAL DATA
Symbol Description Minidip SO14 Unit
Rthj-amb ThermalResistance Junction-ambient. max. 100 165 °C
UC2842/3/4/5-UC3842/3/4/5
2/11
ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specificationsapply for -25 < Tamb <
85°C forUC2824X;0 < Tamb <70°C for UC384X;Vi= 15V (note 5); RT=10K;C
T=3.3nF)
Symbol Parameter Test Conditions UC284X UC384X Unit
Min. Typ. Max. Min. Typ. Max.
REFERENCE SECTION
VREF Output Voltage Tj=25°CI
o= 1mA 4.95 5.00 5.05 4.90 5.00 5.10 V
VREF Line Regulation 12V Vi25V 6 20 6 20 mV
VREF Load Regulation 1 Io20mA 6 25 6 25 mV
VREF/T Temperature Stability (Note 2) 0.2 0.4 0.2 0.4 mV/°C
Total Output Variant Line, Load, Temperature (2) 4.9 5.1 4.82 5.18 V
eNOutput Noise Voltage 10Hz f10KHz Tj=25°C
(2) 50 50 µV
Long Term Stability Tamb = 125°C, 1000Hrs (2) 5 25 5 25 mV
ISC Output Short Circuit -30 -100 -180 -30 -100 -180 mA
OSCILLATOR SECTION
fsInitial Accuracy Tj=25°C (6) 47 52 57 47 52 57 KHz
Voltage Stability 12 Vi25V 0.2 1 0.2 1 %
Temperature Stability TMIN Tamb TMAX (2) 5 5 %
V4Amplitude VPIN4 Peak to Peak 1.7 1.7 V
ERROR AMP SECTION
V2Input Voltage VPIN1 = 2.5V 2.45 2.50 2.55 2.42 2.50 2.58 V
IbInput Bias Current -0.3 -1 -0.3 -2 µA
AVOL 2Vo4V 65 90 65 90 dB
B Unity Gain Bandwidth (2) 0.7 1 0.7 1 MHz
SVR Supply Voltage Rejection 12V Vi25V 60 70 60 70 dB
IoOutput Sink Current VPIN2 = 2.7V VPIN1 = 1.1V 2 6 2 6 V
IoOutput Source Current VPIN2 = 2.3V VPIN1 = 5V -0.5 -0.8 -0.5 -0.8 mA
VOUT High VPIN2 = 2.3V;
RL= 15Kto Ground 56 56 V
V
OUT Low VPIN2 = 2.7V;
RL= 15Kto Pin 8 0.7 1.1 0.7 1.1 V
CURRENT SENSE SECTION
GVGain (3 & 4) 2.85 3 3.15 2.8 3 3.2 V/V
V3Maximum Input Signal VPIN1 = 5V (3) 0.9 1 1.1 0.9 1 1.1 V
SVR Supply Voltage Rejection 12 Vi25V (3) 70 70 dB
IbInput Bias Current -2 -10 -2 -10 µA
Delay to Output 150 300 150 300 ns
OUTPUT SECTION
IOL Output Low Level ISINK = 20mA 0.1 0.4 0.1 0.4 V
ISINK = 200mA 1.5 2.2 1.5 2.2 V
IOH Output High Level ISOURCE = 20mA 13 13.5 13 13.5 V
ISOURCE = 200mA 12 13.5 12 13.5 V
trRise Time Tj=25°CC
L
= 1nF (2) 50 150 50 150 ns
tfFall Time Tj=25°CC
L
= 1nF (2) 50 150 50 150 ns
UC2842/3/4/5-UC3842/3/4/5
3/11
Notes : 2. These parameters, although guaranteed, are not 100% tested in production.
3. Parameter measured at trip point of latch withVPIN2 =0.
4. Gaindefined as :
VPIN1
A= ;0V
PIN3 0.8V
VPIN3
5. Adjust Viabove the start threshold before setting at 15 V.
6. Outputfrequency equals oscillator frequency for theUC3842 and UC3843.
Outputfrequency is one half oscillator frequency for the UC3844 andUC3845.
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Conditions UC284X UC384X Unit
Min. Typ. Max. Min. Typ. Max.
UNDER-VOLTAGE LOCKOUT SECTION
Start Threshold X842/4 15 16 17 14.5 16 17.5 V
X843/5 7.8 8.4 9.0 7.8 8.4 9 V
Min Operating Voltage
After Turn-on X842/4 9 10 11 8.5 10 11.5 V
X843/5 7.0 7.6 8.2 7.0 7.6 8.2 V
PWM SECTION
Maximum Duty Cycle X842/3 93 97 100 93 97 100 %
X844/5 46 48 50 47 48 50 %
Minimum Duty Cycle 0 0 %
TOTAL STANDBY CURRENT
Ist Start-up Current 0.5 1 0.5 1 mA
IiOperating Supply Current VPIN2 =V
PIN3 =0V 1120 1120mA
V
iz Zener Voltage Ii= 25mA 34 34 V
UC2842/3/4/5-UC3842/3/4/5
4/11
Figure 1 : ErrorAmpConfiguration.
Error amp can source or
sink up to 0.5mA
Figure 2 : UnderVoltageLockout.
During Under-Voltage Lockout,the outputdriver is
biased to sink minor amounts of current. Pin 6
shouldbe shuntedtoground with a bleederresistor
to preventactivatingthe powerswitch withextrane-
ous leakage currents.
Figure 3 : Current Sense Circuit .
Peak current (is) is determinedby the formula
1.0 V
IS max RS
A small RC filter may be required to suppress switch transients.
UC2842/3/4/5-UC3842/3/4/5
5/11
Figure 4. Figure 5 : Deadtimevs. CT(RT>5K).
1.72
for RT>5Kf= R
T
C
T
Figure 7 : OutputSaturationCharacteristics.Figure 6 : Timing Resistance vs. Frequency.
Figure 8 : Error Amplifier Open-loopFrequency
Response.
UC2842/3/4/5-UC3842/3/4/5
6/11
Figure 9 : OpenLoop TestCircuit.
Highpeakcurrentsassociatedwithcapacitiveloads
necessitate careful grounding techniques. Timing
and bypass capacitors should be connectedclose
to pin5 ina single pointground.The transistor and
5Kpotentiometerareusedtosampletheoscillator
waveformand apply an adjustableramp to pin 3.
Figure 10 : ShutdownTechniques.
Shutdownof the UC2842 canbe accomplishedby
two methods;eitherraise pin 3above1Vorpullpin
1 belowa voltage two diode drops above ground.
Eithermethod cause the output of the PWM com-
parator to be high (refer to block diagram). The
PWM latchis reset dominantso that the output will
remain low until the next clock cycle afterthe shut-
downconditionat pins1and/or3is removed.Inone
example, an externally latched shutdown may be
accomplishedbyaddinganSCRwhichwillbe reset
bycyclingVibelowthelowerUVLOthreshold.Atthis
pointthereferenceturnsoff,allowingtheSCRtore-
set.
UC2842/3/4/5-UC3842/3/4/5
7/11
Figure 11 : Off-line Flyback Regulator.
Power Supply Specifications
1. InputVoltage : 95 VACto 130 VAC
(50 Hz/60 Hz)
2. LineIsolation : 3750 V
3. Switching Frequency: 40 KHz
4. Efficiency @Full Load : 70 %
5. OutputVoltage:
A. + 5 V, ±5 % : 1 A to 4A load
Ripple voltage: 50 mV P-P Max.
B. + 12 V, ±3 % : 0.1 A to 0.3 A load
Ripplevoltage: 100 mV P-P Max.
C. 12 V, ±3 % : 0.1A to 0.3 A load
Ripplevoltage: 100 mV P-P Max.
Figure 12 : SlopeCompensation.
A fraction of the oscillator ramp can be resistively
summed with the current sense signal to provide
slope compensation for converters requiring duty
cycles over 50 %.
Note that capacitor,C, forms a filter with R2to su-
press theleading edge switch spikes.
UC2842/3/4/5-UC3842/3/4/5
8/11
SO14 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 1.75 0.069
a1 0.1 0.25 0.004 0.009
a2 1.6 0.063
b 0.35 0.46 0.014 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.020
c1 45 (typ.)
D 8.55 8.75 0.336 0.344
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 7.62 0.300
F 3.8 4.0 0.15 0.157
L 0.4 1.27 0.016 0.050
M 0.68 0.027
S 8 (max.)
UC2842/3/4/5-UC3842/3/4/5
9/11
DIP14 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e 2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 6.6 0.260
I 5.08 0.200
L 3.18 3.81 0.125 0.150
UC2842/3/4/5-UC3842/3/4/5
10/11
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by implication or otherwise under any patent or
patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Micro-
electronics products are not authorized for use as critical components in life support devices or systems without
express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Nether-
lands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
UC2842/3/4/5-UC3842/3/4/5
11/11