L296
L296P
April1993
HIGH CURRENT SWITCHING REGULATORS
.4 AOUTPUT CURRENT
.5.1 V TO 40 V OUTPUT VOLTAGERANGE
.0 TO 100 % DUTY CYCLE RANGE
.PRECISE(±2 %)ON-CHIP REFERENCE
.SWITCHING FREQUENCY UP TO 200 KHz
.VERYHIGH EFFICIENCY (UP TO 90 %)
.VERYFEW EXTERNAL COMPONENTS
.SOFTSTART
.RESETOUTPUT
.EXTERNAL PROGRAMMABLE LIMITING
CURRENT (L296P)
.CONTROL CIRCUIT FOR CROWBAR SCR
.INPUT FOR REMOTE INHIBIT AND
SYNCHRONUS PWM
.THERMAL SHUTDOWN
DESCRIPTION
TheL296andL296Parestepdownpowerswitching
regulatorsdelivering 4 Aat a voltagevariable from
5.1 V to 40 V.
Featuresofthedevicesincludesoftstart,remotein-
hibit, thermal protection, a reset output for micro-
processors and a PWM comparator input for syn-
chronizationin multichip configurations.
The L296Pincudesexternalprogrammablelimiting
current.
TheL296and L296Paremountedin a15-leadMul-
tiwattplasticpowerpackageandrequiresveryfew
externalcomponents.
Efficient operation at switching frequencies up to
200 KHz allows a reductionin the size and costof
external filter components. A voltage sense input
and SCR drive output are provided for optional
crowbar overvoltage protection with an external
SCR.
Multiwatt
(15 lead)
ORDERING NUMBERS :
L296 (Vertical) L296HT (Horizontal)
L296P (Vertical) L296PHT (Horizontal)
PIN CONNECTION (top view)
1/21
PIN FUNCTIONS
N°Name Function
1 CROWBAR INPUT Voltage Sense Input for Crowbar Overvoltage Protection. Normally connected to the
feedback input thus triggering the SCR when V out exceeds nominal by 20 %. May
also monitor the input and a voltage divider can be added to increase the threshold.
Connected to ground when SCR not used.
2 OUTPUT Regulator Output
3 SUPPLY VOLTAGE Unrergulated Voltage Input. An internal Regulator Powers the L296s Internal Logic.
4 CURRENT LIMIT A resistor connected between this terminal and ground sets the current limiter
threshold. If this terminal is left unconnected the threshold is internally set (see
electrical characteristics).
5 SOFT START Soft Start Time Constant. A capacitor is connected between this terminal and ground
to define the soft start time constant. This capacitor also determines the average
short circuit output current.
6 INHIBIT INPUT TTL Level Remote Inhibit. A logic high level on this input disables the device.
7 SYNC INPUT Multiple L296s are synchronized by connecting the pin 7 inputs together and omitting
the oscillator RC network on all but one device.
8 GROUND Common Ground Terminal
9 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines the
regulation loop gain characteristics.
10 FEEDBACK INPUT The Feedback Terminal on the Regulation Loop. The output is connected directly to
this terminal for 5.1V operation ; it is connected via a divider for higher voltages.
11 OSCILLATOR A parallel RC networki connected to this terminal determines the switching frequency.
This pin must be connected to pin 7 input when the internal oscillator is used.
12 RESET INPUT Input of the Reset Circuit. The threshold is roughly 5 V. It may be connected to the
feedback point or via a divider to the input.
13 RESET DELAY A capacitor connected between this terminal and ground determines the reset signal
delay time.
14 RESET OUTPUT Open collector reset signal output. This output is high when the supply is safe.
15 CROWBAR OUTPUT SCR gate drive output of the crowbar circuit.
BLOCK DIAGRAM
L296 - L296P
2/21
CIRCUIT OPERATION
(refer to the block diagram)
The L296 and L296P are monolithic stepdown
switching regulatorsprovidingoutputvoltages from
5.1Vto 40V and delivering 4A.
Theregulationloopconsistsofasawtoothoscillator,
erroramplifier,comparatorandtheoutputstage.An
error signal is produced by comparing the output
voltagewithaprecise5.1Von-chipreference(zener
zaptrimmed to±2%).Thiserrorsignalisthencom-
paredwiththesawtoothsignalto generatethe fixed
frequencypulsewidthmodulatedpulseswhichdrive
theoutputstage.Thegainandfrequencystabilityof
theloopcanbeadjustedbyan externalRC network
connectedtopin9.Closingtheloopdirectlygivesan
outputvoltageof5.1V.Highervoltagesareobtained
byinserting a voltagedivider.
Outputovercurrents at switch on are preventedby
the soft start function. The error amplifier output is
initially clamped by the externalcapacitorCss and
allowedto rise, linearly, asthis capacitor is charged
bya constantcurrentsource.
Outputoverloadprotectionis providedin theformof
a current limiter. The load current is sensedby an
internal metal resistor connectedto a comparator.
When the loadcurrent exceedsa preset threshold
this comparator sets a flip flop which disables the
outputstageanddischargesthesoftstartcapacitor.
A second comparator resets the flip flop when the
voltage across the softstart capacitorhas fallen to
0.4V.The output stage is thus re-enabledand the
output voltage rises under control of the soft start
network.If theoverloadcondition is still presentthe
limiterwill triggeragain when the thresholdcurrent
is reached. The averageshort circuit current islim-
ited to a safe value by the dead time introduced by
the softstart network.
The reset circuit generates an output signal when
the supply voltage exceeds a threshold pro-
grammedbyan externaldivider. Theresetsignalis
generatedwitha delaytime programmed byan ex-
ternal capacitor. When the supply falls below the
threshold the reset output goes low immediately.
Thereset outputis anopen collector.
The scrowbar circuit sensesthe output voltageand
the crowbaroutput can providea currentof 100mA
toswitchonanexternalSCR. ThisSCRis triggered
when the output voltage exceeds the nominal by
20%. There is no internal connection between the
outputandcrowbar sense inputthereforethe crow-
bar can monitor either the input or the output.
ATTL -level inhibitinputisprovidedforapplications
suchasremoteon/offcontrol.Thisinputisactivated
byhighlogiclevel anddisablescircuitoperation.Af-
ter an inhibit the L296 restarts under control of the
soft startnetwork.
Thethermaloverload circuit disables circuit opera-
tion when the junction temperature reaches about
150 °C andhashysteresisto preventunstablecon-
ditions.
Figure 1 : Reset Output Waveforms
L296 - L296P
3/21
Figure 2 : SoftStartWaveforms
Figure 3 : CurrentLimiter Waveforms
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
ViInput Voltage (pin 3) 50 V
Vi–V
2Input to Output Voltage Difference 50 V
V2Output DC Voltage
Output Peak Voltage at t = 0.1 µsec f = 200KHz –1
–7 V
V
V
1
,V
12 Voltage at Pins 1, 12 10 V
V15 Voltage at Pin 15 15 V
V4,V
5
,V
7
,V
9
,V
13 Voltage at Pins 4, 5, 7, 9 and 13 5.5 V
V10,V
6Voltage at Pins 10 and 6 7 V
V14 Voltage at Pin 14 (I14 1 mA) Vi
I9Pin 9 Sink Current 1 mA
I11 Pin 11 Source Current 20 mA
I14 Pin 14 Sink Current (V14 < 5 V) 50 mA
Ptot Power Dissipation at Tcase 90 °C20W
T
j
,T
stg Junction and Storage Temperature 40 to 150 °C
L296 - L296P
4/21
THERMAL DATA
Symbol Parameter Value Unit
Rth j-case Thermal Resistance Junction-case Max. 3 °C/W
Rth j-amb Thermal Resistance Junction-ambient Max. 35 °C/W
ELECTRICAL CHARACTERISTICS
(refer to the test circuits Tj=25
o
C, Vi= 35V, unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
DYNAMIC CHARACTERISTICS (pin 6 to GND unless otherwise specified)
VoOutput Voltage Range Vi= 46V, Io=1A V
ref 40 V 4
ViInput Voltage Range Vo=V
ref to 36V, Io3A 9 46 V 4
ViInput Voltage Range Note (1), Vo=V
REF to 36V Io=4A 46 V 4
V
oLine Regulation Vi=10V to 40V, Vo=V
ref,I
o=2A 15 50 mV 4
V
oLoad Regulation Vo=V
ref
Io=2Ato4A
I
o= 0.5A to 4A 10
15 30
45
mV 4
Vref Internal Reference Voltage (pin 10) Vi= 9V to 46V, Io= 2A 5 5.1 5.2 V 4
Vref
TAverage Temperature Coefficient
of Reference Voltage Tj=0°C to 125°C, Io= 2A 0.4 mV/°C
VdDropout Voltage Between Pin 2
and Pin 3 Io=4A
I
o=2A 2
1.3 3.2
2.1 V
V4
4
I2L Current Limiting Threshold (pin 2) L296 - Pin 4 Open,
Vi= 9V to 40V, Vo=V
ref to 36V 4.5 7.5 A 4
L296P - Vi= 9V to 40V, Vo=V
ref
Pin 4 Open
RIim = 22k5
2.5 7
4.5
A4
I
SH Input Average Current Vi= 46V, Output Short-circuited 60 100 mA 4
ηEfficiency Io=3A
V
o=V
ref
Vo= 12V 75
85
%4
SVR Supply Voltage Ripple Rejection Vi=2V
rms,f
ripple = 100Hz
Vo=V
ref,I
o=2A 50 56 dB 4
f Switching Frequency 85 100 115 kHz 4
f
Vi
Voltage Stability of Switching
Frequency Vi= 9V to 46V 0.5 % 4
f
Tj
Temperature Stability of Switching
Frequency Tj=0°C to 125°C1%4
f
max Maximum Operating Switching
Frequency Vo=V
ref,I
o= 1A 200 kHz
Tsd Thermal Shutdown Junction
Temperature Note (2) 135 145 °C–
DC CHARACTERISTICS
I3Q Quiescent Drain Current Vi= 46V, V7= 0V, S1 : B, S2 : B
V6=0V
V
6=3V 66
30 85
40
mA
–I
2L Output Leakage Current Vi= 46V, V6= 3V, S1 : B, S2 : A,
V7=0V 2mA
Note (1) :Using min. 7 A schottky diode.
(2) :Guaranteed by design,not 100 % tested in production.
L296 - L296P
5/21
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
SOFT START
I5so Source Current V6= 0V, V5= 3V 80 130 150 µA6b
I
5si Sink Current V6= 3V, V5= 3V 50 70 120 µA6b
INHIBIT
V6L
V6H
Input Voltage
Low Level
High Level
Vi= 9V to 46V, V7= 0V,
S1 : B, S2 : B 0.3
20.8
5.5
V6a
–I
6L
–I
6H
Input Current
with Input Voltage
Low Level
High Level
Vi= 9V to 46V, V7= 0V,
S1 : B, S2 : B
V6= 0.8V
V6=2V 10
3
µA6a
ERROR AMPLIFIER
V9H High Level Output Voltage V10 = 4.7V, I9= 100µA,
S1 : A, S2 : A 3.5 V 6c
V9L Low Level Output Voltage V10 = 5.3V, I9= 100µA,
S1 : A, S2 : E 0.5 V 6c
I9si Sink Output Current V10 = 5.3V, S1 : A, S2 : B 100 150 µA6c
–I
9so Source Output Current V10 = 4.7V, S1 : A, S2 : D 100 150 µA6c
I
10 Input Bias Current V10 = 5.2V, S1 : B
V10 = 6.4V, S1 : B, L296P 2
210
10 µA
µA6c
6c
GvDC Open Loop Gain V9= 1V to 3V, S1 : A, S2 : C 46 55 dB 6c
OSCILLATOR AND PWM COMPARATOR
–I
7Input Bias Current of
PWM Comparator V7= 0.5V to 3.5V 5 µA6a
–I
11 Oscillator Source Current V11 = 2V, S1 : A, S2 : B 5 mA
RESET
V12 R Rising Threshold Voltage Vi= 9V to 46V,
S1 : B, S2 : B
Vref
-150mV Vref
-100mV Vref
-50mV V6d
V
12 F Falling Threshold Voltage 4.75 Vref
-150mV Vref
-100mV V6d
V
13 D Delay Thershold Voltage V12 = 5.3V, S1 : A, S2 : B 4.3 4.5 4.7 V 6d
V13 H Delay Threshold Voltage
Hysteresis 100 mV 6d
V14 S Output Saturation Voltage I14 = 16mA, V12 = 4.7V, S1, S2 : B 0.4 V 6d
I12 Input Bias Current V12 =0VtoV
ref,S1:B,S2:B 1 3 µA6d
–I
13 so
I13 si Delay Source Current
Delay Sink Current
V13 = 3V, S1 : A, S2 : B
V12 = 5.3V
V12 = 4.7V 70
10 110 140 µA
mA
6d
I14 Output Leakage Current Vi= 46V, V12 = 5.3V, S1 : B, S2 : A 100 µA6d
CROWBAR
V1Input Threshold Voltage S1 : B 5.5 6 6.4 V 6b
V15 Output Saturation Voltage Vi= 9V to 46V, Vi= 5.4V,
I15 = 5mA, S1 : A 0.2 0.4 V 6b
I1Input Bias Current V1= 6V, S1 : B 10 µA6b
–I
15 Output Source Current Vi= 9V to 46V, V1= 6.5V,
V15 = 2V, S1 : B 70 100 mA 6b
L296 - L296P
6/21
Figure 4 : DynamicTest Circuit
C7,C8 : EKR(ROE)
L1 : L = 300 µH at8 A Coretype : MAGNETICS58930 - A2 MPP
N°turns :43 Wire Gauge :1 mm (18 AWG) COGEMA 946044
(*) Minimumsuggested value (10 µF) toavoid oscillations. Ripple consideration leads to typical value of 1000 µF or higher.
Figure5 : PC.Board andComponent Layoutof the Circuit of Figure4 (1:1scale)
L296 - L296P
7/21
Figure 6 : DC Test Circuits.
Figure 6a. Figure 6b.
Figure 6c.
Figure 6d.
1 - Set V10 FORV9=1V
2 - Change V10 to obtain V9=3V
3-G
V=DV9=2V
V10 V10
L296 - L296P
8/21
Figure 7 : QuienscentDrain Current vs. Supply
Voltage(0 %Duty Cycle - see fig. 6a). Figure 8 : QuienscentDrain Current vs.Supply
Voltage(100 % Duty Cyclesee fig. 6a).
Figure 9 : QuiescentDrain Current vs. Junction
Temperature (0 % DutyCycle -
seefig.6a).
Figure 10 : QuiescentDrain Current vs. Junction
Temperature(100 % Duty Cycle -
see fig. 6a).
Figure 11 : ReferenceVoltage (pin 10) vs. VI
(seefig. 4). Figure12: ReferenceVoltage(pin 10)vs. Junction
Temperature(see fig. 4).
L296 - L296P
9/21
Figure 13 : OpenLoop FrequencyandPhase
Responseof Error Amplifier
(see fig. 6c).
Figure 14 : Switching Frequency vs. Input
Voltage(see fig.4).
Figure 15 : SwitchingFrequency vs. Junction
Temperature(seefig. 4). Figure 16 : Switching Frequency vs. R1
(see fig. 4).
Figure 17 : LineTransient Response(see fig.4). Figure 18 : Load Transient Response (see fig.4).
L296 - L296P
10/21
Figure 19 : SupplyVoltageRipple Rejectionvs.
Frequency(see fig. 4). Figure 20 : DropoutVoltageBetweenPin3 and
Pin2 vs. Current at Pin 2.
Figure 21 : DropoutVoltageBetweenPin 3 and
Pin 2 vs. Junction Temperature. Figure 22 : Power DissipationDerating Curve.
Figure 23 : PowerDissipation(device only) vs.
Input Voltage. Figure 24 : Power Dissipation(device only)vs.
Inputvoltage.
L296 - L296P
11/21
Figure 25 : PowerDissipation(device only) vs.
OutputVoltage(seefig. 4). Figure 26 : Power Dissipation(device only)vs.
OutputVoltage(see fig. 4).
Figure 28 : Efficiencyvs. OutputCurrent.
Figure 29 : Efficiency vs. OutputVoltage. Figure 30 : Efficiencyvs. OutputVoltage.
Figure27: VoltageandCurrentWaveformsatPin2
(seefig. 4).
L296 - L296P
12/21
Figure 31 : CurrentLimiting Thresholdvs. Rpin 4
(L296Ponly). Figure32: Current LimitingThresholdvs. Junction
Temperature.
Figure 33 : CurrentLimiting Thresholdvs.
SupplyVoltage.
L296 - L296P
13/21
APPLICATION INFORMATION
Figure 34 : TypicalApplicationCircuit.
(*) Minimum value (10 µF) to avoid oscillations ; ripple consideration leadsto typical value of 1000µF orhigher L1 : 58930 - MPP COGEMA
946044 ; GUP 20 COGEMA 946045
SUGGESTED INDUCTOR (L1)
Core Type No Turns Wire Gauge Air Gap
Magnetics 58930 A2MPP 43 1.0 mm
Thomson GUP 20 x 16 x 7 65 0.8 mm 1 mm
Siemens EC 35/17/10 (B6633& G0500 X127) 40 2 x 0.8 mm
VOGT 250 µH Toroidal Coil, Part Number 5730501800
Resistor Values for Standard Output Voltages
V0R8 R7
12 V
15 V
18 V
24 V
4.7 K
4.7 K
4.7 K
4.7 K
6.2 K
9.1 K
12 K
18 K
L296 - L296P
14/21
Figure35 : P.C.Boardand Component Layoutof the Circuit of fig. 34 (1:1 scale)
SELECTION OF COMPONENT VALUES (see fig. 34)
Component Recommended
Value Purpose Allowed Rage Notes
Min. Max.
R1
R2
100 kSet Input Voltage
Threshold for Reset. 220kR1/R2 Vi min
51
If output voltage is sensed R1 and
R2 may be limited and pin 12
connected to pin 10.
R3 4.3 kSets Switching Frequency 1 k100k
R4 10 kPull-down Resistor 22kMay be omitted and pin 6 grounded
if inhibit not used.
R5 15 kFrequency Compensation 10k
R6 Collector Load For Reset
Output VO
0.05A Omitted if reset function not used.
R7
R8
4.7 kDivider to Set Output
Voltage
1kR7/R8 = VOVREF
VREF -
Riim Sets Current Limit Level 7.5kIf Riim is omitted and pin 4 left open
the current limit is internally fixed.
C1 10 µF Stability 2.2µF
C2 2.2 µF Sets Reset Delay Omitted if reset function not used.
C3 2.2 nF Sets Switching Frequency 1 nF 3.3nF
C4 2.2 µF Soft Start 1 µF Also determines average short
circuit current.
C5 33 nF Frequency Compensation
C6 390 pF High Frequency
Compensation Not required for 5 V operation.
C7, C8
L1 100 µF
300 µHOutput Filter
100µH
Q1 Crowbar Protection The SCR must be able to withstand
the peak discharge current of the
output capacitor and the short
circuit current of the device.
D1 Recirculation Diode 7A Schottky or 35 ns trr Diode.
L296 - L296P
15/21
Figure 36 : A Minimal5.1 V Fixed Regulator.Very Few Componentsare Required.
Figure 37 : 12 V/10 A Power Supply.
L296 - L296P
16/21
Figure 38 : ProgrammablePowerSupply.
Vo= 5.1 to 15 V
Io= 4 A max. (min. load current = 100 mA)
ripple 20mV
load regulation (1 A to 4 A)= 10 mV(V o=5.1V)
lineregulation (220 V ±15 % and to Io= 3 A) = 15 mV(V o= 5.1 V)
Figure 39 : PreregulatorforDistributedSupplies.
(*)L2 and C2 are necessary to reduce the switching frequency spikes.
L296 - L296P
17/21
Figure 40 : InMultiple SuppliesSeveralL296s
canbe SynchronizedAs Shown. Figure 41 : VoltageSensing for RemoteLoad.
Figure 42 : A 5.1V/15 V/24 V Multiple Supply. Notethe Synchronization of theThree L296s.
L296 - L296P
18/21
Figure 43 : 5.1V/2APower SupplyusingExternal
Limiting CurrentResistor andCrow-
bar Protectionon the Supply Voltage
(L296Ponly)
SOFT-START AND REPETITIVE POWER-ON
Whenthedeviceisrepetitivelypowered-on,thesoft-
startcapacitor, CSS, must be dischargedrapidly to
ensurethateachstartis”soft”.Thiscanbeachieved
economicallyusingtheresetcircuit,asshowninFig-
ure44.
In this circuit thedividerR1, R2 connectedto pin 12
determines the minimum supply voltage, below
which theopencollectortransistoratthepin14out-
put discharges CSS.
Figure44
Figure 45
Figure 46
Theapproximatedischargetimesobtainedwith this
circuit are :
CSS (µF) tDIS (µs)
2.2
4.7
10
200
300
600
Ifthesetimesarestilltoolong,anexternalPNPtran-
sistor may be added, as shown in Figure45 ; with
this circuit discharge times of a few microseconds
may be obtained.
HOW TO OBTAIN BOTH RESET AND
POWER FAIL
Figure46illustrateshowitispossibletoobtainatthe
same time both the power fail and reset functions
simply by addingonediode(D) andoneresistor(R).
In this case the Reset delay time (pin 13) can only
start when theoutputvoltageis VOVREF - 100mV
and the voltageaccross R2 is higherthan 4.5V.
With thehysteresisresistor itis possibletofix thein-
put pin 12 hysteresis in order to increaseimmunity
to the 100Hz ripple present on the supplyvoltage.
Moreover, the power fail and reset delay time are
automaticallylocked to the soft-start.Soft-startand
delayedresetare thustwo sequentialfunctions.
The hysteresis resistor should be In the range of
aboit 100kandthe pull-up resistor of 1 to 2.2k.
L296 - L296P
19/21
PMMUL15V.EPS
MULTIWATT15 VERTICAL PACKAGE MECHANICAL DATA
Dimensions Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 22.1 22.6 0.870 0.890
L1 22 22.5 0.866 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.2 4.3 4.6 0.165 0.169 0.181
M1 4.5 5.08 5.3 0.177 0.200 0.209
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia. 1 3.65 3.85 0.144 0.152
MUL15V.TBL
L296 - L296P
20/21
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-
tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-
viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L296 - L296P
21/21
L4960
2.5APOWER SWITCHING REGULATOR
2.5AOUTPUTCURRENT
5.1V TO 40V OPUTPUT VOLTAGE RANGE
PRECISE (±2%)ON-CHIP REFERENCE
HIGHSWITCHING FREQUENCY
VERYHIGH EFFICIENCY (UPTO 90%)
VERY FEW EXTERNALCOMPONENTS
SOFTSTART
INTERNAL LIMITING CURRENT
THERMAL SHUTDOWN
DESCRIPTION
The L4960 is a monolithicpower switching regula-
tor delivering2.5A at avoltage variable from 5V to
40V in stepdown configuration.
Featuresof thedevice include currentlimiting, soft
start,thermal protection and 0 to 100% duty cycle
for continuousoperation mode.
April 1995
ORDERING NUMBERS: L4960 (Vertical)
L4960H (Horizontal)
HEPTAWATT
BLOCK DIAGRAM
TheL4960is mountedinaHeptawattplasticpower
package and requires very few external compo-
nents.
Efficient operation at switching frequencies up to
150KHz allows a reductionin the size and cost of
externalfilter components.
1/15
PIN CONNECTION (Top view)
2/15
N°NAME FUNCTION
1 SUPPLY VOLTAGE Unregulated voltage input. An internal regulator powers the
internal logic.
2 FEEDBACK INPUT The feedback terminal of the regulation loop. The output is
connected directly to this terminal for 5.1V operation; it is
connected via a dividerfor higher voltages.
3 FREQUENCY
COMPENSATION A series RC network connected between this terminal and
ground determines the regulation loop gain characteristics.
4 GROUND Common ground terminal.
5 OSCILLATOR A parallel RC network connected to this terminal determines the
switching frequency.
6 SOFT START Soft start time constant. A capacitor is connected between this
terminal and ground to define the soft start time constant. This
capacitor also determines the average short circuit output
current.
7 OUTPUT Regulator output.
PIN FUNCTIONS
Symbol Parameter Value Unit
V1Input voltage 50 V
V1-V
7Input to output voltage difference 50 V
V7Negative output DC voltage -1 V
Negative output peak voltage at t = 0.1µs; f = 100KHz -5 V
V3,V
6Voltage at pin 3 and 6 5.5 V
V2Voltage at pin 2 7V
I
3
Pin 3 sink current 1 mA
I5Pin 5 source current 20 mA
Ptot Power dissipation at Tcase 90°C15 W
Tj,T
stg Junction and storage temperature -40 to 150 °C
ABSOLUTE MAXIMUM RATINGS
L4960
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS
VoOutput voltage range Vi= 46V Io=1A V
ref 40 V
ViInput voltage range Vo=V
ref to 36V Io= 2.5A 9 46 V
VoLine regulation Vi= 10V to 40V Vo=V
ref Io=1A 15 50 mV
V
oLoad regulation Vo=V
ref Io= 0.5Ato 2A 10 30 mV
Vref Internal reference voltage
(pin 2) Vi= 9V to 46V Io= 1A 5 5.1 5.2 V
Vref
TAverage temperature
coefficient of refer voltage Tj=0°C to 125°C
Io=1A 0.4 mV/°C
VdDropout voltage Io= 2A 1.4 3 V
Iom Maximum operating load
current Vi= 9V to 46V
Vo=V
ref to 36V 2.5 A
I7L Current limiting threshold
(pin 7) Vi= 9V to 46V
Vo=V
ref to 36V 3 4.5 A
ISH Input average current Vi= 46V; output short-circuit 30 60 mA
ηEfficiency f = 100KHz Vo=V
ref 75 %
Io=2A V
o= 12V 85 %
SVR Supply voltage ripple
rejection Vi=2V
rms
fripple = 100Hz
Vo=V
ref Io = 1A
50 56 dB
f Switching frequency 85 100 115 KHz
f
Vi
Voltage stability of
switching frequency Vi= 9V to 46V 0.5 %
f
Tj
Temperature stability of
switching frequency Tj=0°C to 125°C1%
f
max Maximum operating
switching frequency Vo=V
ref Io= 2A 120 150 KHz
Tsd Thermal shutdown
junction temperature 150 °C
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, unless otherwise
specified)
Symbol Parameter Value Unit
Rth j-case Thermalresistance junction-case max 4 °C/W
Rth j-amb Thermalresistance junction-ambient max 50 °C/W
THERMAL DATA
3/15
L4960
4/15
Symbol Parameter TestConditions Min. Typ. Max. Unit
DC CHARACTERISTICS
I1Q Quiescent draincurrent 100% duty cycle
pins 5 and 7 open Vi= 46V
30 40 mA
0% duty cycle 15 20 mA
-I7L Output leakagecurrent 0% duty cycle 1 mA
SOFT START
I6SO Source current 100 140 180 µA
I6SI Sink current 50 70 120 µA
ERROR AMPLIFIER
V3H High leveloutput voltage V2= 4.7V I3= 100µA3.5 V
V3L Low leveloutput voltage V2= 5.3V I3= 100µA0.5 V
I3SI Sink output current V2= 5.3V 100 150 µA
-I3SO Source outputcurrent V2= 4.7V 100 150 µA
I2Input bias current V2= 5.2V 2 10 µA
GvDC open loop gain V3=1Vto3V 46 55 dB
OSCILLATOR
-I5Oscillator source current 5 mA
ELECTRICAL CHARACTERISTICS (continued)
L4960
CIRCUIT OPERATION (refer to the block diagram)
TheL4960isamonolithicstepdownswitchingregu-
latorprovidingoutputvoltagesfrom5.1Vto40Vand
delivering 2.5A.
The regulation loop consistsof a sawtooth oscilla-
tor, error amplifier, comparator and the output
stage.An errorsignalisproducedbycomparingthe
output voltage with a precise 5.1V on-chip refer-
ence (zener zap trimmedto ±2%).
Thiserrorsignalisthencomparedwiththesawtooth
signal to generatethe fixedfrequency pulse width
modulatedpulseswhich drivethe output stage.
The gain andfrequency stability of the loop can be
adjusted by an external RC network connected to
pin 3. Closing the loop directly gives an output
voltage of 5.1V. Higher voltages are obtained by
inserting a voltage divider.
Outputovercurrents at switch on are preventedby
the soft start function. The error amplifier output is
initially clamped by the external capacitor Css and
allowedto rise, linearly,asthiscapacitorischarged
by a constantcurrent source. Output overloadpro-
tection is providedin the form of a current limiter.
The load current is sensed by an internal metal
resistor connectedto a comparator. Whenthe load
currentexceedsa presetthresholdthiscomparator
sets a flip flop which disables the output stageand
dischargesthe soft startcapacitor. A second com-
parator resets the flipflop when the voltage across
the soft start capacitorhas fallen to 0.4V.
The output stage is thus re-enabled and the output
voltage risesunder controlof the soft startnetwork.
If the overload condition is still present the limiter
will trigger again when the threshold current is
reached.Theaverageshortcircuitcurrentislimited
to a safe value by the dead time introduced by the
softstart network.The thermaloverload circuit dis-
ables circuit operation when the junction tempera-
ture reaches about 150°C and has hysteresis to
preventunstable conditions.
Figure 1. Soft start waveforms
Figure 2. Current limiter waveforms
5/15
L4960
6/15
Figure 4. Quiescent drain
current vs.supply voltage (0%
duty cycle)
Figure 5. Quiescent drain
current vs. supply voltage
(100% duty cycle)
Figure 6. Quiescent drain
current vs. junction tem-
perature (0% duty cycle)
Figure 3. Test and applicationcircuit
C6, C7: EKR (ROE)
L1 = 150µH at 5A(COGEMA 946042)
CORE TYPE: MAGNETICS 58206-A2 MPP
N°TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
L4960
Figure 7. Quiescent drain
current vs. junction tem-
perature (100% duty cycle)
Figure 8. Reference voltage
(pin 2) vs. ViFigure 9. Reference voltage
versus junction temperature
(pin 2)
Figure 10. Open loop fre-
quency and phase responde
of error amplifier
Figure 11. Switching fre-
quency vs. input voltage Figure 12. Switching fre-
quency vs. junction tem-
perature
Figure 13. Switching fre-
quencyvs.R2(seetest circuit) Figure 14. Line transient
response Figure 15. Load transient
response
7/15
L4960
8/15
Figure 16. Supply voltage
ripple rejection vs. frequency Figure 17. Dropout voltage
between pin 1 and pin 7 vs.
current at pin 7
Figure 18. Dropout voltage
between pin 1 and 7 vs.
junction temperature
Figure 19. Power dissipation
derating curve Figure 20. Efficiency vs.
output current Figure 21. Efficiency vs.
output current
Figure 22. Efficiency vs.
output current Figure 23. Efficiency vs.
output voltage
L4960
APPLICATION INFORMATION
Figure 24. Typical application circuit
C1,C
6
,C
7
: EKR (ROE)
D1: BYW80 OR 5ASCHOTTKY DIODE
SUGGESTED INDUCTOR: L1= 150µHat5A
CORE TYPE: MAGNETICS 58206- A2 -MPP
N°TURNS: 45, WIRE GAUGE: 0.8mm (20 AWG), COGEMA 946042
U15/GUP15: N°TURNS: 60, WIRE GAUGE: 0.8mm (20 AWG), AIR GAP: 1mm, COGEMA 969051.
Figure 25. P.C. board and component layout of
the Fig. 24 (1 : 1 scale)
Resistor values for
standard output voltages
VoR3 R4
12V
15V
18V
24V
4.7K
4.7K
4.7K
4.7K
6.2K
9.1K
12K
18K
9/15
L4960
10/15
APPLICATION INFORMATION
Figure 26. A minimal 5.1V fixed regulator; Very few component are required
* COGEMA946042 (TOROID CORE)
969051 (U15 CORE)
** EKR (ROE)
Figure 27. Programmable power supply
Vo= 5.1V to 15V
Io= 2.5Amax
Loadregulation (1A to 2A) = 10mV (Vo= 5.1V)
L4960
APPLICATION INFORMATION (continued)
Figure 28. Microcomputer supply with + 5.1V, -5V, +12V and -12V outputs
11/15
L4960
12/15
APPLICATION INFORMATION (continued)
Figure 29. DC-DC converter5.1V/4A,±12V/2.5A;a suggestionhowtosynchronize anegativeoutput
L1, L3 = COGEMA946042 (969051)
L2 = COGEMA 946044 (946045)
D1,D
2
,D
3= BYW80
Figure 30. - In multiple supplies several L4960s can besynchronizedas shown
L4960
APPLICATION INFORMATION (continued)
Figure 31. Regulator for distributed supplies
MOUNTING INSTRUCTION
Thepowerdissipatedinthecircuitmustberemoved
by addingan external heatsink.
Thanks to the Heptawatt package attaching the
hetsink is very simple, a screw or a compression
spring (clip)being sufficient. Betweenthe heatsink
and thepackageit isbettertoinserta layerofsilicon
grease, to optimize the thermal contact, no electri-
cal isolationis needed between the two surfaces.
Figure 32. Mounting example
13/15
L4960
14/15
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189
C 1.37 0.054
D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022
F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.41 2.54 2.67 0.095 0.100 0.105
G1 4.91 5.08 5.21 0.193 0.200 0.205
G2 7.49 7.62 7.8 0.295 0.300 0.307
H2 10.4 0.409
H3 10.05 10.4 0.396 0.409
L 16.97 0.668
L1 14.92 0.587
L2 21.54 0.848
L3 22.62 0.891
L5 2.6 3 0.102 0.118
L6 15.1 15.8 0.594 0.622
L7 6 6.6 0.236 0.260
M 2.8 0.110
M1 5.08 0.200
Dia 3.65 3.85 0.144 0.152
HEPTAWATT PACKAGE MECHANICAL DATA
L4960
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products arenot authorized for useas critical components in life supportdevices or systems without express
written approvalof SGS-THOMSON Microelectronics.
1995 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil -France - Germany - Hong Kong - Italy - Japan- Korea - Malaysia -Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan -Thaliand - United Kingdom - U.S.A.
15/15
L4960
L4962
1.5APOWER SWITCHING REGULATOR
1.5AOUTPUTCURRENT
5.1VTO 40V OUTPUT VOLTAGE RANGE
PRECISE (±2%) ON-CHIP REFERENCE
HIGH SWITCHING FREQUENCY
VERYHIGH EFFICIENCY (UP TO 90%)
VERYFEW EXTERNAL COMPONENTS
SOFTSTART
INTERNALLIMITINGCURRENT
THERMAL SHUTDOWN
DESCRIPTION
The L4962is a monolithic powerswitching regula-
tor delivering 1.5A at a voltagevariable from5V to
40Vin stepdown configuration.
Featuresof the device include current limiting, soft
start,thermal protection and 0 to 100% duty cycle
for continuousoperating mode.
March 1996
ORDERING NUMBERS : L4962/A(12+2+2Powerdip)
L4962E/A (Heptawatt)
L4962EH/A (Horizontal
Heptawatt)
TheL4962ismountedina16-leadPowerdipplastic
packageandHeptawattpackageandrequiresvery
few externalcomponents.
Efficient operation at switching frequencies up to
150KHz allows a reduction in the size and cost of
externalfilter components.
HEPTAWATT
POWERDIP
(12 + 2 + 2)
BLOCK DIAGRAM
Pin X = Powerdip
Pin (X) = Heptawatt
1/15
PIN CONNECTION (Top view)
2/15
Symbol Parameter Heptawatt Powerdip
Rth j-case Thermal resistance junction-case max 4°C/W -
Rth j-pins Thermal resistance junction-pins max - 14°C/W
Rth j-amb Thermal resistance junction-ambient max 50°C/W 80°C/W*
* Obtained with the GND pins soldered to printed circuit with minimized copper area.
THERMAL DATA
HEPTAWATT POWERDIP NAME FUNCTION
1 7 SUPPLY VOLTAGE Unregulated voltage input. An internal regulator powers
the internallogic.
2 10 FEEDBACK INPUT The feedback terminal of theregulation loop. The output
is connected directly to this terminal for 5.1V operation;
it is connected via a divider for higher voltages.
3 11 FREQUENCY
COMPENSATION A series RC network connected between this terminal
and ground determines the regulation loop gain
characteristics.
PIN FUNCTIONS
Symbol Parameter Value Unit
V7Inputvoltage 50 V
V7-V
2Inputto output voltagedifference 50 V
V2Negativeoutput DC voltage -1 V
Output peak voltage at t = 0.1µs; f = 100KHz -5 V
V11,V
15 Voltage at pin 11,15 5.5 V
V10 Voltage at pin 10 7 V
I11 Pin 11 sink current 1 mA
I14 Pin 14 source current 20 mA
Ptot Power dissipation at Tpins 90°C (Powerdip)
Tcase 90°C (Heptawatt) 4.3
15 W
W
Tj,T
stg Junctionand storage temperature -40 to 150 °C
ABSOLUTE MAXIMUM RATINGS
L4962
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS
VoOutput voltage range Vi= 46V Io=1A V
ref 40 V
ViInput voltage range Vo=V
ref to 36V Io= 1.5A 9 46 V
VoLine regulation Vi= 10V to 40V Vo=V
ref Io=1A 15 50 mV
V
oLoad regulation Vo=V
ref Io= 0.5A to 1.5A 8 20 mV
Vref Internal reference voltage
(pin 10) Vi= 9V to 46V Io= 1A 5 5.1 5.2 V
Vref
TAverage temperature
coefficient of refer. voltage Tj=0°C to 125°C
Io=1A 0.4 mV/°C
VdDropout voltage Io= 1.5A 1.5 2 V
Iom Maximum operating load
current Vi= 9V to 46V
Vo=V
ref to 36V 1.5 A
I2L Current limiting threshold
(pin 2) Vi= 9V to 46V
Vo=V
ref to 36V 2 3.3 A
ISH Input average current Vi= 46V; output short-circuit 15 30 mA
ηEfficiency f = 100KHz Vo=V
ref 70 %
Io=1A V
o= 12V 80 %
SVR Supply voltage ripple
rejection Vi=2V
rms
fripple = 100Hz
Vo=V
ref Io = 1A
50 56 dB
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, unless otherwise
specified)
HEPTAWATT POWERDIP NAME FUNCTION
4 4, 5, 12, 13 GROUND Common ground terminal.
5 14 OSCILLATOR A parallel RC network connected to this terminal
determines the switching frequency. This pin must be
connected to pin 7 input when the internal oscillator is
used.
6 15 SOFT START Soft start time constant. A capacitor is connected
between this terminal and ground to define the soft start
time constant. This capacitor also determines the
average short circuit output current.
7 2 OUTPUT Regulator output.
1, 3,6,
8, 9, 16 N.C.
PIN FUNCTIONS (cont’d)
3/15
L4962
4/15
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS (cont’d)
f Switching frequency 85 100 115 KHz
f
ViVoltagestability of
switching frequency Vi= 9V to 46V 0.5 %
f
TjTemperature stability of
switching frequency Tj=0°C to 125°C1%
f
max Maximum operating
switching frequency Vo=V
ref Io= 1A 120 150 KHz
Tsd Thermal shutdown
junction temperature 150 °C
DC CHARACTERISTICS
I7Q Quiescent drain current 100% duty cycle
pins 2 and 14 open Vi= 46V
30 40 mA
0% duty cycle 15 20 mA
-I2L Output leakage current 0% duty cycle 1 mA
SOFTSTART
I15SO Source current 100 140 180 µA
I15SI Sink current 50 70 120 µA
ERROR AMPLIFIER
V11H High level output voltage V10 = 4.7V I11 = 100µA 3.5 V
V11L Low level output voltage V10 = 5.3V I11 = 100µA 0.5 V
I11SI Sink output current V10 = 5.3V 100 150 µA
-I11SO Source output current V10 = 4.7V 100 150 µA
I10 Input bias current V10 = 5.2V 2 10 µA
GvDC open loop gain V11 =1Vto3V 46 55 dB
OSCILLATOR
-I14 Oscillator source current 5 mA
ELECTRICALCHARACTERISTICS (continued)
L4962
CIRCUIT OPERATION (refer tothe block diagram)
TheL4962isamonolithicstepdownswitchingregu-
latorprovidingoutputvoltagesfrom5.1Vto40Vand
delivering 1.5A.
The regulation loop consistsof a sawtoothoscilla-
tor, error amplifier, comparator and the output
stage.Anerrorsignalisproducedbycomparingthe
output voltage with a precise 5.1V on-chip refer-
ence (zenerzap trimmed to ±2%).
Thiserrorsignalisthencomparedwiththesawtooth
signal to generate the fixed frequency pulse width
modulatedpulses which drive the output stage.
The gain and frequencystability of theloop can be
adjusted by an external RC network connected to
pin 11. Closing the loop directly gives an output
voltage of 5.1V. Higher voltages are obtained by
inserting a voltagedivider.
Output overcurrents at switch on are prevented by
the soft start function. The error amplifier output is
initially clamped by the external capacitor Css and
allowedto rise, linearly,as this capacitoris charged
by a constant currentsource. Output overloadpro-
tection is provided in the form of a current limiter.
The load current is sensed by an internal metal
resistorconnectedto a comparator.When theload
current exceedsa presetthresholdthis comparator
sets a flip flop which disables the output stage and
dischargesthe soft start capacitor. Asecond com-
parator resets the flip flop when the voltage across
the soft start capacitorhas fallento 0.4V.
The output stage is thus re-enabledand theoutput
voltagerises undercontrolof thesoftstart network.
If the overload condition is still present the limiter
will trigger again when the threshold current is
reached.Theaverageshortcircuitcurrentis limited
to a safevalue by the dead time introducedby the
soft start network.The thermal overload circuit dis-
ables circuit operation when the junction tempera-
ture reaches about 150°C and has hysteresis to
prevent unstableconditions.
Figure 1. Softstart waveforms
Figure 2. Current limiter waveforms
5/15
L4962
6/15
Figure 4. Quiescent drain
currentvs.supplyvoltage(0%
duty cycle)
Figure 5. Quiescent drain
current vs. supply voltage
(100% duty cycle)
Figure 6. Quiescent drain
current vs. junction tem-
perature (0% duty cycle)
Figure 3. Test and applicationcircuit (Powerdip)
1) D1: BYW98 or 3A Schottky diode, 45V of VRRM;
2) L1: CORE TYPE- MAGNETICS 58120 - A2 MPP
N°TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
3) C6,C
7
: ROE, EKR 220µF 40V
L4962
Figure 7. Quiescent drain
current vs. junction tem-
perature(100% duty cycle)
Figure 8. Reference voltage
(pin 10) vs. Virdip) vs. ViFigure 9. Reference voltage
(pin 10 ) vs. junction tem-
perature
Figure 10. Open loop fre-
quency and phase re- sponse
of error amplifier
Figure 11. Switching fre-
quency vs. input voltage Figure 12. Switching fre-
quency vs. junction tem-
perature
Figure 13. Switching fre-
quencyvs.R2(seetestcircuit) Figure 15. Load transient
response
Figure 14. Line transient
response
7/15
L4962
8/15
Figure 16. Supply voltage
ripple rejectionvs. frequency Figure 17. Dropout voltage
between pin 7 and pin 2 vs.
current at pin 2
Figure 18. Dropout voltage
between pin 7 and 2 vs.
junction temperature
Figure 19. Efficiency vs.
output current Figure 20. Efficiency vs.
output current Figure 21. Efficiency vs.
output current
Figure 22. Efficiency vs.
output voltage Figure 23. Efficiency vs.
output voltage Figure 24. Maximum allow-
able power dissipationvs.am-
bient temperature(Powerdip)
L4962
APPLICATION INFORMATION
Figure 25. Typical application circuit
C1,C
6
,C
7
: EKR (ROE)
D1: BYW98 OR VISK340 (SCHOTTKY)
SUGGESTED INDUCTORS: (L1) = MAGNETICS 58120 - A2MPP- 45 TURNS - WIRE GAUGE 0.8mm (20AWG)
COGEMA946043
OR U15, GUP15, 60 TURNS 1mm, AIR GAP 0.8mm (20 AWG) - COGEMA969051.
Figure 26. P.C.board and component layout of the circuit of Fig. 25 (1 : 1 scale)
Resistor valuesfor
standard output 7 voltages
VoR3 R4
12V
15V
18V
24V
4.7K
4.7K
4.7K
4.7K
6.2K
9.1K
12K
18K
9/15
L4962
10/15
APPLICATION INFORMATION (continued)
Figure 27. - Aminimal 5.1V fixed regulator; Veryfew component arerequired
* COGEMA946043 (TOROID CORE)
969051 (U15 CORE)
** EKR (ROE)
Figure 28. Programmablepower supply
Vo= 5.1V to 15V
Io= 1.5Amax
Load regulation (0.5A to 1.5A) = 10mV (Vo= 5.1V)
Line regulation (220V ±15% and to Io= 1A) = 15mV (Vo= 5.1V)
L4962
APPLICATION INFORMATION (continued)
Figure 29. DC-DC converter 5.1V/4A,±12V/1A.A suggestion how to synchronize a negative output
L1, L3 = COGEMA 946043 (969051)
L2 = COGEMA946044 (946045)
Figure 30. In multiple suppliesseveral
L4962s can be synchronizedas shown Figure 31. Preregulator for distributedsupplies
* L2 and C2 are necessary to reduce the switchingfrequency spikes
when linear regulators are remote from L4962
11/15
L4962
12/15
MOUNTING INSTRUCTION
The Rth-j-amb of the L4962 can be reduced by
solderingtheGND pinsto a suitablecopperareaof
the printed circuit board (Fig. 32).
The diagram of figure 33 shows the Rth-j-amb as a
function of the side ”l” of two equal square copper
areashavingthethicknessof35µ(1.4mils). During
soldering the pins temperature must not exceed
260°C and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper are
must be connected to electrical ground.
Figure 32.Exampleof P.C.boardcopperareawhichis used
as heatsink Figure 33. Maximum dissipable
power and junction to ambient
thermal resistance vs. side ”l”
L4962
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 20.0 0.787
E 8.80 0.346
e 2.54 0.100
e3 17.78 0.700
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
POWERDIPPACKAGE MECHANICAL DATA
13/15
L4962
14/15
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189
C 1.37 0.054
D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022
F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.41 2.54 2.67 0.095 0.100 0.105
G1 4.91 5.08 5.21 0.193 0.200 0.205
G2 7.49 7.62 7.8 0.295 0.300 0.307
H2 10.4 0.409
H3 10.05 10.4 0.396 0.409
L 16.97 0.668
L1 14.92 0.587
L2 21.54 0.848
L3 22.62 0.891
L5 2.6 3 0.102 0.118
L6 15.1 15.8 0.594 0.622
L7 6 6.6 0.236 0.260
M 2.8 0.110
M1 5.08 0.200
Dia 3.65 3.85 0.144 0.152
HEPTAWATT PACKAGE MECHANICAL DATA
L4962
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is grantedby implication orotherwise under anypatent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are notauthorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.
1996 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil -France - Germany- Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden- Switzerland - Taiwan- Thaliand - United Kingdom - U.S.A.
15/15
L4962
L4963
L4963D
1.5ASWITCHING REGULATOR
October 1991
Thisisadvanced informationon anewproduct now in development or underogin evaluation. Details aresubject tochange withoutnotice.
1.5AOUTPUTLOADCURRENT
5.1 TO 36V OUTPUT VOLTAGERANGE
DISCONTINUOUS VARIABLE FREQUENCY
MODE
PRECISE (+/–2%) ON CHIP REFERENCE
VERYHIGH EFFICIENCY
VERYFEW EXTERNALCOMPONENTS
NO FREQ. COMPENSATION REQUIRED
RESET AND POWER FAIL OUTPUT FOR MI-
CROPROCESSOR
INTERNALCURRENT LIMITING
THERMAL SHUTDOWN
DESCRIPTION
The L4963is a monolithicpower switching regulator
delivering1.5Aat5.1V.The outputvoltageis adjust-
able from 5.1V to 36V, working in discontinuous
variable frequency mode. Features of the device
include remote inhibit, internal current limiting and
thermal protection, reset and power fail outputs for
microprocessor.
BLOCKDIAGRAM
Powerdip12+3+3 SO20
ORDERING NUMBERS:
L4963W L4963D
The L4963is mounted in a 12+3+3lead Powerdip
(L4963) and SO20 large (L4963D) plastic pack-
ages and requires very few external components.
1/17
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
SO20 Powerdip
ViInput Voltage (pin 1 and pin 3 connected togheter) 47 V
V3–V2Input to Output VoltageDifference 47 V
V2Negative Output DC Voltage –1 V
V2Negative Output Peak Voltageat t=0.2 µs, f=50kHz –5 V
V8V7Power FailInput 25 V
V9,V
11 V8,V
10 Reset and Power Fail Output Vi
V10 V9Reset Delay Input 5.5 V
V13,V
18 V12,V
16 Feedback and Inhibit Inputs 7V
V
19,V
20 V17,V
18 Oscillator Inputs 5.5 V
Ptot TotalPower Dissipation Tpins 90°C (Power DIP)
(Tamb =70°C no copper area on PCB)
(Tamb =70°C, 4cm2copper area on PCB)
5
1.3
2
W
W
W
Tstg,T
jStorage & JunctionTemperature
(Tamb = 70°C 6cm2copper area on PCB) –40 to 150
1.45 °C
W
Ptot TotalPower Dissipation Tpins 90°C (SO20L) 4W
PIN CONNECTION (top view)
Powerdip18
SO20
L4963 - L4963D
2/17
PIN FUNCTIONS
SO20L Power DIP Name Description
11
SIGNAL SUPPLY VOLTAGE Must be Connected to pin 3
2 2 OUTPUT Regulator output
33
SUPPLY VOLTAGE Unregulated voltage input. An internal regulator
powers the internal logic.
4, 5, 6, 7
14, 15, 16, 17 4, 5, 6
13, 14, 15 GROUND Common ground terminal
87
POWER FAILINPUT Input of the power fail circuit. The threshold can be
modified introducing an externalvoltage divider
between the Supply Voltageand GND.
98
POWER FAILOUTPUT Open collector power fail signal output. This output
is high when the supplyvoltage is safe.
10 9 RESET DELAY Acapacitor connected between this terminal and
ground determines the reset signal delay time.
11 10 RESET OUTPUT Open collector reset signal output. This output is
high when the output voltage value is correct.
12 11 REFERENCE VOLTAGE Reference voltage output.
13 12 FEEDBACK INPUT Feedback terminal of the regulation loop.
The output is connected directly to this terminal for
5.1V operation; it is connected via a divider for
higher voltages.
18 16 INHIBIT INPUT TTLlevel remote inhibit. A logic low level on this
input disables the device.
19 17 C OSCILLATOR Oscillator waveform. A capacitor connected
between this terminal and ground modifies the
maximum oscillator frequency.
20 18 R OSCILLATOR FREQ. Aresistor connected betweenthis terminal and
ground defines the maximum switching frequency.
THERMAL DATA
Symbol Parameter SO20 Powerdip Unit
Rth j-pins Thermal Resistance Junction to Pins max. 15 12 °C/W
Rth j-amb Thermal Resistance Junction to Ambient (*) max. 85 80 °C/W
(*) See Fig. 28
L4963 - L4963D
3/17
CIRCUIT DESCRIPTION (Refer to Block Dia-
gram)
The L4963 is a monolithic stepdown regulatorpro-
viding 1.5A at 5.1V working in discontinuousvari-
able frequency mode. In normal operation the
device resonatesata frequencydepending primar-
ily on the inductance value, the input and output
voltage and theloadcurrent. Themaximum switch-
ing howevercan be limited byaninternaloscillator,
which can be programmed by only one external
resistor.
The fondamental regulation loop consists of two
comparators, a precision 5.1V on-chip reference
and adrive latch. Briefly the operation is as follows:
when the choke ends its discharge the catch free-
wheeling recirculation filter diode begins to come
out of forward conductionso the output voltage of
the device approaches ground. When the output
voltagereaches–0.1Vtheinternalcomparatorsets
the latch and the power stage is turned on. Then
the inductor current rises linearly until the voltage
sensed at the feedback input reaches the 5.1V
reference.
The second comparator then resets the latch and
the output stage is turned off. The current in the
choke falls linearly until it is fully discharged, then
the cyclerepeats.Closing the loop directlygivesan
output voltage of 5.1V. Higher output voltages are
obtained by inserting a voltage divider and this
method of controlrequires no frequencycompen-
sation network. At output voltages greater than
5.1V the availableoutput current must be derated
due to the increased power dissipation of the de-
vice.
Outputoverload protectionis provided byan inter-
nal current limiter. The load currentis sensed by a
on-chip metal resistor connected to a comparator
which resetsthe latchandturnsoff the powerstage
in overloadcondition.The reset circuits (see fig. 1)
generates an output high signal when the output
voltage value is correct. It has an open collector
output and the output signal delay time can be
programmed with an external capacitor. A power-
fail circuit is also available and is used to monitor
the supply voltage. Its output goes high when the
supplyvoltagereachesapre-programmedtreshold
set by a voltagedividerto its inputfrom thesupply
to ground. With the input left open the thresholdis
approximately equal to 5.1V. The output of the
powerfail is anopen collector.
ATTLlevel inhibit isprovided for applicationssuch
as remote on/off control. This input is activatedby
a low logic level and disables circuits operation.
The thermal overload circuit disables the device
when thejunction temperature is about 150°C and
has hysteresisto preventunstable conditions.
Figure 1: Reset and Power Fail Function
L4963 - L4963D
4/17
ELECTRICAL CHARACTERISTIC (Refer to the test circuit Vi=30VT
j=25°C unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
DYNAMIC CHARACTERISTICS
VoOutput Voltage Range Vi= 46V Io= 0.5A Vref 36 V 2
ViInputVoltage Range Vo=V
ref to 36V Io= 0.5A 946V2
V
12 Feedback Voltage Vi= 9 to 46V Io= 0.5A 5 5.1 5.2 V 2
I12 InputBias Current Vi= 15V V12 =6V
V
17f =5V 520µA3a
V
OS12 InputOffsetVoltage 5 10 mV 3a
VoLineRegulation Vi= 9 to 46V Vo=V
ref
Io= 0.5A 15 50 mV 2
VoLoadRegulation Vo=V
ref
Io= 0.5 to 1.5A 15 45 mV 2
VdDropoutVoltage Between
pin 3 and pin 2 I2=3A
V
i= 20V 1.5 2 V 2
I2L Current Limiting Vi= 9 to 46V
Vo=V
ref to 28V 3.5 6.5 A 2
IoMaximum Operating Load
Current Vi= 9 to 46V Vo=V
ref 1.5 A 2
SVR SupplyVoltage Ripple
Rejection Vi= 2Vrms Vo=V
ref
fripple= 100Hz Io= 1.5A 50 56 dB 2
V11 Reference Voltage Vi= 9 to 46V
O<I
11 < 5mA 5 5.1 5.2 V 3a
AverageTemperature
Coefficient of Ref. Volt. Tj= 0 to 125 °C0.4 mV/°C–
V
11 Vref Line Regulation Vi= 9 to 46V 10 20 mV 3a
V11 Vref Line Regulation Iref = 0 to 5mA
Vi= 46V Rosc = 51K65
69 715mV3a
ηEfficiency Io= 1.5AVo=V
ref 65 75 % 2
Tsd Thermal Shutdown
JunctionTemperature 145 150 °C–
Hysteresis 30 °C–
DC CHARACTERISTICS
IqQuescentDrain Current Vi= 46V
Io= 0mA V16 =V
12 = 0 14 20 mA 3a
V16 =V
ref
V12 = 5.3V 11 16 mA 3a
INHIBIT
V16L Low Input Voltage Vi= 9 to 46V 0.3 0.8 V 2
V16H HighInput Voltage Vi= 9 to 46V 2 5.5 V 2
I16L InputCurrent with Low
InputVoltage V16 = 0.8V 50 100 µA2
I
16L InputCurrent with High
InputVoltage V16 =2V 10 20 µA2
L4963 - L4963D
5/17
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
RESET
V12 Rising Threshold Voltage Vi= 9 to 46V Vref
–150 Vref
–100 Vref
–50 mV 3b
V12 FallingThreshold Voltage Vi= 9 to 46V Vref
–150 Vref
–200 Vref
–250 mV 3b
V9D DelayRising Thereshold
Voltage V7= OPEN 4.3 4.5 4.7 V 3b
V9F DelayFalling Thereshold
Voltage 1 1.5 2 V 3b
–I9SO DelaySource Current V9= 4.7V V12 = 5.3V 70 110 140 µA3b
I
9SI DelaySink Current V9= 4.7V V12 = 4.7V 10 mA 3b
I10 Output Leakage Current Vi= 46V V7= 8.5V 50 µA3b
V
10 Output Saturation Volt. I10 = 15mA; VI= 3 to 46V 0.4 V 3b
POWER FAIL
VRRising Threshold Voltage Pin7 = open 17.5 19 20.5 V 3C
VFFalling Threshold Voltage Pin7 = open 14.25 15 15.75 V 3c
V7Rising Threshold Voltage Vi= 20V 4.14 4.5 4.86 V
V7FallingThreshold Voltage Vi= 20V 3.325 3.5 3.675 V
VsOutput Saturation Volt. Ia= 5mA 0.4 V 3c
IsOutput Leakage Current Vi= 46V 50 µA3c
OSCILLATOR
f Oscillator Frequency RT= 51K46 60 79 kHz
fOscillator Frequency VI= 9 to 46V
Tj= 0 to 125°C
RT= 51K42 83 kHz
ELECTRICALCHARACTERISTIC (Continued)
L4963 - L4963D
6/17
Figure 2: TestCircuit
Figure 3: DC TestCircuit
Figure 3a
Figure 3b
L4963 - L4963D
7/17
Figure 3c
Figure 4: QuiescentDrain Current vs. Supply
Voltage(0% Duty Cycle) Figure5: QuiescentDrain Current vs. Supply
Voltage (100%Duty Cycle)
Figure 6: QuiescentDrain Current vs. Junction
Temperature(0% Duty Cycle) Figure 7: QuiescentDrain Current vs. Junction
Temperature(100% Duty Cycle)
L4963 - L4963D
8/17
Figure 8: Reference Voltage vs. ViFigure 9: ReferenceVoltagevs. Tj
Figure 10: Line TransientResponse Figure 11: Load Transient
Figure 12: SupplyVoltage Ripple Rejection vs.
Frequency Figure 13: Dropout VoltageBetween pi3 and 2
vs. Current at pin2
L4963 - L4963D
9/17
Figure 14: DropoutVoltage Between pin3 and 2
vs. JunctionTemperature Figure15: Maximum AllowablePowerDissipation
vs. AmbientTemperature(Powerdip
PackageOnly)
Figure 16: PowerDissipation (deviceonly) vs. In-
put Voltage(Powerdip PackageOnly) Figure 17: PowerDissipation (deviceonly) vs.
Output Voltage (Powerdip Package
Only)
Figure 18: Voltageand CurrentWaveform at pin2 Figure19: Efficiencyvs. Output Current (Power-
dip PackageOnly)
L4963 - L4963D
10/17
Figure 20: Efficiency vs. Output Voltage(Power-
dip Package Only) Figure 21: CurrentLimit vs. JunctionTempera-
ture Vi=30V
Figure 22: CurrentLimit vs. InputVoltage Figure 23: Oscillator Frequencyvs. R2 (see fig. 26)
Figure 24: Oscillator Frequency vs. Junction
Temperature Figure 25: Oscillator Frequency vs. InputVoltage
L4963 - L4963D
11/17
Figure 26: EvaluationBoard Circuit
PART LIST
CAPACITOR
C1 1000µF 50V EKR (*)
C2 2.2mF 16V
C3 1000µF 40V with low ESR
C4 1µF 50V film
RESISTOR
R1 1K
R2 51K
R3 1K
R4 1K
R5, R6 see table
Resistor Values for Standard Output Voltages
VOR6 R5
12 4.7K6.2K
15 4.7K9.1KW
18 4.7K12KW
24 4.7K18KW
Diode: BYW98
Core: L=40µHMagnetics58121-A2MPP34Turns
0.9mm (20AWG)
(*) Minimum100µFifV
iis apreregulated offline SMPS outputor 1000µF if a50Hz transformer plus rectifiers isused.
L4963 - L4963D
12/17
Figure 28: ThermalCharacteristics
Figure 27: P.C. Board and Component Layout of the Circuit of fig. 26 (Powerdip Package)(1:1 scale).
Figure 29: Junctionto Ambient Thermal Resis-
tance vs. Areaon Board Heatsink
(SO20)
L4963 - L4963D
13/17
Figure 30: AMinimal 5.1 Fixed Regulator Very Few Componentsare Required
Figure 31: AMinimal Componentscount forVO= 12V
L4963 - L4963D
14/17
POWERDIP18 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 24.80 0.976
E 8.80 0.346
e 2.54 0.100
e3 20.32 0.800
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 2.54 0.100
L4963 - L4963D
15/17
SO20 PACKAGE MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.65 0.104
a1 0.1 0.3 0.004 0.012
a2 2.45 0.096
b 0.35 0.49 0.014 0.019
b1 0.23 0.32 0.009 0.013
C 0.5 0.020
c1 45 (typ.)
D 12.6 13.0 0.496 0.512
E 10 10.65 0.394 0.419
e 1.27 0.050
e3 11.43 0.450
F 7.4 7.6 0.291 0.299
L 0.5 1.27 0.020 0.050
M 0.75 0.030
S 8 (max.)
L4963 - L4963D
16/17
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such informationnor for any infringementof patents or other rights of third parties which may result from its use.No
license is grantedby implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are notauthorized foruse ascritical components inlife support devices or systems without express
written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France -Germany -Hong Kong - Italy- Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
L4963 - L4963D
17/17
L4970A
10A SWITCHING REGULATOR
10A OUTPUT CURRENT
5.1V TO 40V OUTPUT VOLTAGERANGE
0 TO 90% DUTY CYCLE RANGE
INTERNAL FEED-FORWARD LINE REGULA-
TION
INTERNAL CURRENT LIMITING
PRECISE 5.1V ±2% ON CHIP REFERENCE
RESETAND POWER FAIL FUNCTIONS
SOFT START
INPUT/OUTPUT SYNC PIN
UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
VERYHIGH EFFICIENCY
SWITCHING FREQUENCY UP TO 500KHz
THERMAL SHUTDOWN
CONTINUOUS MODE OPERATION
DESCRIPTION
The L4970A is a stepdown monolithic power
switching regulator delivering 10A at a voltage
variable from5.1 to 40V.
Realized with BCD mixed technology, the device
usesa DMOSoutput transistorto obtain very high
efficiency and very fast switching times. Features
of the L4970A include reset and power fail for mi-
croprocessors, feed forward line regulation, soft
start, limiting current and thermal protection. The
device is mounted in a 15-lead multiwatt plastic
power package and requiresfew external compo-
nents. Efficient operation at switching frequencies
up to 500KHz allows reduction in the size and
cost of external filter components.
This isadvanced information on anew productnow in development or undergoing evaluation. Details are subject to change without notice.
November 1991
BLOCK DIAGRAM
Multiwatt15V
ORDERING NUMBER: L4970A
MULTIPOWER BCD TECHNOLOGY
1/21
PIN CONNECTION (Top view)
ABSOLUTE MAXIMUMRATINGS
Symbol Parameter Value Unit
V9Input Voltage 55 V
V9Input Operating Voltage 50 V
V7Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200KHz -1
-7 V
V
I7Maximum Output Current Internally Limited
V6Bootstrap Voltage
Bootstrap Operating Voltage 65
V9+15 V
V
V
3
,V
12 Input Voltage at Pins 3, 12 12 V
V4Reset Output Voltage 50 V
I4Reset Output Sink Current 50 mA
V5,V
10, V11, V13 Input Voltage at Pin 5, 10, 11, 13 7 V
I5Reset Delay Sink Current 30 mA
I10 Error Amplifier Output Sink Current 1 A
I12 Soft Start Sink Current 30 mA
Ptot Total Power Dissipation at Tcase < 120°C30W
T
j
,T
stg Junction and Storage Temperature -40 to 150 °C
THERMAL DATA
Symbol Parameter Value Unit
Rth j-case
Rth j-amb Thermal Resistance Junction-case max
Thermal Resistance Junction-ambient max 1
35 °C/W
°C/W
L4970A
2/21
CIRCUIT OPERATION (refer to the block dia-
gram)
The L4970A is a 10A monolithic stepdownswitching
regulatorworking in continuousmode realized in the
new BCD Technology.This technologyallows thein-
tegrationof isolated vertical DMOS power transistors
plusmixed CMOS/Bipolartransistors.
The device can deliver 10A at an output voltage
adjustable from 5.1V to 40V, and contains diag-
nostic and control functions that make it particu-
larlysuitable for microprocessor based systems.
BLOCK DIAGRAM
The block diagram shows the DMOS power tran-
sistor and the PWM control loop. Integrated func-
tions include a referencevoltage trimmed to 5.1V
±2%, soft start, undervoltage lockout, oscillator
with feedforward control, pulse by pulse current
limit, thermal shutdown and finally the reset and
power fail circuit. The reset and power fail circuit
provides an output signal for a microprocessor in-
dicating the statusof the system.
Device turn on is around 11V with a typical 1V
hysteresis, this threshold provides a correct volt-
age for the driving stage of the DMOS gate and
the hysteresisprevents instabilities.
An external bootstrap capacitor charged to 12V
by an internal voltage reference is needed to pro-
vide correct gate drive to the power DMOS. The
driving circuit is able to source and sink peak cur-
rents of around 0.5A to the gate of the DMOS
transistor. A typical switching time of the current
in the DMOS transistor is 50ns. Due to the fast
commutation switching frequencies up to 500kHz
arepossible.
The PWM control loop consists of a sawtooth os-
cillator, error amplifier, comparator, latch and the
output stage. An error signal is produced by com-
paring the output voltage with the precise 5.1V ±
2% on chip reference. This error signal is then
compared with the sawtooth oscillator, in order to
generatea fixedfrequencypulse width modulated
drive for the output stage. A PWM latch is in-
cluded to eliminate multiple pulsing within a pe-
riod even in noisy environments. The gain and
PIN FUNCTIONS
NoName Function
1 OSCILLATOR Rosc. External resistor connected to ground determines the constant charging
current of Cosc.
2 OSCILLATOR Cosc. External capacitor connected to grounddetermines (with Rosc) the
switching frequency.
3 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a
dividerto the input for power failfunction. It must be connected to the pin 14 an
external 30Kresistorwhen power fail signal not required.
4 RESET OUT Open Collector Reset/power Fail Signal Output. This output is high when the
supply and the output voltages are safe.
5 RESET DELAY A Cdcapacitor connected between this terminal and ground determines the
reset signaldelay time.
6 BOOTSTRAP A Cboot capacitor connected between thisterminal and the output allows to
drive properly the internal D-MOS transistor.
7 OUTPUT Regulator Output.
8 GROUND Common Ground Terminal
9 SUPPLY VOLTAGE UnregulatedInput Voltage.
10 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines
the regulation loop gain characteristics.
11 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected
directly to this terminal for 5.1V operation; It is connected via a divider for higher
voltages.
12 SOFT START Soft Start Time Constant. A capacitor is connected between thi sterminal and
ground to define the soft start time constant.
13 SYNC INPUT Multiple L4970A are synchronized by connecting pin 13inputs together or via
an external syncr. pulse.
14 Vref 5.1V Vref Device Reference Voltage.
15 Vstart Internal Start-up Circuit to Drive the Power Stage.
L4970A
3/21
Figure1: FeedforwardWaveform
Figure3: LimitingCurrent Function
Figure2: Soft Start Function
L4970A
4/21
stability of the loop can be adjusted by an exter-
nal RC network connected to the output of the er-
ror amplifier. A voltage feedforward control has
been added to the oscillator, this maintains supe-
rior line regulation over a wide input voltage
range. Closing the loop directly gives an output
voltage of 5.1V, higher voltages are obtained by
inserting a voltagedivider.
At turn on output overcurrents are prevented by
the soft start function(fig. 2). The error amplifieris
initiallyclamped by an external capacitorCss and
allowed to rise linearly under the charge of an in-
ternal constant current source.
Output overload protection is provided by a cur-
rentlimit circuit (fig. 3). Theload current is sensed
by an internal metal resistor connected to a com-
parator. When the load current exceeds a preset
threshold the output of the comparator sets a flip
flop which turns off the power DMOS. The next
clock pulse, from an internal 40kHz oscillator will
reset the flip flop and the power DMOS will again
conduct. This current protection method, ensures
a constant current output when the system is
overloaded or short circuited and limits the
switching frequency,in this condition,to 40kHz.
The Reset and Power fail circuitry (fig 4) gener-
ates an output signal when the supply voltage ex-
ceeds a threshold programmed by an external
voltage divider. The reset signal, is generated
with a delay time programmed by an external ca-
pacitor on the delay pin. Whenthe supply voltage
falls below the threshold or the output voltage
goes below 5V the reset output goes low immedi-
ately. The reset output is an open collector-drain.
Fig 4A shows the case when the supply voltage is
higher than the threshold, but the output voltage
isnot yet 5V.
Fig 4B shows the case when the output is 5.1V
but the supply voltage is not yet higher than the
fixedthreshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has an hysterysis to prevent unstable
conditions.
Figure4: Reset and Power Fail Functions.
A
B
L4970A
5/21
ELECTRICALCHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, R4= 16K,
C9= 2.2nF, fSW = 200KHz typ, unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
Viinput Voltage Range (pin 9) Vo=V
ref to 40V
Io= 10A 15 50 V 5
VoOutput Votage Vi= 15V to 50V
Io= 5A; Vo=V
ref5 5.1 5.2 V 5
VoLine Regulation Vi= 15V to 50V
Io= 5A; Vo=V
ref12 30 mV 5
VoLoad Regulation Vo=V
ref
Io=3Ato6A
I
o= 2A to 10A 10
20 30
50 mV
mV
5
VdDropout VoltageBetween
Pin 9 and 7 Io=5A
I
o= 10A 0.55
1.1 0.8
1.6 V
V5
I7L Max. LimitingCurrent Vi= 15 to 50V 11 13 15 A 5
ηEfficiency Io=5A
V
o=V
ref
Vo= 12V 80 85
92 %
%
5
Io= 10A
Vo=V
ref
Vo= 12V 75 80
87 %
%
5
SVR Supply Voltage Ripple
Reject. Vi= 2VRMS; Io=5A
f = 100Hz; Vo=V
ref 56 60 dB 5
f Switching Frequency 180 200 220 KHz 5
f
ViVoltage Stability of
Swiching Frequency Vi= 15V to 45V 2 6 % 5
f
TjTemperature Stability of
Swiching Frequency Tj= 0 to 125°C1%5
f
max Maximum Operating
Switching Frequency Vo=V
ref;R
4= 10K
Io= 10A; C9= 1nF 500 KHz 5
Vref SECTION(pin 14)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 5 5.1 5.2 V 7
V14 Line Regulation Vi= 15V to 50V 10 25 mV 7
V14 Load Regulation I14 = 0 to 1mA 20 40 mV 7
V14
TAverage Temperature
CoefficientReference
Voltage
Tj=0°C to 125°C 0.4 mV/°C7
I
14 short Short Circuit Current Limit V14 = 0 70 mA 7
VSTART SECTION(pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V15 Reference Voltage 11.4 12 12.6 V 7
V15 Line Regulation Vi= 15 to 50V 0.6 1.4 V 7
V15 Load Regulation I15 = 0 to 1mA 50 200 mV 7
I15 short Short Circuit Current Limit V15 =0V 80 mA 7
L4970A
6/21
ELECTRICALCHARACTERISTICS (continued)
DCCHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V9on Turn-on Threshold 10 11 12 V 7A
V9 Hyst Turn-off Hysteresys 1 V 7A
I9Q Quiescent Current V12 =0; S1=D 13 19 mA 7A
I
9OQ Operating SupplyCurrent V12 = 0; S1 = C; S2 = B 16 23 mA 7A
I7L Out Leak Current Vi= 55V; S3 = A; V12 =0 2 mA 7A
SOFTSTART
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I12 Soft Start Source Current V12 = 3V; V11 = 0V 70 100 130 µA7B
V
12 Output Saturation Voltage I12 = 20mA; V9= 10V
I12 = 200µA; V9= 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10H High Level Out Voltage I10 = -100µA; S1 = C
V11 = 4.7V 6V7C
V
10L Low Level Out Voltage I10 = +100µA; S1 = C
V11 = 5.3V; 1.2 V 7C
I10H Source Output Current V10 = 1V; S1 = E
V11 = 4.7V 100 150 µA7C
I
10L Sink Output Current V10 = 6V; S1 = D
V11 = 5.3V 100 150 µA7C
I
11 Input Bias Current RS= 10K0.4 3 µA–
G
VDC Open Loop Gain VVCM = 4V;
RS=1060 dB
SVR Supply Voltage Rejection 15 < Vi< 50V;
RS=1060 80 dB
VOS Input Offset Voltage RS=50210mV
RAMP GENERATOR(pin 2)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V2Ramp Valley S1 = C; S2 = B 1.2 1.5 V 7A
V2Ramp Peak S1 = C; Vi= 15V
S2 = B; Vi= 45V 2.5
5.5 V
V7A
7A
I2Min. Ramp Current S1 = A; I1= 100µA 270 300 µA7A
I
2Max. Ramp Current S1 = A; I1 = 1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Low Input Voltage Vi= 15V to 50V; V12 =0;
S1 = C; S2 = B; S4 = B –0.3 0.9 V 7A
V13 High Input voltage V12 =0;
S1 = C; S2 = B; S4 = B 3.5 5.5 V 7A
I13L Sync Input Current with
Low Input Voltage V13 =V
2
= 0.9V; S4 = A;
S1 = C; S2 = B 0.4 mA 7A
I13H Input Current with High
Input Voltage V13 = 3.5V; S4 = A;
S1 = C; S2 = B 1.5 mA 7A
V13 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4970A
7/21
ELECTRICALCHARACTERISTICS (continued)
RESETAND POWERFAIL FUNCTIONS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11R Rising Threshold Voltage
(pin 11) Vi= 15 to 50V
V3= 5.3V Vref
–120 Vref
–100 Vref
–80 V
mV 7D
V11F Falling Threshold Voltage
(pin 11) Vi = 15 to 50V
V3= 5.3V 4.77 Vref
–200 Vref
–160 V
mV 7D
V5H Delay High Threshold
Voltage Vi= 15 to 50V
V14 =V
11 V3= 5.3V 4.95 5.1 5.25 V 7D
V5L Delay Low Threshold
Voltage Vi = 15 to 50V
V14 =V
11 V3= 5.3V 1 1.1 1.2 V 7D
–I5SO Delay Source Current V3= 5.3V; V5=3V 406080µA7D
I
5SI Delay Sink Current V3= 4.7V; V5=3V 10 mA 7D
V
4S Out Saturation Voltage I4= 15mA; S1 = B
V3= 4.7V 0.4 V 7D
I4Output Leak Current V4= 50V; S1 = A
V3= 5.3V 100 µA7D
V
3R Rising Threshold Voltage V11 =V
14 4.95 5.1 5.25 V 7D
V3H Hysteresys 0.4 0.5 0.6 V 7D
I3Input Bias Current 1 3 µA7D
Figure5: Test andEvaluationBoard Circuit
TYPICAL PERFORMANCES (using evaluationboard) :
n =83% (Vi=35V ; Vo=VREF ;I
o=10A ; fSW = 200KHz)
Vo RIPPLE =30mV (at 10A)with output filter capacitorESR 60m
Line regulation = 5mV (Vi=15 to 50V)
Load regulation= 15mV (Io= 2 to 10A)
For componentvalues,refer to test circuit partlist.
L4970A
8/21
PARTS LIST
R1= 30KC1,C
2= 3300µF 63VLEYF (ROE
R2= 10KC3,C
4
,C
5
,C
6= 2.2µF
R3= 15KC7= 390pF Film
R4= 16KC8= 22nF MKT 1817 (ERO)
R5=220,5W
R6= 4K7 C9= 2.2nF KP1830
R7=10C
10 = 220nF MKT
R8= see tab. A C11 = 2.2nF MP1830
R9= OPTION **C12,C
13,C
14 = 220µF 40VLEKR
R10 = 4K7 C15 =1µF Film
R11 =10
D1 = MBR 1560CT (or 16A/60V or equivalent)
L1 = 40µH core 58071 MAGNETICS
27 TURNS Ø 1,3mm (AWG 16)
COGEMA 949178
* 2 capacitors in parallel to increase input RMS current capability
** 3 capacitorsin parallel to reduce total outputESR
Table B
SUGGESTEDBOOTSTRAP CAPACITORS
Operating Frequency Bootstrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f = 100KHz 330nF
f = 200KHz 220nF
f = 500KHz 100nF
Figure6a: P.C. Board (componentsside) and Components Layout of Figure 5 (1:1 scale).
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12k
18k
L4970A
9/21
Figure7: DC Test Circuits
Figure6b: P.C. Board(Back side) and ComponentsLayoutof the Circuit of Fig.5. (1:1 scale)
L4970A
10/21