A70, A190 | Rectifier Stacks Silicon = : [a FIN 12 SES a FIN 11 FIN 13 FIN 14/15 643A70, A190 1, RECTIFIER STACK SELECTION CHART for 40C ambient, free convection cooling, resistive or inductive load (for other conditions see Figures 2 thru 7). Max. Max. Max. Allow. SINGLE PHASE HALF WAVE Repetitive Circuit Max. Transient AC Input = Qutput PRV PRV Non- CIRCUIT OUTPUT CURRENT 48 ADC 65 ADC 70 ADC 85 ADC 90 ADC 175 ADC Volts RMS* Volts DC Recurrent AT012AHTADI = A7O11AHIAD1 A7013AH1AD1 A7014AH1AD1 A19013AH1AD1 A19015AH1ADt 70 29 100 200 - BH1AD1 BH1AD1 BH1AD1 BHIAD1 BH1AD1 BH1AD1 140 61 200 300 CH1AD1 CH1AD1 CH1AD1 CHIAD1 CH1AD1 CH1AD1 210 92 300 400 DH1AD1 OH1AD1 DHTAD1 DHIAD1 DH1AD1 OHiAD1 280 124 400 25 EH1A01 EH1AD1 EH1AD1 EH1AD1 EH1AD1 EH1AD1 350 155 500 650 + MH1A01 MH1AD1 MH1AD1 MHIAD1 MH1AD1 MH1AD1 420 187 600 800 NH1A01 NH1AD1 NH1AD1 NH1AD1 NH1AD1 NH1AD1 560 250 800 1050 PHIAD1 PHIAD1 PHTAD1 PH1AD1 PH1AD1 PHIADt 700 313 = 1000 1300 SINGLE PHASE CENTER TAP (Line to CIRCUIT OUTPUT CURRENT 96 AOC 130 ADC 140 ADC 170 ADC 180 ADC 350 ADC Neutral) AT01T2AC1AD1 A7011ACIAD1 A7013AC1AD1 A7014AC1AD1 A19013AC1AD1 A19015AC1AD1 35 28 100 200 oe BC1AD1 BCIAD1 BCIAD1 BC1AD1 BC1AD1 BC1AD1 70 60 200 300 ac CC1AD1 CCIAD1 CCIAD1 CC1AD1 CC1AD1 CC1AD1 105 91 300 400 oy DC1AD1 DC1IAD1 DC1AD1 OCTAD1 DCIA01 DC1AD1 140 123 400 525 EC1AD1 EC1AD1 ECtAD1 ECTAD1 EC1A01 ECiAD1 175 154 500 650 ac MC1AD1 MC1AD1 MCIADt MC1AD1 MC1A01 MCIAD1 210 186 600 800 oh NCIAD1 NC1AD1 NC1A01 NCTAD1 NC1AD1 NC1AD1 280 249 800 1050 PC1AD1 PC1AD1 PC1AD1 PCIAD1 PC1AD1 PC1AD1 350 312 = 1000 1300 SINGLE PHASE BRIDGE (Line to CIRCUIT OUTPUT CURRENT 96 ADC 130 ADC 140 ADC 170 ADC 180 ADC 350 ADC Neutral) AT012AB1AD1 A7011A81AD1 A7013AB1AD1 A7014AB1AD1 A19013AB1AD1 A19015AB1AD1 70 59 100 200 BB1AD1 BB1AD1 BBIAD1 BBIAD1 BB1AD1 BB1A01 140 121 200 300 ac CB1AD1 CB1AD1 CBIAD1 CBIAD1 CB1AD1 CBIAD1 210 185 300 400 DBIAD1 DB1AD1 DBIAD1 DBiAD1 DBIADI DB1AD1 280 248 400 525 EBIAD1 EB1AD1 EB1AD1 EBiAD1 EB1AD1 EB1AD1 350 311 500 650 ac MBIAD1 MBI1AD1 MB1AD1 MB1AD1 MBIADi MB1AD1 420 374 600 800 NB1AD01 NB1AD1 NB1AD1 NB1AD1 NB1AD1 NB1AD1 560 500 800 1050 PB1A01 PBIAD1 PBIAD1 PB1AD1 PB1AD1 PB1AD1 700 626 1000 1300 THREE PHASE HALF WAVE (Line to CIRCUIT OUTPUT CURRENT 135 ADC 180 ADC 195 ADC 240 ADC 270 ADC 500 ADC Neutral) ac AT012AY1AD1 A7011AY1A01 A701I3AY1AD1 A7014AY1AD1 A19013AY1AD1 A19015AY1AD1 40 44 100 200 ot BY1AD1 BYIAD1 BY1AD1 BY1AD1 BYTAD1 BY1AD1 80 91 200 300 CY1AD1 CY1AD1 CY1AD1 CY1AD1 CY1AD1 CY1AD1 120 138 300 400 Syl os. DY1A01 DY1AD1 DY1AD1 DY1AD1 DY1AD1 OY1AD1 160 184 400 525 EY1AD1 EY1AD1 EY1AD1 EY1AD1 EY1AD1 EYiAD1 200 231 500 650 ac MY1AD1 MY1AD1 MY1AD1 MY1AD1 MY1AD1 MY1AD1 240 278 600 800 ot NY1AD1 NY1AD1 NY1AD1 NY1AD1 NY1AD1 NY1A01 320 371 800 1050 PY1AD1 PY1AD1 PY1AD1 PY1A01 PY1AD1 PY1AD1 400 465 1000 4300 THREE PHASE BRIDGE CIRCUIT OUTPUT CURRENT 135 ADC 180 ADC 195 ADC 240 ADC 270 ADC 500 ADC A7012AF1AD1 A7011AF1A01 A7013AF1AD1 A7014AF1AD1 A19013AF1AD1 A19015AF1AD1 70 91 100 200 cc zk hUukKhlUt BFIADI BFIAD1 BF1IAD1 BFIAD1 BFIAD1 BFIAD1 140 185 200 300 , CF1AD1 CFiAD1 CFIAD1 CFIAD1 CFIADI CF1AD1 210 279 300 400 ] *] 7 OF1AD1 OF1AD1 DFIADt OFIAD1 DOF1AD1 DF1AD1 280 374 400 25 o EF1AD1 EF1AD1 EF1AD1 EF1AD1 EF1AD1 EFIAD1 350 468 500 650 3 MF1AD1 MF1AD1 MF1AD1 MF1AD1 MF1AD1 MF1AD1 420 563 600 800 ac AC AC NF1AD1 NF1AD1 NF1IAD1 NF1AD1 NF1AD1 NFIAD1 560 752 800 1050 PF1AD1 PFIADI PFIAD1 PFIAD1 PFIAD1 PFIAD1 700 941 1000 1300 SIX PHASE STAR CIRCUIT OUTPUT CURRENT 240 ADC 294 ADC 318 ADC 390 ADE 420 ADC 840 ADC A7012AS1AD1 A7011AS1A01 A7013AS1AD1 A7014AS1AD1 A19013AS1AD1 A19015AS1AD1 35 44 100 200 BS1AD1 BS1AD1 BS1AD1 BS1AD1 BS1AD1 BS1AD1 70 91 200 300 CS1AD1 CS1AD1 CS1AD1 CS1AD1 CS1AD1 CS1AD1 105 139 300 400 DS1AD1 DS1AD1 DS1AD1 DS1AD1 DS1AD1 DS1AD1 140 186 400 525 ES1AD1 ES1AD1 ES1AD1 ESIAD1 ES1AD1 ES1AD1 175 233 500 650 MS1AD1 MS1AD1 MS1AD1 MS1AD1 MS1AD1 MS1AD1 210 280 600 800 NS1AD1 NS1AD1 NS1AD1 NS1AD1 NS1AD1 NS1AD1 280 375 800 1050 PS1AD1 PS1AD1 PS1AD1 PS1AD1 PS1AD1 PS1AD1 350 469 1000 1300 NOTE: The RMS voltage ratings are based on the assumption that the required precautions have been taken to keep transient voltage per fin within the transient ratings specified above. For a discussion of voltage transient and corrective action, request Rectifier Voltage Transients: Their Generation, Detection and Reduction, 200.11. NOMENCLATURE IDENTIFICATION 1. Basic rectifier diode used in stack. For further diode 3. Diode voltage classification see Figure 1, column | A70 | 12 A | H 1 | AD 1 details, refer to A70, A190 specifications. headed Max Diode PRV. 4. Basic circuit. 2. Identifies heat sink as follows: 5. Number of series diodes in each teg. a 3 b 11 = 1-1/2 x 3-1/2 x 3-1/2 aluminum extrusion 6. Mechanicat construction. 12 5 x 5 x 1/8 copper plate 7. Number cof paralle! diodes in each leg. 13 7x 7 x 3/8 aluminum plate 14 4x 4x 5 aluminum extrusion 15 5x 5 x 5-1/2 aluminum extrusion 644A70, A190 =, 160 =200 w 2 ws w 180 a a =e] = 6 DUIMIT g 6 LIMIT g 160 i 2,000 FY z 2,000 FT/MIN & 140 = << = 1,000 FT/ MIN 5 ~| IO % 120 000 FT/MI z a) 3 300 FT/MIN 5 | | -J E ,. 100 [te 300 FY/M 5 5 8 90 EE CONVECTION Fe 5 = go FREE- CONVECTION [ : ; 60 io a ; w 35736 50 _ 60 70 80.90 00 AMBIENT TEMPERATURE-C AMBIENT TEMPERATURE-C 2. A7011 STACK CURRENT RATING AS A 3. A7012 STACK CURRENT RATING AS A FUNCTION OF AMBIENT TEMPERATURE FUNCTION OF AMBIENT TEMPERATURE AND COOLING CONDITIONS AND COOLING CONDITIONS = 180 120 T 2,000 FT/MIN 140 | lo NM, 100 P LQOO FT/MIN aw 6 LIMIT Se PN 2,000 FT/MIN 8 PERCENT OF CIRCUIT CURRENT RATING (SEE FIG. 1) 9 w lu % 2 e e 1,000 FT/MIN 90 E 10 ~] a FREE convecrion SY ~~ NY 5 100 300 FT/MIN 80 MS oOo Ke 5 90 & 70 80 o 60 a a | oO i 50 30 50___ 60.70.80 807100 a -e AMBIENT TEMPERATURE -c 4 A7013 STACK CURRENT RATING ASA 5. A7014 STACK CURRENT RATING ASA FUNCTION OF AMBIENT TEMPERATURE FUNCTION OF AMBIENT TEMPERATURE AND COOLING CONDITIONS AND COOLING CONDITIONS 140 Nn o o Nn 1,000 FT/MIN 120 nN oo 2,000 FT/MIN Ho 300 FT/MIN 00 1,000 FT/MIN a o ~_ o a PERCENT OF CIRCUIT CURRENT RATING (SEE FIG. |) PERCENT OF CIRCUIT CURRENT RATING (SEE FIG. |} o oO -ce ~c 6. A19013 STACK CURRENT RATING AS A 7. A19015 STACK CURRENT RATING AS A FUNCTION OF AMBIENT TEMPERATURE FUNCTION OF AMBIENT TEMPERATURE AND COOLING CONDITIONS 645 AND COOLING CONDITIONSA70, A190 FT/MIN I. ie) 100 1000 STEADY OVERLOAD TIME - SECONDS STATE 8. A7011 TRANSIENT THERMAL RESISTANCE AT 60 CPS, JUNCTION-TO-AMBIENT VS. OVERLOAD TIME THERMAL RESISTANCE - 9909 -= = = wy HY WH YW on NY Ww WLH_ BAN 9 ul oO t #OVERLOAD TIME - SECONDS ST, IMG2ZABAGION, = 80% 9. A7012 TRANSIENT THERMAL RESISTANCE AT 60 CPS, JUNCTION-TO-AMBIENT VS. OVERLOAD TIME 2.4 180 2.2 165 2.0 L50 = 5 1.8 ~ 1.35 * 300 FT/MIN. 2 we 46 ' 1.20 z $ 5 14 FAN. Z Los iy 12 2090 w 2 10 = o75 a 0.8 3060 F os gs , = 045 04 0.2 O18 0 STEADY 10 100 1000 STEADY OVERLOAD TIME-SECONDS STATE OVERLOAD TIME - SECONDS STATE 10. A7013 TRANSIENT THERMAL RESISTANCE 11. A7014 TRANSIENT THERMAL RESISTANCE AT 60 CPS, JUNCTION-TO-AMBIENT AT 60 CPS, JUNCTION-TO-AMBIENT VS. OVERLOAD TIME VS. OVERLOAD TIME 2.0 Tr) 16 = 5 14 So, w y 1.2 4 06 6 Ke) g 05 Rog Z04 Z z Eos #03 = Fe oa a2 0.2 STEADY IAG BUENAS OMY, , 2 STATE OVERLOAD TIME - SECONDS 12. A19013 TRANSIENT THERMAL RESISTANCE 13. AT 60 CPS, JUNCTION-TO-AMBIENT VS. OVERLOAD TIME 5 TIME ~ SECONDS A19015 TRANSIENT THERMAL RESISTANCE AT 60 CPS, JUNCTION-TO-AMBIENT VS. OVERLOAD TIME 646FORWARD POWER~WATTS PEAK HALF SINE WAVE FORWARD CURRENT-AMPERES INSTANTANEOUS FORWARD CURRENT-AMPERES 350 300 Ty2+!50C TO +200C 250 200 150 100 50 0 oO 20 40 60 80 100 =: 120 140 FORWARD CURRENT- AMPERES A7011, A7012, A7013, A7014 AVERAGE FORWARD POWER VS. AVERAGE FORWARD CURRENT Ty = +150C to +200C 160 =180 =. 200 14. 2000 1800 1600 1400 (200 (000 800 600 400 200 0 2 4 6 8 0 CYCLES AT 60CPS 16. A7011, A7012, A7013, A7014 MAXIMUM SURGE CURRENT AT RATED LOAD CONDITIONS (PRV APPLIED AFTER SURGE) (NON-RECURRENT) 20 40 60 tooo 5 10 1S INSTANTANEOUS FORWARD VOLTAGE- VOLTS A7011, A7012, A7013, A7014 MAXIMUM FORWARD CHARACTERISTICS 20 2.5 3.0 3.5 18. INSTANTANEOUS FORWARD CURRENT- AMPERES 647 FORWARD POWER DISSIPATION-WATTS PEAK HALF SINE WAVE FORWARD CURRENT- AMPERES | A70, A190 | 3 1000 900 800 700 600 500 400 300 200 100 % 100 200.300 400 AVERAGE CURRENT- AMPERES / DIODE A19013, A19015 AVERAGE FORWARD POWER DISSIPATION VS. AVERAGE FORWARD CURRENT Ty = +150C to +200C 500 600 700 15. 6,000 ] ,000 4,000 tI] DN 3,000 2,000 h! 1,000 0; 2 4 6 8 10 20 a0 60 80 100 CYCLES AT 60 CPS 17. A19013, A19015 MAXIMUM SURGE CURRENT AT RATED LOAD CONDITIONS (PRV APPLIED AFTER SURGE (NON-RECURRENT) 5000 2000 1000 =200 100 |_7u7200C t 2 INSTANTANEOUS FORWARD VOLTAGE - VOLTS A19013, A19015 MAXIMUM FORWARD CHARACTERISTICS 19.A APPROX. OUTLINE OUTLINE DRAWINGS WEIGHT NO. Single Phase Half Wave 2.937 1.5 Lbs. 1 Single Phase Center Tap 4.875 3.0 1 Single Phase Bridge 4,875 5.5 2 3 Half Wave 6.812 8.0 2 3 Bridge 6.812 4.0 1 6@ Star 12.625 8.0 1 A70611 f 3.500 _+ CENTER CONN. STRAP SSODIA. HOLE (NOT REQUIRED ON SOME MODELS) Yee CONN. ) rT OO 1 1 .390 DIA.HOLE (TERMINAL CONN.) fe 3 ' 2 e 8 6 " & 1 : t ' = | ui i ath \ y tr if yany it rt TE aq ay u piu FP OF Lt ~T LT ses He pena Li Toe Lal 920 bit 7s0%010 2.365 ater 6.375 266 DIA. MOUNTING atts .266 ON aNS 7500 HOLES (4 @ @ 265 DIA q } p oo A7012 ALTERNATE ro0oms se + GRU SF 3} A APPROX. iP WEIGHT 5.000 leon Single Phase Half Wave 4.875 3 Lbs. ox K sere Single Phase Center Tap 5.750 4 2g8 3887 Single Phase Bridge 8.750 7 TT FT 1.000 4 i 36 Half Wave 8.750 5 ae se ns 3 Bridge 11.750 10 j_500 6 > Star 11.750 10 800 1" r 900 vge 100 A7013 +.42t A19013 . wax cost" (rvpicac) ~ 7-000 Fr 7 . gam! | ty for A APPROX. an amit WEIGHT - AS Sl J , pe a") Single Phase Half Wave 6.076+- 6 Lbs. fia i Single Phase Center Tap 6.7761% 8 + + | Loss We $000 e Single Phase Bridge 10.500+"105 14 I .ro 3 Phase Half Wave 10,500+:105 12 aE oes | 3 Phase Bridge 14,496+7'5 19 di] see _| 150 W818 6 Star 14,496+ 19 - 648A7/014 .390 DIA. | es 1. cc T 1 oi Be : PY el ' ' 5 I + m __ feat } 156 .020 I LoL t an Ho 13 it i Bi2t .015 ain a He A N 10.000 1 [+-s00 B \ 1.437 281 OA MOUNTING HOLES -.390 DIA [ tT ) Py ' lS A mB APPROX. OUTLINE nse WEIGHT _NO. : sooo" 08 roy Single Phase Half Wave 3.750 4.437 3 Lbs. 1 BRN TEE ' Single Phase Center Tap 8.250 8.937 5 1 ft Single Phase Bridge 8.250 8937 10 2 Heb tl fret 20 a fh 3@ Half Wave 12.750 13.437. 8 1 [T iG [ Ti] set .os td Gd 3 Bridge 12.750 13.437 15 2 | 5800 _a] k= s00 6 Star 12.750 13.437 15 2 8 6.937 a \ oe DIA MOUNTING HOLES PA A19015 2.010 406 Looo) / fe chtr sh cece He or aaa 5.5007 032 ' { 8.937 MAX. aoe aS iS 4 " - tow] Y ' ' 1.000 ' [7 4] Foe ; aaet -020 Pod bh Dror i Th & (f a TY Best 7] a Ly A Nt Nt oi .010 = +.010 a t [ rons at O15 N 7.625 rr 6.500 | - \ 281 DIA. MOUNTING HOLES 5.128 406 pia. 1,000 010 buh ki a oy | A mg APPROX. OUTLINE eos WEIGHT NO. 5.5007 . 495 "* Single Phase Half Wave 5.500 6.250 4 Lbs. 1 : Sy Single Phase Center Tap 11.812 12.562 8 1 rao > Single Phase Bridge 11.812 12.562 17 2 2 |b | | a 3 Half Wave 18.125 18.875 14 1 set 020 ae 3 Bridge 18.125 18.875 22 2 | iE] toate 4s ee 6 Star 18.125 18.875 22 2 r | z628 0. a.e29t 022 \ .281 OIA, MOUNTING HOLES 649A70, A190 500 FOR DIODE MOUNTED ON CIRCUIT 7X7X3/8 ALUMINUM FIN (GE ## I3) OR 7X7X1/4 COPPER 400 RATED 300 200 PER CENT OUTPUT CURRENT 100 A Lo FIN RATED CURRENT {100 %) FOR FREE CONVECTION T_ FREE CONVECTION ET. \o IDGE (75 | 245 | 410 AOC | ADC | ADC 175C | 163C | 165C 4l ADC 39 6 10 too 1000 OVERLOAD TIME- SECONDS 20. RECURRENT OVERLOAD CURVE MEETING NEMA STANDARDS (For General Purpose Rectifier Equipments Over 100 KW) AT 40C AMBIENT RECURRENT OVERLOAD RATING DETERMINATION (FOR OVERLOAD CONDITIONS OTHER THAN SHOWN IN FIGURE 20) Many applications require that electrical equipment be de- signed to permit operation at higher than normal current for short periods of time. This planned overload require- ment is called a recurrent overload condition. (For non- recurrent current overloads, see the surge curve for the product being considered.) Whenever a recurrent overload rating is required, it is possible to take advantage of the thermal capacity of the rectifier diode and the heat sink to which it is attached. The following procedure will permit a recurrent overload providing another overload is not applied until sufficient time has elapsed to permit the rectifier diode to reach tem- perature equilibrium at the calculated continuous rating. In general, a cool-down period of twice the length of the overload time is sufficient for the rectifier diode to reach the calculated continuous rating temperature equilibrium. If the reapplication time (of overload) is shorter, please contact the factory for application assistance. To calculate the steady state current rating required to permit a recurrent overload, the following cut and try method is recommended. The example given is for the A19013 stacks; however, by using the appropriate curves, recurrent overload ratings can be determined for the other stacks listed. Ty Max. = Ta + Pgs x Rosa + (Por Pgs) Zoey where Ty Max. = Max. Junction Temperature (200C) Ta = Max. Ambient (in C) Psg = Diode Power Dissipation (Steady State) from Curve 15 Roya = Thermal Resistance (Steady State) from Curve 12 Poy = Diode Power Dissipation (Under Recur- rent Overload Conditions) from Curve 15 Z6t) = Transient Thermal Resistance (Under Overload Conditions) from Curve 12 650 As a starting point, it is suggested that the steady state diode current without recurrent overload current be deter- mined (see Figure 1). To permit a recurrent overload rating, the maximum rated diode current must be reduced. Using a reduced value of steady state current as an estimate, the data for insertion into the formula can be obtained from Curves 15 and 12. When the estimate is correct, the right side of the formula given above will equal the maximum Tj, which is 200C. Example: 200% recurrent overload required for 10 seconds; three-phase bridge; 1000 ft./min. forced air; maximum ambient = 40C. From Figures | and 6, steady state rating without provision for recurrent overload equals 185 amps/diode. Therefore, a first approximation may be 125 amps steady state and 250 amps overload. Substituting these values in the for- mula, we have: Ty Max. = 40 + 115 x .82 + (280 115) .26 Ty Max. = 117.2 The answer of 177.2 indicates that our steady state selec- tion was slightly low. By choosing 140 amps steady state and 280 amps overload, we come closer to the maximum rating permissible, based on Ty max. = 200C. Of course, the 3-phase-bridge output current will be three times the diode current, 420 amps average steady state, and 840 amps, or 200% current, for 10 seconds. NOTES: 1. The recurrent overload calculation procedure outlined above was used to obtain the ratings shown by Curve 20. NEMA overload ratings for semiconductor unit power supplies (100 KW or less) are: a. 100% rated load current and voltage continuously, then: b. 150% rated current for 1 minute, following 100% load; or c, 200% rated current for 10 seconds, following 100% load. 2.