C3D06060G VRRM Silicon Carbide Schottky Diode Z-Rec Rectifier (R) Features * * * * * * * 600 V IF (TC=135C) = 9.5 A Qc 16 nC = Package 600-Volt Schottky Rectifier Zero Reverse Recovery Current Zero Forward Recovery Voltage High-Frequency Operation Temperature-Independent Switching Behavior Extremely Fast Switching Positive Temperature Coefficient on VF TO-263-2 Benefits * * * * * = Replace Bipolar with Unipolar Rectifiers Essentially No Switching Losses Higher Efficiency Reduction of Heat Sink Requirements Parallel Devices Without Thermal Runaway PIN 1 CASE PIN 2 Applications * * * * Switch Mode Power Supplies (SMPS) Boost diodes in PFC or DC/DC stages Free Wheeling Diodes in Inverter stages AC/DC converters Part Number Package Marking C3D06060G TO-263-2 C3D06060 Maximum Ratings (TC = 25 C unless otherwise specified) Symbol Value Unit Test Conditions Note VRRM Repetitive Peak Reverse Voltage 600 V VRSM Surge Peak Reverse Voltage 600 V VDC DC Blocking Voltage 600 V Continuous Forward Current 19 9 6 A TC=25C TC=135C TC=154C IFRM Repetitive Peak Forward Surge Current 30 20 A TC=25C, tP = 10 ms, Half Sine Wave TC=110C, tP = 10 ms, Half Sine Wave IFSM Non-Repetitive Peak Forward Surge Current 63 49 A TC=25C, tp = 10 ms, Half Sine Wave TC=110C, tp = 10 ms, Half Sine Wave Fig. 8 IFSM Non-Repetitive Peak Forward Surge Current 540 460 A TC=25C, tP = 10 s, Pulse TC=110C, tP = 10 s, Pulse Fig. 8 Ptot Power Dissipation 91 39 W TC=25C TC=110C -55 to +175 C IF TJ , Tstg 1 Parameter Operating Junction and Storage Temperature C3D06060G Rev. G, 01-2016 Fig. 3 Electrical Characteristics Symbol Parameter Typ. Max. Unit VF Forward Voltage 1.5 2.0 1.7 2.4 V IR Reverse Current 6.5 13 33 132 QC Total Capacitive Charge C Total Capacitance EC Capacitance Stored Energy Test Conditions Note IF = 6 A TJ=25C IF = 6 A TJ=175C Fig. 1 A VR = 600 V TJ=25C VR = 600 V TJ=175C Fig. 2 15 nC VR = 400 V, IF = 6 A di/dt = 500 A/s TJ = 25C Fig. 5 295 28.5 25.5 pF VR = 0 V, TJ = 25C, f = 1 MHz VR = 200 V, TJ = 25C, f = 1 MHz VR = 400 V, TJ = 25C, f = 1 MHz Fig. 6 2.3 J VR = 400 V Fig. 7 Note: This is a majority carrier diode, so there is no reverse recovery charge. Thermal Characteristics Symbol RJC Parameter Typ. Unit Thermal Resistance from Junction to Case 1.65 C/W Typical Performance 20 14 TJ = -55 C TJ = 25 C 10 Reverse Leakage Current, IRR (mA) TJ = 75 C 8 TJ = 125 C IR (mA) F Foward I Current, (A) IF (A) 12 TJ = 175 C 6 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 FowardVVoltage, (V) VF (V) F Figure 1. Forward Characteristics 2 C3D06060G Rev. G, 01-2016 3.5 4.0 16 TJ = 175 C 12 TJ = 125 C TJ = 75 C 8 TJ = 25 C TJ = -55 C 4 0 0 100 200 300 400 500 600 700 800 900 1000 ReverseVVoltage, (V) VR (V) R Figure 2. Reverse Characteristics Typical Performance 70 100 10% Duty 20% Duty 30% Duty 50% Duty 70% Duty DC 60 80 70 40 PTot (W) IF(peak) (A) 50 90 30 60 50 40 30 20 20 10 10 0 25 50 75 100 125 150 0 175 25 50 75 TC C 150 175 Figure 4. Power Derating 350 Conditions: TJ = 25 C Conditions: TJ = 25 C Ftest = 1 MHz Vtest = 25 mV 300 20 250 Capacitance C (pF) (pF) CapacitiveQCharge, (nC) QC (nC) C 125 TC C Figure 3. Current Derating 25 100 15 10 200 150 100 5 50 0 0 100 200 300 400 500 600 700 ReverseVVoltage, (V) VR (V) R Figure 5. Total Capacitance Charge vs. Reverse Voltage 3 C3D06060G Rev. G, 01-2016 0 0 1 10 100 (V) VR (V) ReverseVVoltage, R Figure 6. Capacitance vs. Reverse Voltage 1000 Typical Performance 1,000 6 IIFSM (A) (A) 4 FSM 3 C Capacitance StoredE Energy, J) (mJ) EC ( 5 100 TJ_initial = 25 C TJ_initial = 110 C 2 1 0 0 100 200 300 400 500 600 10 10E-6 700 ReverseVVoltage, (V) VR (V) 0.5 0.3 0.1 100E-3 0.05 0.02 SinglePulse 10E-3 0.01 1E-3 1E-6 10E-6 100E-6 1E-3 T (Sec) 10E-3 Figure 9. Transient Thermal Impedance 4 C3D06060G Rev. G, 01-2016 10E-3 Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform) Figure 7. Capacitance Stored Energy Thermal Resistance (C/W) 1E-3 tp (s) Time, tp (s) R 1 100E-6 100E-3 1 Package Dimensions Package TO-263-2 POS Inches Millimeters Min Max Min Max A 0.17 0.18 4.32 4.57 A1 - 0.01 - 0.25 b 0.028 0.037 0.71 0.94 b2 0.045 0.055 1.15 1.4 c 0.014 0.025 0.356 0.635 c2 0.048 0.055 1.22 1.4 D 0.35 0.37 8.89 9.4 D1 0.255 0.324 6.48 8.23 10.28 E 0.395 0.405 10.04 E1 0.31 0.318 7.88 8.08 e 0.1 BSC. 2.54 BSC. L 0.58 0.62 14.73 15.75 L1 0.09 0.11 2.29 2.79 L2 0.045 0.055 1.15 1.39 L3 0.05 0.07 1.27 1.77 q 0 8 0 8 Note: Tab "M" may not be present PIN 1 M CASE PIN 2 Recommended Solder Pad Layout 15.990 8.890 10.668 TO-263-2 3.556 1.540 2.540 Tjb May 2015 MX+DI Part Number Package Marking C3D06060G TO-263-2 C3D06060 Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering 5 C3D06060G Rev. G, 01-2016 Diode Model Diode Model CSD04060 Vf T = VT + If*RT VT= 0.965 + (Tj * -1.3*10-3) RT= 0.096 + (Tj * 1.06*10-3) VfT = VT + If * RT VT = 0.96 + (TJ * -1.1*10-3) RT = 0.07 + (TJ * 7.4*10-4) VT RT Note: Tj = Diode Junction Temperature In Degrees Celsius, valid from 25C to 175C Notes * RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Ecology section of our website at http://www.wolfspeed.com/Power/Tools-and-Support/Product-Ecology. * REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. * This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems. Related Links * * * Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/diodes Schottky diode Spice models: http://www.wolfspeed.com/Power/Tools-and-Support/DIODE-model-request2 SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i Copyright (c) 2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 6 C3D06060G Rev. G, 01-2016 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power