AMGP-6552
37 – 43.5 GHz Low Noise Down-Converter
in SMT Package
Data Sheet
Description
The AMGP-6552 is a broadband down-converter that
combines a low noise ampli er and a sub-harmonic image
reject mixer. It is housed in a 5 x 5 mm surface mount
package designed for use in applications between 37 GHz
and 43.5 GHz. Over the frequency range from 40.5 to 43.5
GHz, it provides 12 dB typical down-conversion gain with
50 RF & LO match. The required LO power is 17 dBm.
The typical input third order intercept point is -6 dBm and
Noise Figure is typically 5 dB.
Functional Block Diagram
Features
 5 x 5 mm surface mount package
 RF frequency range from 37 to 43.5 GHz
 LO frequency range from 16.75 to 23.5 GHz
 IF frequency range from DC to 3 GHz
 +17 dBm LO driver power
 12 dB Conversion Gain
 -4.3 dBm Input IP3 @ 4 0.5 GHz, and -8.7 dBm @ 43.5
GHz
 Vdd = 3 V and Idd = 100 mA
Application
 Microwave Radio Systems
Package Diagram
Attention: Observe Precautions for
handling electrostatic sensitive devices.
ESD Machine Model: 40 V
ESD Human Body Model: 200 V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
Pin Function
1 IF1
2NC
3 IF2
4LO
5NC
6NC
7Vdd
8 RF_IN
8
1 2 3
4
5
67
RF LO
IF1 NC IF2
NC
NCVdd
8
RF
7
Vdd 6
NC 5
NC
4
LO
1
IF1 2
NC 3
IF2
2
ELECTRICAL SPECIFICATIONS
Table 1. Absolute Minimum and Maximum Ratings
Parameter Speci cations
CommentsDescription Min. Max. Unit
Supply Voltage Vdd 6 V
RF Input Power RF 0 dBm
MSL MSL2
Channel Temperature 150 °C
Storage Temperature -45 150 °C
Table 2. Recommended Operating Range
Parameter Speci cations
CommentsDescription Pin Min. Typical Max. Unit
Supply Voltage Vd1 3 4 V
Frequency Range RF 37 43.5 GHz
LO 17 23.25
IF DC 3
LO Power 15 17 dBm
Bias Current 97 mA
Thermal Resistance, ch-b 36.7 °C/W
Case Temperature -40 +85 °C
ESD Human Body Model 200 V
Machine Model 40 V
Table 3. RF Electrical Characteristics
All data measured on a Taconic RF-35A2 demo board at Vdd = 3 V, TA = 25° C, IF = 1 GHz, LO = 17 dBm, Lower Side Band
(RF + IF = 2*LO) and 50 at all ports, unless otherwise speci ed.
Parameter
Performance
CommentsMin. Typical Max. Unit
RF Return Loss -12 dB
Conversion Gain RF = 40.5 GHz 10.5 12.1 dB
RF = 42.0 GHz 11.8
RF = 43.5 GHz 12.6
Noise Figure RF = 40.5 GHz 4.8 6.0 dB
RF = 42.0 GHz 4.7
RF = 43.5 GHz 5
Input IP3 RF = 40.5 GHz -9 -4.3 dBm RF power = -30 dBm/tone,
with f = 10 MHz
RF = 42.0 GHz -9 -5.8
RF = 43.5 GHz -10 -8.7
C/I (IF/2 Suppression) 54 dBc RF Power = -30 dBm
Image Rejection Ratio RF = 40.5 GHz 12.5 17.2 dB
RF = 42.0 GHz 19.5
RF = 43.5 GHz 20.2
LO Return Loss -12 dB LO power = 17 dBm
IF Return Loss -12 dB LO power = 17 dBm
Note: Conversion Gain, Noise Figure, Input IP3 and Image Rejection Ratio measurement accuracy is subjected to the tolerance of ± 0.2 dB, ± 0.2 dB,
± 0.2 dBm & ± 0.5 dB respectively.
3
911 1413 15 1610 12
911 1413 15 1610 12
911 1413 15 1610 12
LSL
LSL
LSL
-11 -10 -9 -7-8 -5 -4 -3 -1-2-6
-11 -10 -9 -7-8 -5 -4 -3 -1-2-6-11 -10 -9 -7-8 -5 -4 -3 -1-2-6
LSL
LSL LSL
CGain @ 40.5 GHz, Mean = 12.1 dB, LSL = 10.5 dB
IIP3 @ 43.5 GHz, Mean = -8.7 dBm, LSL = -10 dBm IIP3 @ 42 GHz, Mean = -5.8 dBm, LSL = -9 dBm
IIP3 @ 40.5 GHz, Mean = -4.3 dBm, LSL = -9 dBm
Product Consistency Distribution Charts at 40.5 GHz, 42 GHz and 43.5 GHz, Vdd = 3 V, IF = 1 GHz, LO = 17 dBm
(Sample size of 2,400 pieces)
CGain @ 42 GHz, Mean = 11.8 dB, LSL = 10.5 dB
CGain @ 43.5 GHz, Mean = 12.6 dB, LSL = 10.5 dB
4
11 15 21 23 2513 17 19
11 15 21 23 2513 17 19 11 15 21 23 2513 17 19
4 4.5 5.5 6 6.55
4 4.5 5.5 6 6.554 4.5 5.5 6 6.55
LSL
USL
USL
USL
LSL LSL
Image Rejection Ratio @ 40.5 GHz, Mean = 17.2 dB, LSL = 12.5 dB
NF @ 43.5 GHz, Mean = 5 dB, USL = 6 dBNF @ 42 GHz, Mean = 4.7 dB, USL = 6 dB
NF @ 40.5 GHz, Mean = 4.8 dB, USL = 6 dB
Image Rejection Ratio CGain @ 42 GHz, Mean = 19.5 dB, LSL = 12.5 dB
Image Rejection Ratio @ 43.5 GHz, Mean = 20.2 dB, LSL = 12.5 dB
5
Figure 1. Conversion Gain at 25° C over Vdd, Lower Side Band
Figure 3. RF Return Loss at 25° C over Vdd
Performance plots (Typical @ 25° C)
Figure 4. Noise Figure at 25° C over Vdd, Lower Side Band
Figure 5. Receiver Image Rejection Ratio @ 25° C over Vdd Figure 6. LO Return Loss at 25° C, LO = 15 dBm
Figure 2. Input IP3 at 25° C over Vdd, Lower Side Band
Input IP3 @ 25° C, LSB
Frequency (GHz)
Conversion Gain @ 25° C, LSB
0
5
10
15
20
37 38 39 40 41 42 43 44
Frequency (GHz)
Conv. Gain (dB)
-10
-5
0
5
37 38 39 40 41 42 43 44
IIP3 (dBm)
RF Return Loss @ 25° C
-40
-35
-30
-25
-20
-15
-10
-5
0
10 15 20 25 30 35 40 45 50
Frequency (GHz)
RF Return Loss (dB)
Noise Figure @ 25° C, LSB
2.0
3.0
4.0
5.0
6.0
7.0
8.0
37 38 39 40 41 42 43 44
Frequency (GHz)
Noise Figure (dB)
IRR @ 25° C, LSB
5
10
15
20
25
37 38 39 40 41 42 43 44
Frequency (GHz)
IRR (dB)
LO Return Loss @ 25° C, LO = 15 dBm
-40
-30
-20
-10
0
16 17 18 19 20 21 22 23 24
Frequency (GHz)
LO Return Loss (dB)
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
Vdd = 3 V
Vdd = 4 V
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
6
Figure 7. Conversion Gain at 25° C, Vdd = 3 V LSB and USB
Figure 9. Conversion Gain @ 25° C, Vdd = 3 V, vs. LO Power
Figure 8. Input IP3 at 25° C, Vdd = 3 V, LSB and USB
Figure 10. Noise Figure at 25° C over Vdd, Upper Side Band
Figure 11. Image Rejection Ratio @ 25° C, Vdd = 3 V, LSB and USB Figure 12. Input IP3 @ 25° C, Vdd = 3 V, vs. LO Power
Performance plots (USB vs. LSB; LO power)
Conversion Gain @ Vd = 3 V
LSB
USB
Conversion Gain @ 25° C, Vdd = 3 V
0
5
10
15
20
37 38 39 40 41 42 43 44
Frequency (GHz)
Conv. Gain (dB)
Input IP3 @ 25° C, Vdd = 3 V
-10
-5
0
5
37 38 39 40 41 42 43 44
Frequency (GHz)
IIP3 (dBm)
0
5
10
15
20
37 38 39 40 41 42 43 44
Frequency (GHz)
Conv. Gain (dB)
Noise Figure @ 25° C, USB
2.0
3.0
4.0
5.0
6.0
7.0
8.0
37 38 39 40 41 42 43 44
Frequency (GHz)
Noise Figure (dB)
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
LSB
USB
IRR @ 25° C, Vdd = 3 V
0
5
10
15
20
25
37 38 39 40 41 42 43 44
Frequency (GHz)
IRR (dB)
Input IP3 @ 25° C, Vdd = 3 V
-10
-5
0
5
37 38 39 40 41 42 43 44
Frequency (GHz)
IIP3 (dBm)
LSB
USB
LO = 15 dBm
LO = 16 dBm
LO = 15 dBm
LO = 16 dBm
7
Figure 13. Conversion Gain, Vdd = 3 V, LSB Over Temperature
Figure 15. RF Return Loss, Vdd = 3 V Over Temperature
Figure 14. Input IP3, Vdd = 3 V, LSB Over Temperature
Figure 16. Noise Figure, Vdd = 3 V, LSB Over Temperature
Figure 17. Input IP2 @ 25° C, Vdd = 3 V, LO = 15 dBm and RF Power = -30 dBm Figure 18. IF Return Loss @ 25° C, LO = 15 dBm
Performance plots (Over Temp, LSB)
Noise Figure @ Vdd = 3 V, LSB
LSB
LSB
25° C
-40° C
85° C
25° C
-40° C
85° C
Conversion Gain @ Vd = 3 V, LSB
0
5
10
15
20
37 38 39 40 41 42 43 44
Frequency (GHz)
Conv. Gain (dB)
Input IP3 Over Temp, Vdd = 3 V
-15
-10
-5
0
5
10
37 38 39 40 41 42 43 44
Frequency (GHz)
IIP3 (dBm)
RF Return Loss @ Vdd = 3 V
-30
-25
-20
-15
-10
-5
10 15 20 25 30 35 40 45 50
Frequency (GHz)
RF Return Loss (dB)
0
1
2
3
4
5
6
7
37 38 39 40 41 42 43 44
Frequency (GHz)
Noise Figure (dB)
IIP2 @ 25° C, Vdd = 3 V, LO = 15 dBm
0
5
10
15
20
25
30
35
37 38 39 40 41 42 43 44
Frequency (GHz)
IIP2 (dBm)
IF Return Loss @ 25° C, LO = 15 dBm
-20
-15
-10
-5
0
0246810
Frequency (GHz)
IF Return Loss (dB)
0
25° C
-40° C
85° C
25° C
85° C
-40° C
IF1
IF2
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-3212EN - May 10, 2012
Evaluation Board Description
Table 4. Pin Description
Pin No. Function Biasing Comment
1 Gnd
2 Gnd
3 Vdd 3 V 97 mA (measured current)
4NC
5NC
6 Gnd
7 Gnd
LO LO 15 dBm
Biasing and Operation
For most applications, the recommended DC bias condi-
tion for the Low Noise Ampli er (LNA) should be set at Vdd
= 3 V with 97 mA. In this bias condition, the down-convert-
er will provide the best compromise for conversion gain,
overall NF and linearity. If higher linearity (IIP3) is desired,
Vdd should be at 3.5 V or 4 V. This higher bias voltage of
the LNA will result in slightly higher NF and lower conver-
sion gain.
One variable that strongly a ects conversion gain and
linearity is the LO input power. The typical operating range
for LO input power is from 15 dBm to 17 dBm. The lower
the LO input power, the higher the conversion gain and
the lower overall linearity and vice versa; the higher the
LO input power, the lower the conversion and the higher
overall linearity. Depending on the applications, the LO
input power and the LNA bias voltage can be selected to
obtain desired performance.
Demo board circuit for AMGP-6552
External IF
90° Hybrid
Top View
Package Base: GND
IF1
Vdd NC
RF
NC IF2
USB
IF
0.1 – 3.5 GHz
LSB
LSB USB
LO
IF IF
NC
123
576
8
LO
4
0.1 PF 0.47 PF
RF
37 – 43.5 GHz
LO
16.75 – 23.5 GHz
RF LO
IF1 IF2
AMGP
6552
YWWDNN
1234567
Package Dimension, PCB Layout and Tape and Reel
information
Please refer to Avago Technologies Application Note 5521,
AMxP-xxxx production Assembly Process (Land Pattern B).
Part Number Ordering Information
Part Number
Devices per
Container Container
AMGP-6552-BLKG 10 antistatic bag
AMGP-6552-TR1G 100 7” Reel
AMGP-6552-TR2G 500 7” Reel