-1-
A
AE
EH
H
H
Ha
al
lf
f-
-b
br
ri
ic
ck
k
S
Se
er
ri
ie
es
s
T
Te
ec
ch
hn
ni
ic
ca
al
l
R
Re
ef
fe
er
re
en
nc
ce
e
N
No
ot
te
es
s
24V Input, 2.5V
24V Input, 2.5V, 3.3V
, 3.3V, 5V Single Output
, 5V Single Output
50-150W DC-DC Converter
50-150W DC-DC Converter
(Rev02)
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 Publishing Date: 20020703
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-2-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Introduction
Introduction
The AEH 24Vin series comes in a industry stan-
dard half-brick package of 2.4" x 2.28" x 0.5"
and footprint. The AEH 24Vin series is available
with 2:1 input range of 18-36V. Outputs of 2.5V,
3.3V, and 5V are fully isolated from input and
the isolation voltage is 1500Vdc. The typical
efficiencies are 88% for the 5V output, 87%
for the 3.3V output, and 86% for the 2.5V
output.
Designed using a synchronous rectification
topology, AEH 24Vin series incorporates simple
structure, good electrical performance and high
reliability. Standard features include input LVP,
OCP, output OVP, short circuit protection, and
over-temperature protection. Using aluminum
based plate, the maximum case temperature
can reach 100 °C.
The AEH 24Vin series is designed to meet
CISPR22, FCC Class A, UL, TUV, and CSA
certifications.
Design Features
Design Features
! High Efficiency
! High power density
! Low output noise
! Metal baseplate
! CNT function
! Remote sense
! Trim function
! Input under-voltage lockout
! Output short circuit protection
! Output current limiting
! Output over-voltage protection
! Overtemperature protection
! High input-output isolation voltage
Options
Options
! Heat sink available for extended operation
! Choice of CNT logic configuration
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-3-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Fuse*
Trim
-Vout
-Sense
+Vout
+Sense
-Vin
CNT
+Vin
Load
C4 C2
Case
Vin
C1
C3
Fuse*: Use external fuse ( fast blow type ) for each unit.
50W output : 10A fuse
75W output : 15A fuse
100W output : 20A fuse
150W output : 30A fuse
C1: Recommended input capacitor C1
-40 °C~ +100 °C: m47µF/100V electrolytic capacitor.
C2: Recommended output capacitor C2
0°C~ +100°C: one 2200 µF/ 6.3V electrolytic capacitor
Below 0°C: use 1 X 220µF tantalum capacitor parallel with a 2200µF/ 6.3V electrolytic capacitor
C3: Recommended 4700pF/2000V
C4: Recommended 1µF/10V
T
Typical Application
ypical Application
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-4-
Block Diagram
Block Diagram
Ordering Information
Ordering Information
AEH10G24(N) 18-36V 2.5V 10A 40 150 84% 86%
AEH10F24(N) 18-36V 3.3V 10A 40 150 85% 87%
AEH10A24(N) 18-36V 5V 10A 40 150 86% 88%
AEH20G24(N) 18-36V 2.5V 20A 40 150 84% 86%
AEH20F24(N) 18-36V 3.3V 20A 40 150 85% 87%
AEH20A24(N) 18-36V 5V 20A 40 150 86% 88%
+Vout
-Vout
+Sense
-Sense
Trim
+Vin
-Vin
CNT
Model Input Output Output Ripple Noise Efficiency
Number Voltage Voltage Current (mV rms) (mV pp) min typ
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-5-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Absolute Maximum Rating
Input Voltage(continuous) -0.3 40 Vdc
Input Voltage(peak/surge) -0.3 50 Vdc 100ms non-repetitive
Operating temperature -40 100* °C *:case temperature
storage temperature -55 125 °C
Input Characteristics
Input Voltage Range 18 24 36 Vdc
Input Reflected Current 25 80 mAp-p
T urn-of f Input Voltage 14 15.5 17 V
T urn-on Input Voltage 15 16.5 18 V
T urn On Time 15 25 ms
Control Function
Logic High 3 15 Vdc
Logic Low -0.7 1.2 Vdc
Control Current 2 mA
General Specifications
MTBF 1880 k Hrs Bellcore TR332, Tc=30°C
Isolation 1500 Vdc
Pin solder temperature 260 °C wave solder < 10 s
Hand Soldering Time 5 s iron temperature 425°C
Weight 70 grams
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
AEH10G24(N) Output Characteristics
Power 25 W
Output Current 10 A
Output Setpoint Voltage 2.45 2.5 2.55 Vdc V in=24V, Io=10A
Line Regulation 0.02 0.2 %Vo Vin=18~36V, Io=10A
Load Regulation 0.1 0.5 %Vo Io=0~10A, Vin=24V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
Current Limit Threshold 11 12.5 14 A
Short Circuit Current 17 A
Efficiency 84 86 % Vin=24V, Io=10A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 3 3.9 V
Sense Compensation 0.5 V 0.25V each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (p-p) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 230 kHz
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-6-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-7-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AEH10F24(N) Output Characteristics
Power 33 W
Output Current 10 A
Output Setpoint Voltage 3.25 3.3 3.35 Vdc Vin=24V, Io=10A
Line Regulation 0.02 0.2 %Vo Vin=18~36V, Io=10A
Load Regulation 0.1 0.5 %Vo Io=0~10A, Vin=24V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
Current Limit Threshold 11 12.5 14 A
Short Circuit Current 17 A
Efficiency 85 87 % Vin=24V, Io=10A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 3.9 5.0 V
Sense Compensation 0.5 V 0.25V each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (p-p) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 270 kHz
Characteristic Min Typ Max Units Notes
AEH10A24(N) Output Characteristics
Power 50 W
Output Current 10 A
Output Setpoint Voltage 4.92 5.0 5.08 Vdc V in=24V, Io=10A
Line Regulation 0.02 0.2 %Vo Vin=18~36V, Io=10A
Load Regulation 0.1 0.5 %V o Io=0~10A, V in=24V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
Current Limit Threshold 11 12 14 A
Short Circuit Current 17 A
Efficiency 86 87 % Vin=24V, Io=10A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 5.75 7 V
Sense Compensation 0.5 V 0.25V each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 280 kHz
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-8-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-9-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AEH20G24(N) Output Characteristics
Power 50 W
Output Current 20 A
Output Setpoint Voltage 2.45 2.5 2.55 Vdc Vin=24V, Io=20A
Line Regulation 0.02 0.2 %Vo Vin=18~36V, Io=20A
Load Regulation 0.1 0.5 %V o Io=0~20A, V in=24V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
Current Limit Threshold 22 25 28 A
Short Circuit Current 30 A
Efficiency 84 86 % Vin=24V, Io=20A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 3 3.9 V
Sense Compensation 0.5 V 0.25V each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 230 kHz
Characteristic Min Typ Max Units Notes
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-10-
AEH20F24(N) Output Characteristics
Power 66 W
Output Current 20 A
Output Setpoint Voltage 3.25 3.3 3.35 Vdc Vin=24V, Io=20A
Line Regulation 0.02 0.2 %Vo Vin=18~36V, Io=20A
Load Regulation 0.1 0.5 %V o Io=0~20A, V in=24V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
Current Limit Threshold 22 25 28 A
Short Circuit Current 30 A
Efficiency 86 87 % Vin=24V, Io=20A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 3.9 5.0 V
Sense Compensation 0.5 V 0.25V each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 330 kHz
Characteristic Min Typ Max Units Notes
AEH20A24(N) Output Characteristics
Power 100 W
Output Current 20 A
Output Setpoint Voltage 4.92 5.0 5.08 Vdc Vin=24V, Io=20A
Line Regulation 0.02 0.2 %Vo Vin=18~36V, Io=20A
Load Regulation 0.1 0.5 %V o Io=0~20A, V in=24V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt =1A/10µs
100 µs Ta=25°C, di/dt =1A/10µs
Current Limit Threshold 22 24.5 28 A
Short Circuit Current 30 A
Efficiency 86 88 % Vin=24V, Io=20A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 5.75 7.0 V
Sense Compensation 0.5 V 0.25V each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 280 kHz
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-11-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-12-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Curves
Characteristic Curves (at 25
(at 25 °C)
°C)
Typical Efficiency AEH10G24N
60
65
70
75
80
85
90
0246810
Io
Efficiency (%)
Vin=18V
Vin=24V
Vin=36V
Typical Efficiency AEH10F24N
60
65
70
75
80
85
90
0246810
Io
Efficiency (%)
Vin=18V
Vin=24V
Vin=36V
60
65
70
75
80
85
90
0246810
Io
Efficiency (%)
Vin=18V
Vin=24V
Vin=36V
60
65
70
75
80
85
90
048121620
Io
Efficiency (%)
Vin=18V
Vin=24V
Vin=36V
Typical Efficiency AEH10A24N Typical Efficiency AEH20G24N
60
65
70
75
80
85
90
048121620
Io
Efficiency (%)
Vin=18V
Vin=24V
Vin=36V
60
65
70
75
80
85
90
048121620
Io
Efficiency (%)
Vin=18V
Vin=24V
Vin=36V
Typical Efficiency AEH20F24N Typical Efficiency AEH20A24N
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Curves
Characteristic Curves (at 25
(at 25 °C)
°C)
AA
AAEE
EEHH
HH
HH
HHii
iigg
gghh
hh
EE
EEff
ffff
ffii
iicc
ccii
iiee
eenn
nncc
ccyy
yy
SS
SSee
eerr
rrii
iiee
eess
ss
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
11
1188
88
VV
VVDD
DDCC
CC
tt
ttoo
oo
33
3366
66
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00
WW
WWaa
aatt
tttt
tt
-13-
Typical Output Overcurrent Characteristics
AEH10G24N
0
0.6
1.2
1.8
2.4
3
03691215
Output Voltage (volts)
Output Curent (amps)
Vin=18V
Vin=24V
Vin=36V
Typical Output Overcurrent Characteristics
AEH10F24N
0
0.8
1.6
2.4
3.2
4
0 3 6 9 12 15
Output Voltage (volts)
Output Curent (amps)
Vin=18V
Vin=24V
Vin=36V
0
1
2
3
4
5
6
0 3 6 9 12 15 18
Output Voltage (volts)
Output Curent (amps)
Vin=18V
Vin=24V
Vin=36V
0.6
1.2
1.8
2.4
3
0 7 14 21 28
Output Voltage (volts)
Output Curent (amps)
Vin=18V
Vin=24V
Vin=36V
Typical Output Overcurrent Characteristics
AEH10A24N Typical Output Overcurrent Characteristics
AEH20G24N
0.7
1.4
2.1
2.8
3.5
0 6 12 18 24 30
Output Voltage (volts)
Output Curent (amps)
Vin=18V
Vin=24V
Vin=36V
1
2
3
4
5
6
0 5 10 15 20 25 30
Output Voltage (volts)
Output Curent (amps)
Vin=18V
Vin=24V
Vin=36V
Typical Output Overcurrent Characteristics
AEH20F24N Typical Output Overcurrent Characteristics
AEH10A24N
Characteristic Curves
Characteristic Curves (at 25
(at 25 °C)
°C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-14-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Input-Output Characteristics
AEH10G24N
Input Voltage (volts)
Input Current (amps)
0
0.5
1
1.5
2
010203040
Typical Input-Output Characteristics
AEH10F24N
Input Voltage (volts)
Input Current (amps)
0
0.5
1
1.5
2
2.5
0 10203040
Input Voltage (volts)
Input Current (amps)
0
1
2
3
4
010203040
Input Voltage (volts)
Input Current (amps)
0
1
2
3
4
010203040
Typical Input-Output Characteristics
AEH10A24N Typical Input-Output Characteristics
AEH20G24N
Input Voltage (volts)
Input Current (amps)
0
1
2
3
4
5
0 10203040
Input Voltage (volts)
Input Current (amps)
0
2
4
6
8
0 10203040
Typical Input-Output Characteristics
AEH20F24N Typical Input-Output Characteristics
AEH20A24N
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-15-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
T
Transient response
ransient response (24V rated input, variable load, at 25 °C)
(24V rated input, variable load, at 25 °C)
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH10G24N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH10F24N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH10A24N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH20G24N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH20F24N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH20A24N
T
Transient response
ransient response (24V rated input, variable load, at 25 °C)
(24V rated input, variable load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-16-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Transient Response to Step Load
Change from 75%-50%-75%Iomax
AEH10G24N
Typical Transient Response to Step Load
Change from 75%-50%-75%Iomax
AEH10F24N
Typical Transient Response to Step Load
Change from 75%-50%-75%Iomax
AEH10A24N
Typical Transient Response to Step Load
Change from 50%-75%-50%Iomax
AEH20G24N
Typical Transient Response to Step Load
Change from 50%-75%-50%Iomax
AEH20F24N
Typical Transient Response to Step Load
Change from 75%-50%-75%Iomax
AEH20A24N
Characteristic Curves
Characteristic Curves (24V rated input voltage, full load, at 25 °C)
(24V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-17-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Start-Up from Power On
AEH10G24N Typical Start-Up from Power On
AEH10F24N
Typical Start-Up from Power On
AEH10A24N Typical Start-Up from Power On
AEH20G24N
Typical Start-Up from Power On
AEH20F24N Typical Start-Up from Power On
AEH20A24N
Characteristic Curves
Characteristic Curves (24V rated input voltage, full load, at 25 °C)
(24V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-18-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Shut-down from Power Off
AEH10G24N Typical Shut-down from Power Off
AEH10F24N
Typical Shut-down from Power Off
AEH10A24N Typical Shut-down from Power Off
AEH20G24N
Typical Shut-down from Power Off
AEH20F24N Typical Shut-down from Power Off
AEH20A24N
Characteristic Curves
Characteristic Curves (24V rated input voltage, full load, at 25 °C)
(24V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-19-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Start-Up Transient with CNT Control
AEH10G24N Typical Start-Up Transient with CNT Control
AEH10F24N
Typical Start-UpTransient with CNT Control
AEH10A24N Typical Start-UpTransient with CNT Control
AEH20G24N
Typical Start-UpTransient withCNT Control
AEH20F24N Typical Start-UpTransient withCNT Control
AEH20A24N
Characteristic Curves
Characteristic Curves (24V rated input voltage, full load, at 25 °C)
(24V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-20-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Shut-down Transient with CNT Control
AEH10G24N Typical Shut-downTransient with CNT Control
AEH10F24N
Typical Shut-downTransient with CNT Control
AEH10A24N Typical Shut-downTransient with CNT Control
AEH20G24N
Typical Shut-downTransient withCNT Control
AEH20F24N Typical Shut-downTransient withCNT Control
AEH20A24N
Characteristic Curves
Characteristic Curves (24V rated input voltage, full load, at 25 °C)
(24V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-21-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Output Ripple Voltage
AEH10G24N Typical Output Ripple Voltage
AEH10F24N
Typical Output Ripple Voltage
AEH10A24N Typical Output Ripple Voltage
AEH20G24N
Typical Output Ripple Voltage
AEH20F24N Typical Output Ripple Voltage
AEH20A24N
Characteristic Curves
Characteristic Curves (24V rated input voltage, full load, at 25 °C)
(24V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-22-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Overvoltage Protection
AEH10G24N Overvoltage Protection
AEH10F24N
Overvoltage Protection
AEH10A24N Overvoltage Protection
AEH20G24N
Overvoltage Protection
AEH20F24N Overvoltage Protection
AEH20A24N
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-23-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Pins
Pins
The +Vin and -Vin input connection pins are
located as shown in Figure 1. AEH 24Vin con-
verters have a 2:1 input voltage range and can
accept 18-36 Vdc.
Care should be taken to avoid applying
reverse polarity to the input which can dam-
age the converter.
Input Characteristic
Input Characteristic
Fusing
Fusing
The AEH 24Vin power modules have no
internal fuse. An external fuse must always
be employed! To meet international safety
requirements, a 250 Volt rated fuse should be
used. If one of the input lines is connected to
chassis ground, then the fuse must be placed in
the other input line.
Standard safety agency regulations require
input fusing. Recommended fuse ratings for the
AEH 24Vin Series are shown in Table 1.
Input Reverse V
Input Reverse Voltage Protection
oltage Protection
Under installation and cabling conditions where
reverse polarity across the input may occur,
reverse polarity protection is recommended.
Protection can easily be provided as shown in
Figure 2. In both cases the diode rating is deter-
mined by the power of the converter. Diodes
should be rated as shown in Table1.
Placing the diode across the inputs rather
than in-line with the input offers an advan-
tage in that the diode only conducts in a
reverse polarity condition, which increases
circuit efficiency and thermal performance.
Input Undervoltage Protection
Input Undervoltage Protection
The AEH 24Vin series is protected against
undervoltage on the input. If the input voltage
drops below the acceptable range, the convert-
er will shut down. It will automatically restart
when the undervoltage condition is removed.
Input Filter
Input Filter
Input filters are included in the converters to
help achieve standard system emissions certifi-
cations. Some users however, may find that
additional input filtering is necessary. The AEH
24Vin 2.5Vout series has an internal switching
frequency of 180kHz so a high frequency
capacitor mounted close to the input terminals
produces the best results. To reduce reflected
noise, a capacitor can be added across the
input as shown in Figure 3, forming a πfilter. A
100µF/63V electrolytic capacitor is recom-
mended for C1.
-Vin
Case
CNT
-Vout
-Sense
Trim
+Sense
+Vout
+Vin
Fig.1 Pin Location
T
Table 1
able 1
Series Fuse Rating(24Vin)
50W 10A
75W 15A
100W 20A
150W 30A
+Vin
-Vin
+Vin
-Vin
Fig.2 Reverse Polarity Protection Circuits
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-24-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
For conditions where EMI is a concern, a differ-
ent input filter can be used. Figure 4 shows an
input filter designed to reduce EMI effects. L1,
L2 is a 2mH common mode choke.
When a filter inductor is connected in series
with the power converter input, an input capac-
itor C1should be added. An input capacitor C1
should also be used when the input wiring is
long, since the wiring can act as an inductor.
Failure to use an input capacitor under these
conditions can produce large input voltage
spikes and an unstable output.
CNT Function
CNT Function
Two remote on/off options are available.
Negative logic applying a voltage less than
1.2V to the CNT pin will enable the output, and
applying a voltage greater than 3V will disable
it.
Positive logic applying a voltage larger than
3V to the CNT pin will enable the output, and
applying a voltage less than 1.2V will disable it.
Negative logic, device code suffix “ N “ .
Positive logic, device code suffix nothing is the
factory-preferred.
If the CNT pin is left open, the converter will
default to “ control off ” operation in nega-
tive logic, but default to “ control on ” in
positive logic.
The maximum voltage that can be applied to
the CNT pin is 15V.
Input-Output Characteristic
Input-Output Characteristic
Safety Consideration
Safety Consideration
For safety-agency approval of the system in
which the power module is used, the power
module must be installed in compliance with the
spacing and separation requirements of the
end-use safety agency standard, i.e., UL1950,
CSA C22.2 No. 950-95, and EN60950.
The input-to-output 1500VDC isolation is an
operational insulation. The DC/DC power mod-
+Vin
-Vin
C1
Fig.3 Ripple Rejection Input Filter
1uF
1uF
0.33uF
L1
470u
0.33uF
Case
-Vin
1u 1000p
1000p
2200uF/16V
100pF
Fig.4 EMI Reduction Input Filter
-Vin
CNT
-Vin
CNT
-Vin
CNT
-Vin
CNT
Fig.8 Relay Control
Fig.5 Simple Control
Fig.6 Transistor Control
Fig.7 Isolated Control
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-25-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
ule should be installed in end-use equipment, in
compliance with the requirements of the ulti-
mate application, and is intended to be supplied
by an isolated secondary circuit. When the sup-
ply to the DC/DC power module meets all the
requirements for SELV(<60Vdc), the output is
considered to remain within SELV limits (level
3). If connected to a non-SELV power system,
double or reinforced insulation must be provid-
ed in the power supply that isolates the input
from any hazardous voltages, including the ac
mains. One Vi pin and one Vo pin are to be
grounded or both the input and output pins are
to be kept floating. Single fault testing in the
power supply must be performed in combina-
tion with the DC/DC power module to demon-
strate that the output meets the requirement for
SELV. The input pins of the module are not
operator accessible.
Note: Do not ground either of the input pins of
the module, without grounding one of the output
pins. This may allow a non-SELV voltage to
appear between the output pin and ground.
Case Grounding
Case Grounding
For proper operation of the module, the case or
baseplate of the AEH 24Vin module does not
require a connection to a chassis ground. If the
AEH module is not in a metallic enclosure in a
system, it may be advisable to directly ground
the case to reduce electric field emissions.
Leaving the case floating can help to reduce
magnetic field radiation from common mode
noise currents. If the case has to be grounded
for safety or other reasons, an inductor can be
connected to chassis at DC and AC line fre-
quencies, but be left floating at switching fre-
quencies. Under this condition, the safety
requirements are met and the emissions are
minimized.
Output Characteristic
Output Characteristic
Minimum Load Requirement
Minimum Load Requirement
There no minimum load requirement for the
AEH 24Vin series modules.
Remote Sensing
Remote Sensing
The AEH 24Vin converter can remotely sense
both lines of its output which moves the effec-
tive output voltage regulation point from the out-
put of the unit to the point of connection of the
remote sense pins. This feature automatically
adjusts the real output voltage of the AEH
24Vin in order to compensate for voltage drops
in distribution and maintain a regulated voltage
at the point of load.
When the converter is supporting loads far
away, or is used with undersized cabling, sig-
nificant voltage drop can occur at the load. The
best defense against such drops is to locate the
load close to the converter and to ensure ade-
quately sized cabling is used. When this is not
possible, the converter can compensate for a
drop of up to 0.5V, through use of the sense
leads.
When used, the + and - sense leads should be
connected from the converter to the point of
load as shown in Figure 9 using twisted pair
wire. The converter will then regulate its output
voltage at the point where the leads are con-
nected. Care should be taken not to reverse the
sense leads. If reversed, the converter will trig-
ger the OVP protection and turn off. When not
used, the +Sense lead must be connected
with +Vo directly, and -Sense with -Vo. Also
note that the output voltage and the remote
sense voltage offset must be less than the min-
+Vout
-Vout
Load
+Sense
-Sense
Twisted Pair +S
-S
Fig.9 Sense Connections
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-26-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
imum overvoltage trip point. Note that at ele-
vated output voltages the maximum power
rating of the module remains the same, and
the output current capability will decrease
correspondingly.
Output T
Output Trimming
rimming
Users can increase or decrease the output volt-
age set point of a module by connecting an
external resistor between the TRIM pin and
either the SENSE (+ ) or SENSE ( - ) pins. The
trim resistor should be positioned close to the
module. If not using the trim feature, leave
the TRIM pin open.
Trimming up by more than 10% of the nominal
output may damage the converter or trig the
OVP protection. Trimming down more than
10% can cause the converter to regulate
improperly. Trim down and trim up circuits and
the corresponding configuration are shown in
Figure 10 to Figure 15 next page.
Note that at elevated output voltages the
maximum power rating of the module
remains the same, and the output current
capability will decrease correspondingly.
Vo(100+y)
Radj-up = (100+2y)
1.26y
y
-
+Vin
-Vin
CNT
Case
+Vout
-Vout
Sense(+)
Trim
Sense(–)
R
adj-up
R
LOAD
Where y is the adjusting percentage of the voltage.
0 < y < 10
Radj-up is in k.
Fig.10 Circuit and Equation to Trim Up
0
10
20
30
40
50
60
70
80
90
100
012345678910
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
Fig.12 Resistor Selection for 2.5Vout Trim Up
% Change In Output Voltage y
Adjustment Resistor Value (k)
0
20
40
60
80
100
120
140
160
180
200
012345678910
Fig.13 Resistor Selection for 3.3Vout Trim Up
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
0
30
60
90
120
150
180
210
240
270
300
012345678910
Fig.14 Resistor Selection for 5Vout Trim Up
Radj-down =
where y is the adjusting percentage of the voltage.
0 < y < 10
Radj-down is in k.
R
adj-down
R
LOAD
100
y- 2
+Vin
-Vin
CNT
Case
+Vout
-Vout
Sense(+)
Trim
Sense()
Fig.11 Circuit and Equation to Trim Down
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
0
10
20
30
40
50
60
70
80
90
100
012345678910
Fig.15 Resistor Selection for Trim Down
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-27-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Output Over-Current Protection
Output Over-Current Protection
AEH 24Vin series DC/DC converters feature
foldback current limiting as part of their
Overcurrent Protection (OCP) circuits. When
output current exceeds 110 to 140% of rated
current, such as during a short circuit condition,
the output will shutdown immediately, and can
tolerate short circuit conditions indefinitely.
When the overcurrent condition is removed, the
converter will automatically restart.
Output Filters
Output Filters
When the load is sensitive to ripple and noise,
an output filter can be added to minimize the
effects. A simple output filter to reduce output
ripple and noise can be made by connecting a
capacitor across the output as shown in Figure
16. The recommended value for the output
capacitor C1 is 2200µF/10V.
Extra care should be taken when long leads or
traces are used to provide power to the load.
Long lead lengths increase the chance for
noise to appear on the lines. Under these con-
ditions C2 can be added across the load as
shown in Figure 17. The recommended compo-
nent for C2 is 2200µF/10V capacitor and con-
necting a 0.1µF ceramic capacitor C1 in paral-
lel generally.
Decoupling
Decoupling
Noise on the power distribution system is not
always created by the converter. High speed
analog or digital loads with dynamic power
demands can cause noise to cross the power
inductor back onto the input lines. Noise can be
reduced by decoupling the load. In most cases,
connecting a 10 µF tantalum capacitor in paral-
lel with a 0.1µF ceramic capacitor across the
load will decouple it. The capacitors should be
connected as close to the load as possible.
Ground Loops
Ground Loops
Ground loops occur when different circuits are
given multiple paths to common or earth
ground, as shown in Figure 18. Multiple ground
points can slightly different potential and cause
current flow through the circuit from one point to
another. This can result in additional noise in all
the circuits. To eliminate the problem, circuits
should be designed with a single ground con-
nection as shown in Figure 19.
Output Over-V
Output Over-Voltage Protection
oltage Protection
The over-voltage protection has a separate
feedback loop which activates when the output
voltage is between 120% and 140% of the
nominal output voltage. When an over-voltage
condition occurs, a “ turn off “ signal was sent
to the input of the module, and shut off the out-
put. The module will restart after power on
again.
+Vout
-Vout
Load
C1C2
Fig.17 Output Ripple Filter For a Distant
Load
+Vout
-Vout
Load
C1
Fig.16 Output Ripple Filter
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
RLine
Ground
Loop
Fig.18 Ground Loops
Fig.19 Single Point Ground
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-28-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Parallel Power Distribution
Parallel Power Distribution
Figure 20 shows a typical parallel power distri-
bution design. Such designs, sometimes called
daisy chains, can be used for very low output
currents, but are not normally recommended.
The voltage across loads far from the source
can vary greatly depending on the IR drops
along the leads and changes in the loads clos-
er to the source. Dynamic load conditions
increase the potential problems.
Radial Power Distribution
Radial Power Distribution
Radial power distribution is the preferred
method of providing power to the load. Figure
21 shows how individual loads are connected
directly to the power source. This arrangement
requires additional power leads, but it avoids
the voltage variation problems associated with
the parallel power distribution technique.
Mixed Distribution
Mixed Distribution
In the real world a combination of parallel and
radial power distribution is often used. Dynamic
and high current loads are connected using a
radial design, while static and low current loads
can be connected in parallel. This combined
approach minimizes the drawbacks of a parallel
design when a purely radial design is not feasi-
ble.
Redundant Operation
Redundant Operation
A common requirement in high reliability sys-
tems is to provide redundant power supplies.
The easiest way to do this is to place two con-
verters in parallel, providing fault tolerance but
not load sharing. Oring diodes should be used
to ensure that failure of one converter will not
cause failure of the second. Figure 23 shows
such an arrangement. Upon application of
power, one of the converters will provide a
slightly higher output voltage and will support
the full load demand. The second converter will
see a zero load condition and will “idle”. If the
first converter should fail, the second converter
will support the full load. When designing
redundant converter circuits, Shottky diodes
should be used to minimize the forward voltage
drop. The voltage drop across the Shottky
diodes must also be considered when deter-
mining load voltage requirements.
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.21 Radial Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2 RL3
RG1 RG2 RG3
I1 + I2 + I3I2 + I3I3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.20 Parallel Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Load 4
RL4
RG4
Fig.22 Mixed Power Distribution
+Vout
-Vout
+Vout
-Vout
Load
Fig.23 Redundant Operation
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-29-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Thermal Management
Thermal Management
T
Technologies
echnologies
AEH 24V input series features high efficiency
and the module have typical efficiency high up
to 88% at full load. With less heat dissipation
and temperature-resistant components such as
ceramic capacitors, these modules exhibit good
behavior during prolonged exposure to high
temperatures. Maintaining the operating case
temperature (Tc) within the specified range help
keep internal-component temperatures within
their specifications which in turn help keep
MTBF from falling below the specified rating.
Proper cooling of the power modules is also
necessary for reliable and consistent operation.
Basic Thermal Management
Basic Thermal Management
Measuring the case temperature of the module
(Tc) as the method shown in Figure 24 can ver-
ify the proper cooling. Figure 24 shows the
metal surface of the module and the pin loca-
tions. The module should work under 90°C for
the reliability of operation and TCmust not
exceed 100 °C while operating in the final sys-
tem configuration. The measurement can be
made with a surface probe after the module has
reached thermal equilibrium. If a heat sink is
mounted to the case, make the measurement
as close as possible to the indicated position. It
makes the assumption that the final system
configuration exists and can be used for a test
environment.
The following text and graphs show guidelines
to predict the thermal performance of the mod-
ule for typical configurations that include heat
sinks in natural or forced airflow environments.
Note that Tc of module must always be checked
in the final system configuration to verify proper
operational due to the variation in test condi-
tions.
Thermal management acts to transfer the heat
dissipated by the module to the surrounding
environment. The amount of power dissipated
by the module as heat (PD) is got by the equa-
tion below:
PD= PI˘ PO
where : PIis input power;
POis output power;
PD is dissipated power.
Also, module efficiency (η) is defined as the fol-
lowing equation:
η= PO / PI
If eliminating the input power term, from two
above equations can yield the equation below:
PD = PO(1-η )/η
The module power dissipation then can be cal-
culated through the equation.
Because each power module output voltage
has a different power dissipation curve, a plot of
power dissipation versus output current over
three different line voltages is given in each
module-specific data sheet. The typical power
dissipation curve of AEH series are shown as
figure 25 to figure 30.
29.0 (1.14)
30.5 (1.2)
CNT
Case
+Sense
Trim
– Sense
+Vin
MEASURE CASE
TEMPERATURE HERE
Base-plate side View
Dimensions: millimeters (inches)
-Vin
+Vout
-Vout
Fig.24. Case Temperature Measurement
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-30-
2
2.5
3
3.5
4
4.5
5
5.5
012345678910
Output Current (A)
Power Dissipation (W)
Vin=18V
Vin=24V
Vin=36V
2
2.5
3
3.5
4
4.5
5
5.5
6
012345678910
Output Current (A)
Power Dissipation (W)
Vin=18V
Vin=24V
Vin=36V
4
5
6
7
8
9
012345678910
Output Current (A)
Power Dissipation (W)
Vin=18V
Vin=24V
Vin=36V
3
2
3
4
5
6
7
8
02468101214161820
Output Current (A)
Power Dissipation (W)
Vin=18V
Vin=24V
Vin=36V
3
4
5
6
7
8
9
10
0 2 4 6 8 101214161820
Output Current (A)
Power Dissipation (W)
Vin=18V
Vin=24V
Vin=36V
6
8
10
12
14
16
18
0 2 4 6 8 101214161820
Output Current (A)
Power Dissipation (W)
Vin=18V
Vin=24V
Vin=36V
Fig.25 AEH10G24N Power Dissipation Curves
Fig.26 AEH10A24N Power Dissipation Curves
Fig.27 AEH20F24N Power Dissipation Curves
Fig.28 AEH10F24N Power Dissipation Curves
Fig.29 AEH20G24N Power Dissipation Curves
Fig.30 AEH20A24N Power Dissipation Curves
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-31-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Module Derating
Module Derating
Experiment Setup
Experiment Setup
From the experimental set up shown in figure
31, the derating curves as figure 32 can be
drawn. Note that the PWB ( printed-wiring
board ) and the module must be mounted verti-
cally. The passage has a rectangular cross-
section. The clearance between the facing
PWB and the top of the module is kept 13 mm
(0.5 in.) constantly.
Convection W
Convection Without Heat Sinks
ithout Heat Sinks
Heat transfer can be enhanced by increasing
the airflow over the module. Figure 32 shows
the maximum power that can be dissipated by
the module.
In the test, natural convection airflow was mea-
sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20
ft./min.). The 0.5 m/s to 4.0 m/s (100 ft./min. to
800 ft./min.) curves are tested with externally
adjustable fans. The appropriate airflow for a
given operating condition can be determined
through figure 32.
Example 1. How to calculate the minimum
airflow required to maintain a desired Tc?
If a AEH20A24N module operates with a 24V
line voltage, a 20 A output current, and a 40 °C
maximum ambient temperature, What is the
minimum airflow necessary for the operating?
Determine PD( referenced Fig.30 ) with con-
dition:
Vin = 24 V
lO= 20 A
Get: PD= 15 W
And with TA= 40 °C
Determine airflow ( Fig.32 ):
v = 1.5 m/s (300 ft./min.)
Example 2. How to calculate the maximum
output power of a module in a certain con-
vection and a max. TA?
What is the maximum power output for a
AEH20A24N operating at following conditions:
Vin = 24 V
v = 1.5 m/s (300 ft./min.)
TA= 40 °C
Determine PD( Fig.32 )
PD= 15W
Determine IO( Fig.30 ):
IO= 20 A
Calculate PO:
010203040 100
0
21
Local Ambient Temperature, T
A
(°C)
Power Dissipation , P
D
(W)
15
12
6
90
80706050
4.0 m/s (800 ft./min.)
0.1 m/s (20 ft./min.)
Natural Convection
1.0 m/s (200 ft./min.)
2.0 m/s (400 ft./min.)
3.0 m/s (600 ft./min.)
3
9
18 1.5 m/s (300 ft./min.)
0.5 m/s (100 ft./min.)
Fig.32 Forced Convection Power Derating
without Heat Sink
Dimensions: millimeters (inches).
AIR VELOCITY
AND AMBIENT
TEMPERATURE
MEASURED
BELOW THE
MODULE
AIRFLOW
19 (0.75)
FACING PWB
MODULE
PWB
76 (3.00)
Fig.31 Experiment Set Up
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-32-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
PO= (VO) x (IO) = 5 x 20 = 100 W
Although the two examples above use 100 ° C
as the maximum case temperature, for
extremely high reliability applications, one may
design to a lower case temperature as shown in
Example 4 on page 35.
Heat Sink Configuration
Heat Sink Configuration
Several standard heat sinks are available for
the AEH 24Vin 50 W to 150 W modules as
shown in Figure 33 to Figure 35.
The heat sinks mount to the top surface of the
module with screws torqued to 0.56 N-m (5 in.-
lb). A thermally conductive dry pad or thermal
grease is placed between the case and the
heat sink to minimize contact resistance (typi-
cally 0.1°C/W to 0.3°C/W) and temperature dif-
ferential.
Nomenclature for heat sink configurations is as
follows:
WDxyyy40
where:
x = fin orientation: longitudinal (L) or trans
verse (T)
yyy = heat sink height (in 100ths of inch)
For example, WDT5040 is a heat sink that is
transverse mounted (see Figure 35) for a 61
mm x 57.9 mm (2.4 in.x 2.28 in.) module with a
heat sink height of 0.5 in.
Heatsink Mounting Advice
Heatsink Mounting Advice
A crucial part of the thermal design strategy is
the thermal interface between the baseplate of
the module and the heatsink. Inadequate mea-
sures taken here will quickly negate any other
attempts to control the baseplate temperature.
For example, using a conventional dry insulator
can result in a case-heatsink thermal imped-
ance of >0.5°C/W, while use one of the rec-
ommended interface methods (silicon grease
57.9 (2.28)
61
(2.4)
1 IN. (WDL10040)
1 1/2 IN. (WDL15040)
1/2 IN. (WDL05040)
Fig.34 Longitudinal Fins Heat Sink
1 IN. (WDT10040)
1 1/2 IN. (WDT15040)
61 (2.4)
1/2 IN. (WDT05040)
57.9
(2.28)
Fig.35 Transverse Fins Heat Sink
89.1(3.51)
57.0
(2.24) 11.8
(0.465)
4.9(0.193)
Dimensions: millimeters (inches).
Fig.33 Non Standard Heatsink
Fig.36 Heat Sink Mounting
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-33-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
or thermal pads available from Astec) can
result in a case-heatsink thermal impedance
around 0.1°C/W.
Natural Convection with Heat Sink
Natural Convection with Heat Sink
The power derating for a module with the heat
sinks ( shown as figure 25 to figure 30) in nat-
ural convection is shown in figure 35. In this
test, natural convection generates airflow about
0.05 m/s to 0.1 m/s ( 10ft./min to 20ft./min ).
Figure 37 can be used for heat-sink selection in
natural convection environment.
Example 3. How to select a heat sink?
What heat sink would be appropriate for a
AEH20A24N in a natural convection environ-
ment at nominal line, 2/3 load, and maximum
ambient temperature of 40°C?
Determine PD( referenced Fig.30 ) with con-
dition:
Vin = 24 V
IO= 2/3 (20) = 13 A
TA= 40 °C
Get: PD= 10.5 W
Determine Heat Sink ( Fig.37 ):
no heat sink allows up to TA = 30 °C
1/4 in. allows up to TA = 40 °C
Basic Thermal Model
Basic Thermal Model
There is another approach to analyze module
thermal performance, to model the overall ther-
mal resistance of the module. This presentation
method is especially useful when considering
heat sinks. The following equation can be used
to calculate the total thermal resistance .
RCA =TC, max / PD
Where RCA is the module thermal resistance;
TC, max is the maximum case temperature
rise;
PD is the module power dissipation.
In this model, PD, TC, max, and RCA are equals
to current flow, voltage drop, and electrical
resistance, respectively, in Ohm's law, as
shown in Figure 38. Also, TC, max is defined as
the difference between the module case tem-
perature (TC) and the inlet ambient temperature
(TA).
TC, max = TC˘ TA
Where TCis the module case temperature,
TA is the inlet ambient temperature.
For AEH 24Vin Series 50W to 150W convert-
ers, the module's thermal resistance values
versus air velocity have been determined
experimentally and shown in figure 39. The
highest values on each curve represents the
point of natural convection.
Figure 39 is used for determining thermal per-
formance under various conditions of airflow
and heat sink configurations.
010203040 90100
0
20
25
30
35
LOCAL AMBIENT TEMPERATURE, TA (°C)
POWER DISSIPATION, P
D
(W)
15
10
5
50 60 70 80
1 1/2 in.
1 in.
1/2 in.
1/4 in.
NONE
Fig.37 Heat Sink Power Derating Curves,
Natural Convection
BMPM
PD
= BMPM
THERMAL
RESISTANCE
Fig.38 Basic Thermal Resistance Model
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-34-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Example 4. How to determine the allowable
minimum airflow to heat sink combinations
necessary for a module under a desired Tc
and a certain condition?
Although the maximum case temperature for
the AEH Series converters is 100°C, you can
improve module reliability by limiting Tc,max to
a lower value. How to decide? For example,
what is the allowable minimum airflow for AEH
100W heat sink combinations at desired Tc of
80 °C?
The working condition is as following:
Vin = 24 V, IO= 20 A, TA= 40 °C
Determine PD( Fig.30. )
PD= 15 W
Then solve RCA::
RCA = TC, max / PD
RCA = (TCTA)/ PD
RCA = (80 40)/ 15 = 2.7°C/W
determine air velocity from figure 39:
If no heat sink:
v = 3 m/s (600 ft./min.)
If 1/4 in. heat sink:
v = 2 m/s (400 ft./min.)
If 1/2 in. heat sink:
v = 1.4 m/s (280 ft./min.)
If 1 in. heat sink:
v = 0.5 m/s (100 ft./min.)
Example 5. How to determine case tempera-
ture ( Tc ) for the various heat sink configu-
rations at certain air velocity?
What is the allowable Tc for AEH 24Vin 100W
heat sink configurations at desired air velocity
of 2.0 m/s, and it is operating at a 24 V line volt-
age, a 20 A output current, a 40 °C maximum
ambient temperature?
Determine PD( Fig.30 ) with condition:
Vin = 24 V
IO= 20 A
TA= 40 °C
v = 2.0 m/s (400 ft./min.)
Get: PD= 15 W
Determine TC:TC= (RCA x PD) + TA
Determine the corresponding thermal resis-
tances ( RCA ) from Figure 39 :
No heat sink: RCA = 3.8 °C/W
TC= (3.8 x 15) + 40 = 97 °C
1/4 in. heat sink: RCA = 2.8 °C/W
TC= (2.8 x 15) + 40 = 82 °C
1/2 in. heat sink: RCA = 2.0 °C/W
TC= (2.0 x 15) + 40 = 70 °C
1 in. heat sink: RCA = 1.2 °C/W
TC= (1.2 x 15) + 40 = 58 °C
In this configuration, the heat sink would not
need and the power module does not exceed
the maximum case temperature of 100°C.
Mechanical
Mechanical
Considerations
Considerations
Installation
Installation
Although AEH 24Vin series converters can be
mounted in any orientation, free air-flowing
must be taken. Normally power components
are always put at the end of the airflow path or
have the separate airflow paths. This can keep
other system equipment cooler and increase
0 0.5
(100) 1.0
(200) 1.5
(300) 2.0
(400) 2.5
(500) 3.0
(600)
0
1
5
6
7
8
Air Velocity m/s (ft./min.)
4
3
2
Case-Ambient Thermal Resistance
R
CA
(°C/W)
1 in. HEAT SINK
1/2 in. HEAT SINK
1/4 in. HEAT SINK
NO HEAT SINK
Fig.39 Case-to-Ambient Thermal
Resistance Curves; Either Orientation
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-35-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
component life spans.
Soldering
Soldering
AEH 24Vin series converters are compatible
with standard wave soldering techniques.
When wave soldering, the converter pins
should be preheated for 20-30 seconds at
110°C, and wave soldered at 260°C for less
than 10 seconds.
When hand soldering, the iron temperature
should be maintained at 425°C and applied to
the converter pins for less than 5 seconds.
Longer exposure can cause internal damage to
the converter. Cleaning can be performed with
cleaning solvent IPA or with water.
MTBF
MTBF
The MTBF, calculated in accordance with
Bellcore TR-NWT-000332 is 1,880,000 hours.
Obtaining this MTBF in practice is entirely pos-
sible. If the ambient air temperature is expected
to exceed +25°C, then we also advise a
heatsink on the AEH, oriented for the best pos-
sible cooling in the air stream.
ASTEC can supply replacements for converters
from other manufacturers, or offer custom solu-
tions. Please contact the factory for details.
AA
AAEE
EEHH
HH
22
2244
44VV
VV
II
IInn
nnpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
SS
SSee
eerr
rrii
iiee
eess
ss
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
22
22..
..55
55VV
VV,,
,,
33
33..
..33
33VV
VV,,
,,
55
55VV
VV
SS
SSii
iinn
nngg
ggll
llee
ee
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-36-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Recommend Hole Pattern
Recommend Hole Pattern
Mechanical chart
Mechanical chart
Base-plate side view
Dimensions are in millimeters and (inches).
10.16
(0.400)
10.16
(0.400)
12.7 (0.50)
48.3 (1.90)
48.26
(1.900)
4.8
(0.19)
Mounting Inserts
Module Outline
5.1 (0.20)
57
.
9
(2
.
28)
Max
17.78
(0.700)
25.40
(1.000)
35.56
(1.400)
25.40
(1.000)
50.8
(2.00)
35.56
(1.400)
61.0
(2.40)
-Vout
-Vin
–Sense
Trim
+Sense
Case
CNT
+Vin +Vout
Max
-Vin
Case
CNT
+Vin +Vout
+Sense
Trim
-Sense
-Vout
5.1 (0.2)
10.16 (0.4)
15.24 (0.6)
4.8 (0.19) 48.26 (1.9)
10.16 (0.4)
10.16 (0.4)
10.16 (0.4)
7.62 (0.3)
7.62 (0.3)
7.62 (0.3)
57.9 (2.28)
61.0 (2.4)
mm (inches)
7-
12.7 (0.5)
Mounting Inserts
M3 thru hole x4
2-
φ2.0 (0.08)
only +Vo and -Vo
φ1.0 (0.04)
all pins except +Vo and -Vo
Length optional
4.8 (0.189) default
Base-plate side view
Tolerances:
Inches Millimeters
.xx !0.020 .x !0.5
.xxx !0.010 .xx !0.25
Pins
>4mm !0.02inch ( !0.5mm)
<4mm !0.01inch ( !0.25mm)
Pin Length Option
4.80mm ! 0.5mm
0.189in. ! 0.020in.
3.80mm ! 0.25mm
0.150in. ! 0.010in.
5.80mm ! 0.5mm
0.228in. ! 0.02in.
2.80mm ! 0.25mm
0.110in. ! 0.010in.
Device Code Suffix
none (default) 
-6
-7
-8
PART NUMBER DESCRIPTION
ss pp
c
-0 iv L- xxx f yy h n -p-mx-Options
p = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm, 7= 5.8mm
iv = Input Voltage 8 = 2.8mm
05 = Range centered on 5V
12 = Range centered on 12V Enable Logic Polarity
24 = 18 to 36(2:1), 9 to 36V(4:1) Omit for Positive Enable Logic
36 = 20 to 60V N = Negative Enable
46 = 18V to 75V (4:1) Except: AK60C-20H, BK60C-30H
48 = Typ 36 to 75V Omit for Negative Logice
P = Positive Logic
c = Pinout compatability
A= Astec Footprint or "non Lucent" footprint H = High Efficiency (Synch rect.)
C= Ind Std, Exact Lucent drop in Omit H if Conventional Diode (low Eff)
yy = Output Current
pp = Package Type ie. 08 = 8 Amps
40 = 1" x 2" SMD
42 = 1.5" x 2" SMD f = # of Outputs
45 = 1.45" X 2.3" (1/4 Brk) F = Single Output
60 = 2.4" X 2.3" (1/2 Brk) D = Dual Output
80 = Full size 4.6" x 2.4"
72= 2.35" X 3.3 (3/4 Brk) xxx = Output Voltage
Format is XX.X (ie 1.8V = 018)
ss = Series
AA = 1/2brick Dual (Old designator)
AK = Ind Std sizes (1/4, 1/2, full) <150W mx = Options
AM/BM = Full size, astec pin out M1,M2 = .25" Height Heatsink
AL = Half size, astec pin-out M3,M4 = .5" height Heatsink
BK = Ind Std size =>150W or feature rich M5.M6 = 1.0" Height Heatsink
AV = Avansys Product
Note: For some products, they may not conform with the PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 1 of 2
NEW PART NUMBER DESCRIPTION
Acs ii V1 V2 V3Vin -e t p Mx
Output Voltage
A = 5.0V E = 7.5V
F = 3.3V B = 12V, C = 15V
G = 2.5V L = 8V, H = 24V, R = 28V
D = 2.0V / 2.1V Omit V2 and V3 if Single Output
Y = 1.8V Omit V3 if Dual Output
M = 1.5V ie for Dual Output 5 and 3.3V
K = 1.2V V1 =A, V2 = F, V3 =Omit
J = 0.9V V1 =A, V2 = F, V3 =Omit
ii = Output Current Max
ie 60 = 60 Amps Vin = Input Voltage range
300 = 250V to 450V
S = Size 48 = 36V to 75V
F = Full Brick 24 = 18V to 36V
H = Half Brick 03 = 1.8V to 5.0V
Q = Quarter Brick 08 = 5.0V to 13.0V
S = 1 X 2 18 Pin SMT PFC: Power Factor Corrected
E = 1 X 2 Thru Hole
C = (.53X1.3X.33) SMT (Austin Lite drop in) E = Enable Logic for > 15W
V = Conventional Package (2X2.56") or ( Omit this digit for Positive enable
A = SIP N = Negative Logic
W = Convent pkg (Wide 2.5X3) E = Enable Logic for < 15W
R = 1 X 1 Thru Hole Omit this digit for no enable option
A = SIP 1 = Negative Logic
T = 1.6 X 2 4 = Positive Logic
c = Construction Trim for 1W to 15W
E = Enhanced Thermals (Baseplate or adapter plate) 9 = Trim Added
I = Integrated (Full Featured) Hong Kong models
L = Low Profile (Open Frame, No case - Isolated)
P = Open Frame (SIP or SMT) non-isolated P = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm
8 = 2.8mm
7 = 5.8 mm
Mx - Factory Options
customer Specific
Note: For some products, they may not conform with the NEW PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 2 of 2