VS-MBR4045WTPbF, VS-MBR4045WT-N3
www.vishay.com Vishay Semiconductors
Revision: 30-Aug-11 1Document Number: 94295
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Schottky Rectifier, 2 x 20 A
FEATURES
150 °C TJ operation
Very low forward voltage drop
High frequency operation
High purity, high temperature epoxy
encapsulation for enhanced mechanical
strength and moisture resistance
Guard ring for enhanced ruggedness and long
term reliability
Compliant to RoHS Directive 2002/95/EC
Designed and qualified according to JEDEC-JESD47
Halogen-free according to IEC 61249-2-21 definition
(-N3 only)
DESCRIPTION
The VS-MBR4045WT... center tap Schottky rectifier has
been optimized for very low forward voltage drop, with
moderate leakage. The proprietary barrier technology allows
for reliable operation up to 150 °C junction temperature.
Typical applications are in switching power supplies,
converters, freewheeling diodes, and reverse battery
protection.
PRODUCT SUMMARY
Package TO-247AC
IF(AV) 2 x 20 A
VR45 V
VF at IF0.56 V
IRM max. 85 mA at 125 °C
TJ max. 150 °C
Diode variation Common cathode
EAS 20 mJ
Base
common
cathode
Common
cathode
2
2
13
Anode
1
Anode
2
TO-247AC
MAJOR RATINGS AND CHARACTERISTICS
SYMBOL CHARACTERISTICS VALUES UNITS
IF(AV) Rectangular waveform (per device) 40 A
IFRM TC = 125 °C (per leg) 40
VRRM 45 V
IFSM tp = 5 μs sine 1020 A
VF20 Apk, TJ = 125 °C 0.56 V
TJRange - 55 to 150 °C
VOLTAGE RATINGS
PARAMETER SYMBOL VS-MBR4045WTPbF VS-MBR4045WT-N3 UNITS
Maximum DC reverse voltage VR45 45 V
Maximum working peak reverse voltage VRWM
ABSOLUTE MAXIMUM RATINGS
PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS
Maximum average
forward current
per leg IF(AV) TC = 125 °C, 50 % duty cycle, rectangular waveform 20
A
per device 40
Peak repetitive forward current per leg IFRM Rated VR, square wave, 20 kHz, TC = 125 °C 40
Maximum peak one cycle
non-repetitive surge current per leg
See fig. 7
IFSM
5 µs sine or 3 µs rect. pulse Following any rated load
condition and with rated
VRRM applied
1020
10 ms sine or 6 ms rect. pulse 265
Non-repetitive avalanche energy per leg EAS TJ = 25 °C, IAS = 3 A, L = 4.40 mH 20 mJ
Repetitive avalanche current per leg IAR Current decaying linearly to zero in 1 μs
Frequency limited by TJ maximum VA = 1.5 x VR typical 3A
VS-MBR4045WTPbF, VS-MBR4045WT-N3
www.vishay.com Vishay Semiconductors
Revision: 30-Aug-11 2Document Number: 94295
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Note
(1) Pulse width < 300 μs, duty cycle < 2 %
ELECTRICAL SPECIFICATIONS
PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS
Maximum forward voltage drop VFM (1)
20 A TJ = 25 °C 0.59
V
40 A 0.78
20 A TJ = 125 °C 0.56
40 A 0.72
Maximum instantaneous reverse current IRM (1)
TJ = 25 °C
Rated DC voltage
1.75
mATJ = 100 °C 50
TJ = 125 °C 85
Threshold voltage VF(TO) TJ = TJ maximum 0.29 V
Forward slope resistance rt10.3 m
Maximum junction capacitance CTVR = 5 VDC (test signal range 100 kHz to 1 MHz) 25 °C 900 pF
Typical series inductance LSMeasured from top of terminal to mounting plane 7.5 nH
Maximum voltage rate of change dV/dt Rated VR10 000 V/µs
THERMAL - MECHANICAL SPECIFICATIONS
PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS
Maximum junction temperature range TJ- 55 to 150 °C
Maximum storage temperature range TStg - 55 to 175
Maximum thermal resistance,
junction to case per package RthJC DC operation 1.4
°C/W
Typical thermal resistance,
case to heatsink RthCS Mounting surface, smooth and greased 0.7
Approximate weight 6g
0.21 oz.
Mounting torque minimum 6 (5) kgf · cm
(lbf · in)
maximum 12 (10)
Device marking Case style TO-247AC (JEDEC) MBR4045WT
VS-MBR4045WTPbF, VS-MBR4045WT-N3
www.vishay.com Vishay Semiconductors
Revision: 30-Aug-11 3Document Number: 94295
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 1 - Maximum Forward Voltage Drop Characteristics Fig. 2 - Typical Values of Reverse Current vs.
Reverse Voltage
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage
Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics
1
100
10
1000
IF - Instantaneous
Forward Current (A)
VFM - Forward Voltage Drop (V)
0.4 0.81.2 1.6 2.0
0
TJ = 150 °C
TJ = 125 °C
TJ = 25 °C
0.001
1
10
100
0.1
0.01
1000
I
R
- Reverse Current (mA)
V
R
- Reverse Voltage (V)
10 20 40 50
30
0
TJ = 150 °C
TJ = 125 °C
TJ = 100 °C TJ = 75 °C
TJ = 50 °C TJ = 25 °C
100
1000
C
T
- Junction Capacitance (pF)
V
R
- Reverse Voltage (V)
10 20 30 50
40
0
TJ = 25 °C
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
t1 - Rectangular Pulse Duration (s)
ZthJC - Thermal Impedance (°C/W)
100 10
Single pulse
(thermal resistance)
D = 0.75
D = 0.50
D = 0.33
D = 0.25
D = 0.20
PDM
t1
t2
Notes:
1. Duty factor D = t1/t2
2. Peak TJ = PDM x ZthJC + TC
VS-MBR4045WTPbF, VS-MBR4045WT-N3
www.vishay.com Vishay Semiconductors
Revision: 30-Aug-11 4Document Number: 94295
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current
Fig. 6 - Forward Power Loss Characteristics
Fig. 7 - Maximum Non-Repetitive Surge Current
Fig. 8 - Unclamped Inductive Test Circuit
Note
(1) Formula used: TC = TJ - (Pd + PdREV) x RthJC;
Pd = Forward power loss = IF(AV) x VFM at (IF(AV)/D) (see fig. 6);
PdREV = Inverse power loss = VR1 x IR (1 - D); IR at VR1 = Rated VR
80
100
120
140
160
Allowable Case Temperature (°C)
I
F(AV)
- Average Forward Current (A)
10 5 15 20
3025
0
DC
See note (1)
Square wave (D = 0.50)
Rated VR applied
0
15
10
5
20
Average Power Loss (W)
I
F(AV)
- Average Forward Current (A)
1051520
3025
0
DC
RMS limit
D = 0.20
D = 0.25
D = 0.33
D = 0.50
D = 0.75
100
1000
IFSM - Non-Repetitive
Surge Current (A)
tp - Square Wave Pulse Duration (µs)
100 1000 10 000
10
At any rated load condition
and with rated VRRM applied
following surge
Current
monitor
High-speed
switch
D.U.T.
Rg = 25 Ω
+
Freewheel
diode Vd = 25 V
L
IRFP460
40HFL40S02
VS-MBR4045WTPbF, VS-MBR4045WT-N3
www.vishay.com Vishay Semiconductors
Revision: 30-Aug-11 5Document Number: 94295
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
ORDERING INFORMATION TABLE
ORDERING INFORMATION (Example)
PREFERRED P/N QUANTITY PER T/R MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION
VS-MBR4045WTPbF 25 500 Antistatic plastic tube
VS-MBR4045WT-N3 25 500 Antistatic plastic tube
LINKS TO RELATED DOCUMENTS
Dimensions www.vishay.com/doc?95223
Part marking information TO-247AC PbF www.vishay.com/doc?95226
TO-247AC -N3 www.vishay.com/doc?95007
SPICE model www.vishay.com/doc?95297
- Schottky MBR series
- Current rating (40 = 40 A)
- Voltage rating (45 = 45 V)
- Circuit configuration:
Center tap (dual) TO-247
Device code
62 43 5
MBR 40 45 WT PbFVS-
1
-Vishay Semiconductors product
-
PbF = Lead (Pb)-free and RoHS compliant
-N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free
Environmental digit
2
3
4
5
6
1
Outline Dimensions
www.vishay.com Vishay Semiconductors
Revision: 16-Jun-11 1Document Number: 95223
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
DIMENSIONS in millimeters and inches
Notes
(1) Dimensioning and tolerancing per ASME Y14.5M-1994
(2) Contour of slot optional
(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at
the outermost extremes of the plastic body
(4) Thermal pad contour optional with dimensions D1 and E1
(5) Lead finish uncontrolled in L1
(6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
(7) Outline conforms to JEDEC outline TO-247 with exception of dimension c
SYMBOL MILLIMETERS INCHES NOTES SYMBOL MILLIMETERS INCHES NOTES
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.
A 4.65 5.31 0.183 0.209 D2 0.51 1.30 0.020 0.051
A1 2.21 2.59 0.087 0.102 E 15.29 15.87 0.602 0.625 3
A2 1.50 2.49 0.059 0.098 E1 13.72 - 0.540 -
b 0.99 1.40 0.039 0.055 e 5.46 BSC 0.215 BSC
b1 0.99 1.35 0.039 0.053 FK 2.54 0.010
b2 1.65 2.39 0.065 0.094 L 14.20 16.10 0.559 0.634
b3 1.65 2.37 0.065 0.094 L1 3.71 4.29 0.146 0.169
b4 2.59 3.43 0.102 0.135 N 7.62 BSC 0.3
b5 2.59 3.38 0.102 0.133 P 3.56 3.66 0.14 0.144
c 0.38 0.86 0.015 0.034 P1 - 6.98 - 0.275
c1 0.38 0.76 0.015 0.030 Q 5.31 5.69 0.209 0.224
D 19.71 20.70 0.776 0.815 3 R 4.52 5.49 1.78 0.216
D1 13.08 - 0.515 - 4 S 5.51 BSC 0.217 BSC
0.10 AC
M M
E
N
(2)
(3)
(4)
(4)
(2) R/2
B
2 x R
S
D
See view B
2 x e
b4
3 x b
2 x b2
L
C
(5) L1
123
Q
D
A
A2
A
A
A1
C
Ø K BD
M M
A
(6) Ø P (Datum B)
FP1
D1 (4)
4
E1
0.01 BD
M M
View A - A
Thermal pad
D2
DDE E
CC
View B
(b1, b3, b5) Base metal
c1
(b, b2, b4)
Section C - C, D - D, E - E
(c)
Planting Lead assignments
Diodes
1. - Anode/open
2. - Cathode
3. - Anode
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 02-Oct-12 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.