
1
Motorola IGBT Device Data
  
Integrated Power Stage for 3.0 hp Motor Drives
(This device is not recommended for new designs)
(This device is replaced by MHPM7A30E60DC3)
This module integrates a 3–phase input rectifier bridge, 3–phase
output inverter, brake transistor/diode, current sense resistor and
temperature sensor in a single convenient package. The output
inverter utilizes advanced insulated gate bipolar transistors (IGBT)
matched with free–wheeling diodes to give optimal dynamic
performance. It has been configured for use as a three–phase
motor drive module or for many other power switching applications.
The top connector pins have been designed for easy interfacing to
the user’s control board.
DC Bus Current Sense Resistor Included
Short Circuit Rated 10 µs @ 25°C, 300V
Temperature Sensor Included
Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms)
Convenient Package Outline
UL Recognized
Access to Positive and Negative DC Bus
Visit our website at http://www.mot–sps.com/tsg/
MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted)
Rating Symbol Value Unit
INPUT RECTIFIER BRIDGE
Peak Repetitive Reverse Voltage (TJ = 125°C) VRRM 600 V
Average Output Rectified Current IO30 A
Peak Non-repetitive Surge Current (1/2 cycle)(1) IFSM 360 A
OUTPUT INVERTER
IGBT Reverse Voltage VCES 600 V
Gate-Emitter Voltage VGES ±20 V
Continuous IGBT Collector Current ICmax 30 A
Peak Repetitive IGBT Collector Current – (PW = 1.0 ms)(2) IC(pk) 60 A
Continuous Free-Wheeling Diode Current IFmax 30 A
Peak Repetitive Free-Wheeling Diode Current – (PW = 1.0 ms)(2) IF(pk) 60 A
IGBT Power Dissipation per die (TC = 95°C) PD85 W
Free-Wheeling Diode Power Dissipation per die (TC = 95°C) PD40 W
Junction Temperature Range TJ 40 to +125 °C
Short Circuit Duration (VCE = 300V, TJ = 25°C) tsc 10 µs
(1) 1 cycle = 50 or 60 Hz
(2) 1 ms = 1.0% duty cycle
Order this document
by MHPM7A30A60B/D

SEMICONDUCTOR TECHNICAL DATA
Motorola, Inc. 1998
30 AMP, 600 VOLT
HYBRID POWER MODULE
PLASTIC PACKAGE
CASE 440A–02, Style 1

REV 2
MHPM7A30A60B
2Motorola IGBT Device Data
MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted)
Rating Symbol Value Unit
BRAKE CIRCUIT
IGBT Reverse Voltage VCES 600 V
Gate-Emitter Voltage VGES ±20 V
Continuous IGBT Collector Current ICmax 30 A
Peak Repetitive IGBT Collector Current(2) IC(pk) 60 A
IGBT Power Dissipation (TC = 95°C) PD 85 W
Peak Repetitive Output Diode Reverse Voltage (TC = 95°C) VRRM 600 V
Continuous Output Diode Current IFmax 30 A
Peak Output Diode Current (PW = 1.0 ms) (2) IF(pk) 60 A
TOTAL MODULE
Isolation Voltage (47–63 Hz, 1.0 Minute Duration) VISO 2500 Vac
Operating Case Temperature Range TC 40 to + 90 °C
Storage Temperature Range Tstg 40 to +125 °C
Mounting Torque 6.0 lb–in
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
INPUT RECTIFIER BRIDGE
Reverse Leakage Current (VRRM = 600 V) IR 5.0 50 µA
Forward Voltage (IF = 30 A) VF1.16 1.5 V
Thermal Resistance (Each Die) RθJC 2.7 °C/W
OUTPUT INVERTER
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ±20 V) IGES ±20 µA
Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
6.0
2000 100
µA
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) VGE(th) 4.0 6.0 8.0 V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 600 V
Collector-Emitter Saturation V oltage (IC = 30 A, VGE = 15 V) VCE(SAT) 2.3 3.5 V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies 6600 pF
Input Gate Charge (VCE = 300 V, IC = 30 A, VGE = 15 V) QT220 nC
Fall T ime – Inductive Load
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG(off) = 20 )tf300 500 ns
T urn-On Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG(on) = 39 )Eon 3.0 mJ
T urn-Off Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG(off) = 20 )Eoff 3.0 mJ
Free Wheeling Diode Forward Voltage (IF = 30 A, VGE = 0 V) VF1.3 2.2 V
Free Wheeling Diode Reverse Recovery T ime
(IF = 30 A, V = 300 V, di/dt = 150 A/µs) trr 150 200 ns
Free Wheeling Diode Stored Charge
(IF = 30 A, V = 300 V, di/dt = 150 A/µs) Qrr 1580 2300 nC
Thermal Resistance – IGBT (Each Die) RθJC 1.2 °C/W
Thermal Resistance – Free-Wheeling Diode (Each Die) RθJC 2.7 °C/W
(2) 1.0 ms = 1.0% duty cycle
MHPM7A30A60B
3
Motorola IGBT Device Data
ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
BRAKE CIRCUIT
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ±20 V) IGES ±20 µA
Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
6.0
2000 100
µA
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) VGE(th) 4.0 6.0 8.0 V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 600 V
Collector-Emitter Saturation V oltage (VGE = 15 V, IC = 30 A) VCE(SAT) 2.3 3.5 V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies 6600 pF
Input Gate Charge (VCE = 300 V, IC = 30 A, VGE = 15 V) QT220 nC
Fall T ime – Inductive Load
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG(off) = 20 )tf300 500 ns
T urn-On Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG(on) = 39 )Eon 3.0 mJ
T urn-Off Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG(off) = 20 )Eoff 3.0 mJ
Output Diode Forward Voltage (IF = 30 A) VF1.3 2.0 V
Output Diode Reverse Leakage Current IR 50 µA
Thermal Resistance – IGBT RθJC 1.2 °C/W
Thermal Resistance – Diode RθJC 2.7 °C/W
SENSE RESISTOR
Resistance Rsense 5.0 m
Resistance Tolerance Rtol –1.0 +1.0 %
TEMPERATURE SENSE DIODE
Forward Voltage (@ IF = 1.0 mA) VF 0.660 V
Forward Voltage Temperature Coefficient (@ IF = 1.0 mA) TCVF –1.95 mV/°C
MHPM7A30A60B
4Motorola IGBT Device Data
Typical Characteristics
60
40
30
20
10
001 23 45
Figure 1. Forward Characteristics —
Input Rectifier
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
VGE = 18 V
15 V
9 V
TJ = 25
°
C60
50
40
30
20
10
001 2 3 45
Figure 2. Forward Characteristics —
Free–Wheeling Diode
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
12 V 9 V
TJ = 125
°
C
20
16
12
8
4
061012141620
Figure 3. Forward Characteristics, TJ = 25°C
VGE, GATE–EMITTER VOLTAGE (VOLTS)
IC = 15 A
30 A
Figure 4. Forward Characteristics, TJ = 125°C
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
60 A
Figure 5. Collector–Emitter Voltage versus
Gate–Emitter Voltage Figure 6. Collector–Emitter and Gate–Emitter
Voltages versus Total Gate Charge
8
12 V VGE = 18 V
15 V
TJ = 25
°
C
0 60 240
Qg, TOTAL GATE CHARGE (nC)
20 40 120
0
400
200
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
450
350
300
100
10080
VGE, GATE–EMITTER VOLTAGE (VOLTS)
18
16
14
12
10
8
6
4
2
0
250
50
160140 220200180
VCE = 200 V
300 V
400 V
150
IC = 30 A
TJ = 25
°
C
50
30
0
60
40
20
IF, FORWARD CURRENT (AMPS)
10
0VF, FORWARD VOLTAGE (VOLTS)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
TJ = 125
°
C
25
°
C
50
30
00VF, FORWARD VOLTAGE (VOLTS)
60
40
20
0.2
TJ = 125
°
C
25
°
C
IF, FORWARD CURRENT (AMPS)
10
0.4 0.6 0.8 1 1.2 1.4 1.6
400 V
300 V
VCE =
200 V
50
18
MHPM7A30A60B
5
Motorola IGBT Device Data
Typical Characteristics
100000
100 10 100 1000
RG(off), GATE RESISTANCE (OHMS)
10000
VCE = 300 V
VGE = 15 V
IC = 30 A
TJ = 125
°
C
tf
td(off)
Figure 7. Inductive Switching Times
versus Collector Current, TJ = 25°CFigure 8. Inductive Switching Times
versus Collector Current, TJ = 125°C
Figure 9. Inductive Switching Times
versus Gate Resistance, TJ = 25°CFigure 10. Inductive Switching Times
versus Gate Resistance, TJ = 125°C
1000
toff
1000
100
10 010203040 70
I
C
, COLLECTOR CURRENT (AMPS)
t, TIME (ns)
60
VCE = 300 V
VGE = 15 V
RG(off) = 20
TJ = 25
°
C
tf
td(off)
toff
50
1000
100 010203040 70
I
C
, COLLECTOR CURRENT (AMPS) 60
VCE = 300 V
VGE = 15 V
RG(off) = 20
TJ = 125
°
C
50
tf
td(off)
toff
10000
1000
100 10 100 1000
RG(off), GATE RESISTANCE (OHMS)
tf
td(off)
VCE = 300 V
VGE = 15 V
IC = 30 A
TJ = 25
°
C
toff
Figure 11. Inductive Switching Times
versus Collector Current Figure 12. Inductive Switching Times
versus Gate Resistance
10000
1010 100 1000
RG(on), GATE RESISTANCE (OHMS)
1000
VCE = 300 V
VGE = 15 V
IC = 30 A
100
TJ = 125
°
C
25
°
C
1000
10
0030 70
I
C
, COLLECTOR CURRENT (AMPS)
VCE = 300 V
VGE = 15 V
RG(on) = 39
100
10 20 40
TJ = 125
°
C
25
°
C
50 60
t, TIME (ns)t, TIME (ns)
t, TIME (ns) t, TIME (ns) t, TIME (ns)
tr
tr
MHPM7A30A60B
6Motorola IGBT Device Data
Typical Characteristics
PEAK REVERSE RECOVERY CURRENT (A)
rr
IREVERSE RECOVERY TIME (ns)
rr,
100000
10 0 10 100
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
10000
Figure 13. Turn–Off Energy Losses
versus Collector Current
030 70
Figure 14. Turn–Off Energy Losses
versus Gate Resistance
IF, FORW ARD CURRENT (AMPS)
10 20
1000
1
100
10
80
00 200
Figure 15. Reverse Recovery Characteristics —
Free–Wheeling Diode
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
60
1000
20 30 40 50 60 70 80 90
Cies
Coes
Cres
TJ = 125
°
C
25
°
C
trr
Irr
–di/dt = 150 A/
µ
s
IC, COLLECTOR CURRENT (AMPS)
20 +VGE = 15 V
–VGE = 0 V
RG(on) = 39
TJ = 25
°
C
100
40 50 60
400 600 800
TJ = 125
°
C
25
°
C
Figure 16. Capacitance Variation
1.0
0.1
0.01
0.0011.0 10 100 1000
t, TIME (ms)
r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
DIODE
IGBT
Figure 17. Reversed Biased Safe
Operating Area (RBSOA) Figure 18. Thermal Response
030 70
I
C
, COLLECTOR CURRENT (AMPS)
VCE = 300 V
VGE = 15 V
RG(off) = 20
10 20 40
TJ = 125
°
C
25
°
C
µ
, TURN–OFF ENERGY LOSSES ( J)
10000
10
1000
100
10000
100 10 100 1000
RG(off), GATE RESISTANCE (OHMS)
1000
VCE = 300 V
VGE = 15 V
IC = 30 A TJ = 125
°
C
25
°
C
50 60
Eoff
µ
, TURN–OFF ENERGY LOSSES ( J)Eoff
40
t
,
MHPM7A30A60B
7
Motorola IGBT Device Data
Figure 19. Inductive Switching Time Test Circuit and Timing Chart
OUTPUT, Vout
INVERTED
INPUT, Vin 10% 50% 90%
50%
90%
90%
tr
10%
tf
td(off)
td(on)
ton toff
PULSE WIDTH
LVCE
VCE
IC
RG
MHPM7A30A60B
8Motorola IGBT Device Data
Figure 20. Integrated Power Stage Schematic
U
V
W
20
19
18
24
23
22
R
S
T
17
8
911
10
2
3
45625
= PIN NUMBER IDENTIFICATION
21
16 17 14
12
13
15
–I +IN2N1 TEMP SENSE
E5
G5
D3
E3
G3
D5D1
E1
G1
Q1 Q3 Q5
G6
D4
G4
D6D2
G2
Q2 Q4 Q6
P1 P2
G7
Q8
+TC
–TC
Q7
B
IGBT/
DEVICE INTEGRATION
3–Phase
Output
IGBT/Diode
Bridge,
with Current
and Temperature
Sense
Brake
Diode
3–Phase
Input
Rectifier
Bridge
D8 D10 D12 D7
D9 D11 D13
MHPM7A30A60B
9
Motorola IGBT Device Data
PACKAGE DIMENSIONS
CASE 440A–02
ISSUE A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. LEAD LOCATION DIMENSIONS (ie: M, G, AA...)
ARE TO THE CENTER OF THE LEAD.
E
AFAC
AB
AD
AE AA
3 PL
9 PL
CK
25 18
171
2 PL
AH
AG
P
U
A
NG
L
M
4 PL
Y
4 PL
X
2 PL
Q
B
R
S
DETAIL Z
H
7 PL
J
25 PL
V
T
F
D
DETAIL Z
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A97.54 98.55 3.840 3.880
B62.74 63.75 2.470 2.510
C14.60 15.88 0.575 0.625
D0.56 0.97 0.022 0.038
E10.80 12.06 0.425 0.475
F0.81 1.22 0.032 0.048
G1.60 2.21 0.063 0.087
H8.58 9.19 0.338 0.362
J0.56 0.97 0.022 0.038
K18.80 20.57 0.740 0.810
L22.86 23.88 0.900 0.940
M46.23 47.24 1.820 1.860
N9.78 11.05 0.385 0.435
P82.55 83.57 3.250 3.290
Q4.01 4.62 0.158 0.182
R26.42 27.43 1.040 1.080
S12.06 12.95 0.475 0.515
T4.32 5.33 0.170 0.210
U86.36 87.38 3.400 3.440
V14.22 15.24 0.560 0.600
X6.55 7.16 0.258 0.282
Y2.49 3.10 0.098 0.122
AA 2.24 2.84 0.088 0.112
AB 7.32 7.92 0.288 0.312
AC 4.78 5.38 0.188 0.212
AD 8.58 9.19 0.338 0.362
AE 6.05 6.65 0.238 0.262
AF 4.78 5.38 0.188 0.212
AG 69.34 70.36 2.730 2.770
AH ––– 5.08 ––– 0.200
MHPM7A30A60B
10 Motorola IGBT Device Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Af firmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 5405, Denver , Colorado 80217. 303–675–2140 or 1–800–441–2447 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315
Mfax: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://www.mot.com/SPS/ 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MHPM7A30A60B/D