MC33201, MC33202, MC33204, NCV33202, NCV33204 Low Voltage, Rail-to-Rail Operational Amplifiers http://onsemi.com The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages ( 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications. PDIP-8 P, VP SUFFIX CASE 626 8 1 8 1 * Low Voltage, Single Supply Operation * * * * * * * * (+1.8 V and Ground to +12 V and Ground) Input Voltage Range Includes both Supply Rails Output Voltage Swings within 50 mV of both Rails No Phase Reversal on the Output for Over-driven Input Signals High Output Current (ISC = 80 mA, Typ) Low Supply Current (ID = 0.9 mA, Typ) 600 Output Drive Capability Extended Operating Temperature Ranges (-40 to +105C and -55 to +125C) Typical Gain Bandwidth Product = 2.2 MHz 8 1 SO-8 D, VD SUFFIX CASE 751 Micro-8 DM SUFFIX CASE 846A PDIP-14 P, VP SUFFIX CASE 646 14 1 14 SO-14 D, VD SUFFIX CASE 751A 1 14 1 TSSOP-14 DTB SUFFIX CASE 948G ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 12 of this data sheet. Semiconductor Components Industries, LLC, 2002 June, 2002 - Rev. 9 1 Publication Order Number: MC33201/D MC33201, MC33202, MC33204, NCV33202, NCV33204 PIN CONNECTIONS MC33201 All Case Styles NC 1 Inputs 8 2 7 MC33204 All Case Styles Output 1 1 NC VCC Inputs 1 3 6 Output VEE 4 5 NC 14 Output 4 1 4 3 12 11 5 10 6 2 3 Output 1 1 Inputs 1 2 1 3 VEE 4 VCC 7 Output 2 5 Inputs 4 VEE Inputs 3 Output 3 (Top View) 8 6 2 9 8 Output 2 7 MC33202 All Case Styles 13 VCC 4 Inputs 2 (Top View) 2 Inputs 2 (Top View) VCC VCC VEE VCC Vin- Vout VCC Vin+ VEE This device contains 70 active transistors (each amplifier). Figure 1. Circuit Schematic (Each Amplifier) http://onsemi.com 2 MC33201, MC33202, MC33204, NCV33202, NCV33204 MAXIMUM RATINGS Rating Symbol Value Unit VS +13 V Input Differential Voltage Range VIDR Note 1 V Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V to VEE - 0.5 V V Output Short Circuit Duration ts Note 3 sec Maximum Junction Temperature TJ +150 C Storage Temperature Tstg - 65 to +150 C Maximum Power Dissipation PD Note 3 mW Supply Voltage (VCC to VEE) DC ELECTRICAL CHARACTERISTICS (TA = 25C) Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Input Offset Voltage VIO (max) MC33201 MC33202, NCV33202 MC33204 8.0 10 12 8.0 10 12 6.0 8.0 10 Output Voltage Swing VOH (RL = 10 k) VOL (RL = 10 k) 1.9 0.10 3.15 0.15 4.85 0.15 Power Supply Current per Amplifier (ID) 1.125 1.125 1.125 Unit mV Vmin Vmax mA Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = GND. DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25C, unless otherwise noted.) Characteristic Figure Symbol Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V) MC33201: TA = + 25C MC33201: TA = - 40 to +105C MC33201V: TA = - 55 to +125C MC33202: TA = + 25C MC33202: TA = - 40 to +105C MC33202V: TA = - 55 to +125C NCV33202V: TA = - 55 to +125C (Note 4) MC33204: TA = + 25C MC33204: TA = - 40 to +105C MC33204V: TA = - 55 to +125C 3 VIO Input Offset Voltage Temperature Coefficient (RS = 50 ) TA = - 40 to +105C TA = - 55 to +125C 4 Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25C TA = - 40 to +105C TA = - 55 to +125C 5, 6 Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25C TA = - 40 to +105C TA = - 55 to +125C - Common Mode Input Voltage Range - Min Typ Max - - - - - - - - - - - - - - - - - - - 6.0 9.0 13 8.0 11 14 14 10 13 17 - - 2.0 2.0 - - - - - 80 100 - 200 250 500 - - - 5.0 10 - 50 100 200 VEE - VCC mV VIO/T V/C IIB nA IIO VICR Unit nA V 1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins. 2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2) 4. NCV33202 and NCV33204 are qualified for automotive use. http://onsemi.com 3 MC33201, MC33202, MC33204, NCV33202, NCV33204 DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25C, unless otherwise noted.) Characteristic Large Signal Voltage Gain (VCC = + 5.0 V, VEE = - 5.0 V) RL = 10 k RL = 600 Output Voltage Swing (VID = 0.2 V) RL = 10 k RL = 10 k RL = 600 RL = 600 Figure Symbol Min Typ Max 7 AVOL 50 25 300 250 - - VOH VOL VOH VOL 4.85 - 4.75 - 4.95 0.05 4.85 0.15 - 0.15 - 0.25 60 90 - 500 25 - 50 80 - - - 0.9 0.9 1.125 1.125 Unit kV/V 8, 9, 10 V Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR Power Supply Rejection Ratio VCC/VEE = 5.0 V/GND to 3.0 V/GND 12 PSRR Output Short Circuit Current (Source and Sink) 13, 14 ISC Power Supply Current per Amplifier (VO = 0 V) TA = - 40 to +105C TA = - 55 to +125C 15 ID dB V/V mA mA AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25C, unless otherwise noted.) Characteristic Slew Rate (VS = 2.5 V, VO = - 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0) Figure Symbol 16, 26 SR Min Typ Max 0.5 1.0 - Unit V/s Gain Bandwidth Product (f = 100 kHz) 17 GBW - 2.2 - MHz Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 AM - 12 - dB Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22 M - 65 - Deg CS - 90 - dB BWP - 28 - kHz - - 0.002 0.008 - - - 100 - Rin - 200 - k Cin - 8.0 - pF - - 25 20 - - - - 0.8 0.2 - - Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD 1 %) Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0) f = 1.0 kHz f = 10 kHz 24 THD % ZO Open Loop Output Impedance (VO = 0 V, f = 2.0 MHz, AV = 10) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 ) f = 10 Hz f = 1.0 kHz 25 Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 25 http://onsemi.com 4 en in nV/ Hz pA/ Hz 2500 40 PERCENTAGE OF AMPLIFIERS (%) PD(max) , MAXIMUM POWER DISSIPATION (mW MC33201, MC33202, MC33204, NCV33202, NCV33204 8 and 14 Pin DIP Pkg 2000 TSSOP-14 Pkg 1500 SO-14 Pkg 1000 SO-8 Pkg 500 0 -55 -40 -25 0 25 50 85 TA, AMBIENT TEMPERATURE (C) 30 25 20 15 10 5.0 0 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 6.0 VIO, INPUT OFFSET VOLTAGE (mV) 125 Figure 2. Maximum Power Dissipation versus Temperature 50 200 I IB , INPUT BIAS CURRENT (nA) PERCENTAGE OF AMPLIFIERS (%) 30 120 10 -10 0 10 20 30 40 VCM = 0 V to 0.5 V 80 VCM > 1.0 V 40 0 -55 -40 -25 50 TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (V/C) IO 25 70 85 125 Figure 5. Input Bias Current versus Temperature 150 300 A VOL , OPEN LOOP VOLTAGE GAIN (kV/V) I IB , INPUT BIAS CURRENT (nA) 0 TA, AMBIENT TEMPERATURE (C) Figure 4. Input Offset Voltage Temperature Coefficient Distribution 100 260 50 0 220 -50 180 -100 -150 VCC = 12 V VEE = Gnd TA = 25C -200 -250 10 VCC = +5.0 V VEE = Gnd 160 20 0 -50 -40 -30 -20 8.0 Figure 3. Input Offset Voltage Distribution 360 amplifiers tested from 3 (MC33204) wafer lots VCC = +5.0 V VEE = Gnd TA = 25C DIP Package 40 360 amplifiers tested from 3 (MC33204) wafer lots VCC = +5.0 V VEE = Gnd TA = 25C DIP Package 35 0 2.0 4.0 6.0 8.0 10 VCM, INPUT COMMON MODE VOLTAGE (V) 140 VCC = +5.0 V VEE = Gnd RL = 600 VO = 0.5 V to 4.5 V 100 -55 -40 -25 12 Figure 6. Input Bias Current versus Common Mode Voltage 0 25 70 85 TA, AMBIENT TEMPERATURE (C) 105 Figure 7. Open Loop Voltage Gain versus Temperature http://onsemi.com 5 125 VO, OUTPUT VOLTAGE (Vpp ) 12 VSAT, OUTPUT SATURATION VOLTAGE (V) MC33201, MC33202, MC33204, NCV33202, NCV33204 RL = 600 TA = 25C 10 8.0 6.0 4.0 2.0 0 1.0 2.0 3.0 4.0 5.0 VCC,VEE SUPPLY VOLTAGE (V) 6.0 TA = 125C VCC - 0.4 V CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp ) 6.0 10 IL, LOAD CURRENT (mA) VEE 20 15 VCC = +6.0 V VEE = -6.0 V RL = 600 AV = +1.0 TA = 25C 100 80 60 40 VCC = +6.0 V VEE = -6.0 V TA = -55 to +125C 20 0 1.0 M 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Figure 11. Common Mode Rejection versus Frequency I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) PSR, POWER SUPPLY REJECTION (dB) VEE + 0.2 V TA = -55C 5.0 Figure 10. Output Voltage versus Frequency 120 100 100 PSR+ 80 60 PSR- 40 VCC = +6.0 V VEE = -6.0 V TA = -55 to +125C 20 0 TA = 25C TA = 125C Figure 9. Output Saturation Voltage versus Load Current 9.0 10 k 100 k f, FREQUENCY (Hz) VEE + 0.4 V VCC = +5.0 V VEE = -5.0 V 0 12 0 1.0 k VCC - 0.2 V TA = 25C Figure 8. Output Voltage Swing versus Supply Voltage 3.0 VCC TA = -55C 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Source 80 60 Sink 40 VCC = +6.0 V VEE = -6.0 V TA = 25C 20 0 0 1.0 2.0 3.0 4.0 5.0 Vout, OUTPUT VOLTAGE (V) Figure 12. Power Supply Rejection versus Frequency Figure 13. Output Short Circuit Current versus Output Voltage http://onsemi.com 6 6.0 125 2.0 VCC = +5.0 V VEE = Gnd 1.6 100 Source 75 TA = 125C 1.2 Sink TA = 25C 0.8 50 TA = -55C 0.4 25 0 -55 -40 -25 0 25 70 85 TA, AMBIENT TEMPERATURE (C) 105 125 0 0 1.0 1.5 VCC = +2.5 V VEE = -2.5 V VO = 2.0 V +Slew Rate 1.0 -Slew Rate 0.5 0 25 70 85 105 1.0 0 -55 -40 -25 0 25 70 85 105 Figure 16. Slew Rate versus Temperature Figure 17. Gain Bandwidth Product versus Temperature 40 VS = 6.0 V TA = 25C RL = 600 80 30 120 2A 10 A 2.0 TA, AMBIENT TEMPERATURE (C) 50 -30 10 k VCC = +2.5 V VEE = -2.5 V f = 100 kHz TA, AMBIENT TEMPERATURE (C) 70 -10 3.0 125 2B 1A - Phase, CL = 0 pF 1B - Gain, CL = 0 pF 2A - Phase, CL = 300 pF 2B - Gain, CL = 300 pF 100 k 1B 1.0 M 1A 160 200 , EXCESS PHASE (DEGREES) , OPEN LOOP VOLTAGE GAIN (dB) VOL 0 -55 -40 -25 4.0 A VOL, OPEN LOOP VOLTAGE GAIN (dB) SR, SLEW RATE (V/ s) 2.0 6.0 Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load GBW, GAIN BANDWIDTH PRODUCT (MHz) Figure 14. Output Short Circuit Current versus Temperature 2.0 3.0 4.0 5.0 VCC, VEE, SUPPLY VOLTAGE (V) 70 30 120 2A -10 1A - Phase, VS = 6.0 V 1B - Gain, VS = 6.0 V 2A - Phase, VS = 1.0 V 2B - Gain, VS = 1.0 V f, FREQUENCY (Hz) 100 k 1B 2B 1.0 M f, FREQUENCY (Hz) Figure 18. Voltage Gain and Phase versus Frequency Figure 19. Voltage Gain and Phase versus Frequency http://onsemi.com 7 80 1A 10 -30 10 k 240 10 M 40 CL = 0 pF TA = 25C RL = 600 50 125 160 200 240 10 M , EXCESS PHASE (DEGREES) 150 I CC , SUPPLY CURRENT PER AMPLIFIER (mA) I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) MC33201, MC33202, MC33204, NCV33202, NCV33204 MC33201, MC33202, MC33204, NCV33202, NCV33204 60 50 40 30 VCC = +6.0 V VEE = -6.0 V RL = 600 CL = 100 pF 40 30 20 20 10 10 Gain Margin 0 -55 -40 -25 0 25 70 85 105 60 60 VCC = +6.0 V VEE = -6.0 V TA = 25C 45 30 15 0 0 125 10 100 60 Gain Margin THD, TOTAL HARMONIC DISTORTION (%) 14 12 10 40 8.0 30 6.0 20 4.0 10 2.0 0 10 10 1.0 0 1.0 k 100 0.01 0.001 10 90 AV = 10 60 VCC = +6.0 V VEE = -6.0 V VO = 8.0 Vpp TA = 25C 30 0 100 1.0 k 10 k f, FREQUENCY (Hz) Figure 22. Gain and Phase Margin versus Capacitive Load Figure 23. Channel Separation versus Frequency VCC = +5.0 V TA = 25C VO = 2.0 Vpp VEE = -5.0 V RL = 600 AV = 100 AV = 10 AV = 1.0 100 1.0 k 10 k 0 100 k AV = 100 120 CL, CAPACITIVE LOAD (pF) AV = 1000 0.1 10 k 150 100 k en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) 50 16 CS, CHANNEL SEPARATION (dB) Phase Margin 1.0 k Figure 21. Gain and Phase Margin versus Differential Source Resistance A , GAIN MARGIN (dB) M M , PHASE MARGIN (DEGREES) 70 15 RT, DIFFERENTIAL SOURCE RESISTANCE () Figure 20. Gain and Phase Margin versus Temperature VCC = +6.0 V VEE = -6.0 V RL = 600 AV = 100 TA = 25C 30 Gain Margin TA, AMBIENT TEMPERATURE (C) 80 45 50 VCC = +6.0 V VEE = -6.0 V TA = 25C 40 30 Noise Voltage 20 2.0 1.0 10 Noise Current 0 10 100 1.0 k 10 k f, FREQUENCY (Hz) Figure 25. Equivalent Input Noise Voltage and Current versus Frequency http://onsemi.com 8 4.0 3.0 f, FREQUENCY (Hz) Figure 24. Total Harmonic Distortion versus Frequency 5.0 0 100 k i n , INPUT REFERRED NOISE CURRENT (pA/ Hz) 50 75 Phase Margin M , PHASE MARGIN (DEGREES) 60 75 A , GAIN MARGIN (dB) M M , PHASE MARGIN (DEGREES) Phase Margin A , GAIN MARGIN (dB) M 70 70 MC33201, MC33202, MC33204, NCV33202, NCV33204 DETAILED OPERATING DESCRIPTION Circuit Information The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground. Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings. Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum. In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 loads. Because of this high output current capability, care should be taken not to exceed the 150C maximum junction temperature. VCC = +6.0 V VEE = -6.0 V RL = 600 CL = 100 pF TA = 25C V , OUTPUT VOLTAGE (50 mV/DIV) O VCC = +6.0 V VEE = -6.0 V RL = 600 CL = 100 pF TA = 25C t, TIME (5.0 s/DIV) t, TIME (10 s/DIV) Figure 26. Noninverting Amplifier Slew Rate V , OUTPUT VOLTAGE (2.0 V/DIV) O V , OUTPUT VOLTAGE (2.0 mV/DIV) O General Information Figure 27. Small Signal Transient Response VCC = +6.0 V VEE = -6.0 V RL = 600 CL = 100 pF AV = 1.0 TA = 25C t, TIME (10 s/DIV) Figure 28. Large Signal Transient Response http://onsemi.com 9 MC33201, MC33202, MC33204, NCV33202, NCV33204 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. Micro-8 0.208 5.28 0.041 1.04 0.126 3.20 0.015 0.38 0.0256 0.65 inches mm http://onsemi.com 10 MC33201, MC33202, MC33204, NCV33202, NCV33204 ORDERING INFORMATION Operational Amplifier Function Device Operating Temperature Range MC33201D MC33201DR2 Single TA= -40 to +105C MC33201P MC33201VD TA = -55 to 125C MC33202D MC33202DR2 MC33202DMR2 TA= -40 40 to +105C MC33202P Dual Shipping SO-8 98 Units / Rail SO-8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail SO-8 98 Units / Rail SO-8 98 Units / Rail SO-8 2500 Units / Tape & Reel Micro-8 4000 Units / Tape & Reel Plastic DIP 50 Units / Rail MC33202VD SO-8 98 Units / Rail MC33202VDR2 SO-8 2500 Units / Tape & Reel SO-8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail MC33204D SO-14 55 Units / Rail MC33204DR2 SO-14 2500 Units / Tape & Reel NCV33202VDR2* TA = -55 55 to 125C MC33202VP MC33204DTB Quad Package TA= -40 to +105C TSSOP-14 96 Units / Rail MC33204DTBR2 TSSOP-14 2500 Units / Tape & Reel MC33204P Plastic DIP 25 Units / Rail SO-14 55 Units / Rail SO-14 2500 Units / Tape & Reel SO-14 2500 Units / Tape & Reel Plastic DIP 25 Units / Rail MC33204VD MC33204VDR2 NCV33204DR2* 55 to 125C TA = -55 MC33204VP *NCV33202 and NCV33204 are qualified for automotive use. http://onsemi.com 11 MC33201, MC33202, MC33204, NCV33202, NCV33204 MARKING DIAGRAMS 8 8 3320x ALYW 1 14 MC33204VD AWLYWW 1 MC33202VP AWL YYWW * 3202 AYW 1 PDIP-14 P SUFFIX CASE 646 14 Micro-8 DM SUFFIX CASE 846A 8 1 SO-14 VD SUFFIX CASE 751A MC33204D AWLYWW 1 8 MC3320xP AWL YYWW 1 SO-14 D SUFFIX CASE 751A 14 8 320xV ALYW 1 PDIP-8 VP SUFFIX CASE 626 PDIP-8 P SUFFIX CASE 626 SO-8 VD SUFFIX CASE 751 SO-8 D SUFFIX CASE 751 PDIP-14 VP SUFFIX CASE 646 TSSOP-14 DTB SUFFIX CASE 948G 14 MC33204VP AWLYYWW MC33 204 ALYW 14 MC33204P AWLYYWW 1 1 x = 1 or 2 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week *This marking diagram also applies to NCV33204DR2. http://onsemi.com 12 1 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS PDIP-8 P, VP SUFFIX CASE 626-05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 -B- 1 4 DIM A B C D F G H J K L M N F -A- NOTE 2 L C J -T- MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10 0.030 0.040 N SEATING PLANE D M K G H 0.13 (0.005) T A M M B M SO-8 D, VD SUFFIX CASE 751-07 ISSUE AA NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07 -X- A 8 5 0.25 (0.010) S B 1 M Y M 4 K -Y- G C N X 45 SEATING PLANE -Z- 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M S http://onsemi.com 13 J DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS PDIP-14 P, VP SUFFIX CASE 646-06 ISSUE M 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F DIM A B C D F G H J K L M N L N C -T- SEATING PLANE J K H D 14 PL G M 0.13 (0.005) INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --10 0.015 0.039 MILLIMETERS MIN MAX 18.16 18.80 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --10 0.38 1.01 M SO-14 D, VD SUFFIX CASE 751A-03 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. -A- 14 8 -B- 1 P 7 PL 0.25 (0.010) 7 G M B M F R X 45 C -T- SEATING PLANE 0.25 (0.010) M T B J M K D 14 PL S A S http://onsemi.com 14 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.228 0.244 0.010 0.019 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS TSSOP-14 DTB SUFFIX CASE 948G-01 ISSUE O NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B -U- L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A -V- EE CC CC EE K1 J J1 SECTION N-N -W- C 0.10 (0.004) -T- SEATING PLANE D G H DETAIL E http://onsemi.com 15 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 --1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.193 0.200 0.169 0.177 --0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS Micro-8 DM SUFFIX CASE 846A-02 ISSUE E NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02. -A- -B- K PIN 1 ID G D 8 PL 0.08 (0.003) -T- M T B S A S SEATING PLANE 0.038 (0.0015) C H L J DIM A B C D G H J K L MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 --1.10 0.25 0.40 0.65 BSC 0.05 0.15 0.13 0.23 4.75 5.05 0.40 0.70 INCHES MIN MAX 0.114 0.122 0.114 0.122 --0.043 0.010 0.016 0.026 BSC 0.002 0.006 0.005 0.009 0.187 0.199 0.016 0.028 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800-282-9855 Toll Free USA/Canada http://onsemi.com 16 MC33201/D