Semiconductor Components Industries, LLC, 2002
June, 2002 – Rev. 9 1Publication Order Number:
MC33201/D
MC33201, MC33202,
MC33204, NCV33202,
NCV33204
Low Voltage, Rail-to-Rail
Operational Amplifiers
The MC33201/2/4 family of operational amplifiers provide
rail–to–rail operation on both the input and output. The inputs can be
driven as high as 200 mV beyond the supply rails without phase
reversal on the outputs, and the output can swing within 50 mV of each
rail. This rail–to–rail operation enables the user to make full use of the
supply voltage range available. It is designed to work at very low
supply voltages (±0.9 V) yet can operate with a supply of up to +12 V
and ground. Output current boosting techniques provide a high output
current capability while keeping the drain current of the amplifier to a
minimum. Also, the combination of low noise and distortion with a
high slew rate and drive capability make this an ideal amplifier for
audio applications.
Low Voltage, Single Supply Operation
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over–driven Input Signals
High Output Current (ISC = 80 mA, Typ)
Low Supply Current (ID = 0.9 mA, Typ)
600 Output Drive Capability
Extended Operating Temperature Ranges
(–40° to +105°C and –55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
ORDERING INFORMATION
PDIP–8
P, VP SUFFIX
CASE 626
81
SO–8
D, VD SUFFIX
CASE 751
81
PDIP–14
P, VP SUFFIX
CASE 646
14 1
SO–14
D, VD SUFFIX
CASE 751A
14 1
TSSOP–14
DTB SUFFIX
CASE 948G
14 1
Micro–8
DM SUFFIX
CASE 846A
81
See general marking information in the device marking
section on page 12 of this data sheet.
DEVICE MARKING INFORMATION
http://onsemi.com
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
2
PIN CONNECTIONS
6
7
8
5
3
2
1
4
NC
Inputs
VEE
NC
VCC
NC
Output
(Top View)
MC33201
All Case Styles
MC33202
All Case Styles
Output 1
Inputs 1
VEE
VCC
Output 2
Inputs 2
1
2
6
7
8
5
3
2
1
4
(Top View)
MC33204
All Case Styles
(Top View)
Output 1
Inputs 1
VCC
Output 4
Inputs 4
1
12
13
14
11
3
2
1
4
105
96
Output 2 8
7
Inputs 2 2
4
3
VEE
Inputs 3
Output 3
Vin- Vout
Figure 1. Circuit Schematic
(Each Amplifier)
VEE
VCC
VCC
VCC
VCC
Vin+
VEE This device contains 70 active transistors (each amplifier).
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
3
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) VS+13 V
Input Differential Voltage Range VIDR Note 1 V
Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V to
VEE 0.5 V V
Output Short Circuit Duration tsNote 3 sec
Maximum Junction Temperature TJ+150 °C
Storage Temperature Tstg 65 to +150 °C
Maximum Power Dissipation PDNote 3 mW
DC ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Unit
Input Offset Voltage
VIO (max)
MC33201
MC33202, NCV33202
MC33204
±8.0
±10
±12
±8.0
±10
±12
±6.0
±8.0
±10
mV
Output Voltage Swing
VOH (RL = 10 k)
VOL (RL = 10 k)1.9
0.10 3.15
0.15 4.85
0.15 Vmin
Vmax
Power Supply Current
per Amplifier (ID)1.125 1.125 1.125 mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = GND.
DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = – 40° to +105°C
MC33201V: TA = – 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = – 40° to +105°C
MC33202V: TA = – 55° to +125°C
NCV33202V: TA = – 55° to +125°C (Note 4)
MC33204: TA = + 25°C
MC33204: TA = – 40° to +105°C
MC33204V: TA = – 55° to +125°C
3VIO
6.0
9.0
13
8.0
11
14
14
10
13
17
mV
Input Offset Voltage Temperature Coefficient (RS = 50 )
TA = – 40° to +105°C
TA = – 55° to +125°C
4VIO/T
2.0
2.0
V/°C
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
5, 6 IIB
80
100
200
250
500
nA
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
IIO
5.0
10
50
100
200
nA
Common Mode Input Voltage Range VICR VEE VCC V
1. The differential input voltage of each amplifier is limited by two internal parallel back–to–back diodes. For additional differential input voltage
range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage
on either input must not exceed either supply rail by more than 500 mV.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
4.
NCV33202 and NCV33204 are qualified for automotive use.
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
4
DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V)
RL = 10 k
RL = 600
7 AVOL 50
25 300
250
kV/V
Output Voltage Swing (VID = ±0.2 V)
RL = 10 k
RL = 10 k
RL = 600
RL = 600
8, 9, 10 VOH
VOL
VOH
VOL
4.85
4.75
4.95
0.05
4.85
0.15
0.15
0.25
V
Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR 60 90 dB
Power Supply Rejection Ratio
VCC/VEE = 5.0 V/GND to 3.0 V/GND 12 PSRR 500 25 V/V
Output Short Circuit Current (Source and Sink) 13, 14 ISC 50 80 mA
Power Supply Current per Amplifier (VO = 0 V)
TA = – 40° to +105°C
TA = – 55° to +125°C
15 ID
0.9
0.9 1.125
1.125
mA
AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Slew Rate
(VS = ±2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0) 16, 26 SR 0.5 1.0 V/s
Gain Bandwidth Product (f = 100 kHz) 17 GBW 2.2 MHz
Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 AM 12 dB
Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22 M 65 Deg
Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 CS 90 dB
Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD 1 %) BWP 28 kHz
Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
24 THD
0.002
0.008
%
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10) ZO 100
Differential Input Resistance (VCM = 0 V) Rin 200 k
Differential Input Capacitance (VCM = 0 V) Cin 8.0 pF
Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz
f = 1.0 kHz
25 en
25
20
Hz
nV/
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
25 in
0.8
0.2
pA/
Hz
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
5
300
260
220
180
TA, AMBIENT TEMPERATURE (°C)
100
140
PERCENTAGE OF AMPLIFIERS (%)
TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (V/°C)
50
30
0
40
10
20
AVOL , OPEN LOOP VOLTAGE GAIN (kV/V)
Figure 2. Maximum Power Dissipation
versus Temperature Figure 3. Input Offset Voltage Distribution
PERCENTAGE OF AMPLIFIERS (%)
40
35
VIO, INPUT OFFSET VOLTAGE (mV)
30
25
15
0
20
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
2500
2000
1000
500
0
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Input Bias Current
versus Temperature
Figure 6. Input Bias Current
versus Common Mode Voltage Figure 7. Open Loop Voltage Gain versus
Temperature
150
50
0
-50
VCM, INPUT COMMON MODE VOLTAGE (V)
1500
PD(max), MAXIMUM POWER DISSIPATION (m
W
200
160
120
80
TA, AMBIENT TEMPERATURE (°C)
0
IIB , INPUT BIAS CURRENT (nA)
40
5.0
10
VCC = +5.0 V
VEE = Gnd
VCM > 1.0 V
VCM = 0 V to 0.5 V
IIB , INPUT BIAS CURRENT (nA)
100
-100
-150
-200
-250 -55 -40 -25 0 25 70 85 125
-50 0 20 40 50-10 10 30-30-40 -20
-10 0 4.0 8.0 10-55 -40 -25 0 25 50 85 125
2.0 4.0
-2.0 2.0 6.0-6.0-8.0 -4.0
-55 -40 -25 0 25 70 85 125
0 6.0 8.0 10 12 105
8 and 14 Pin DIP Pkg
SO-14 Pkg
SO-8 Pkg
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
VCC = +5.0 V
VEE = Gnd
RL = 600
VO = 0.5 V to 4.5 V
VCC = 12 V
VEE = Gnd
TA = 25°C
TSSOP-14 Pkg
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
6
VO, OUTPUT VOLTAGE (V )
pp VO, OUTPUT VOLTAGE (V )
pp
40
20
100
80
60
Vout, OUTPUT VOLTAGE (V)
0
f, FREQUENCY (Hz)
12
0
9.0
3.0
6.0
VCC = +6.0 V
VEE = -6.0 V
RL = 600
AV = +1.0
TA = 25°C
Figure 8. Output Voltage Swing
versus Supply Voltage Figure 9. Output Saturation Voltage
versus Load Current
V
IL, LOAD CURRENT (mA)
VEE
Figure 10. Output Voltage
versus Frequency
12
10
6.0
2.0
0
VCC,VEE SUPPLY VOLTAGE (V)
Figure 11. Common Mode Rejection
versus Frequency
Figure 12. Power Supply Rejection
versus Frequency Figure 13. Output Short Circuit Current
versus Output Voltage
120
80
60
f, FREQUENCY (Hz)
8.0
100
80
60
40
f, FREQUENCY (Hz)
0
CMR, COMMON MODE REJECTION (dB)
20
VCC = +6.0 V
VEE = -6.0 V
TA = -55° to +125°C
PSR, POWER SUPPLY REJECTION (dB)
100
40
20
0
VCC = +6.0 V
VEE = -6.0 V
TA = -55° to +125°C
VCC = +6.0 V
VEE = -6.0 V
TA = 25°C
4.0
SAT, OUTPUT SATURATION VOLTAGE (V)
TA = 25°C
TA = -55°C
PSR+
PSR-
ISC , OUTPUT SHORT CIRCUIT CURRENT (mA)
Source
Sink
VCC = +5.0 V
VEE = -5.0 V
TA = 125°C
TA = 125°C
TA = -55°C
TA = 25°C
10 100 1.0 k 10 k 100 k 1.0 M 0 1.0 2.0 3.0 4.0 5.0 6.0
1.0 k 100 k 1.0 M10 k
01520±1.0 ±2.0 105.0
10 100 1.0 k 10 k 100 k 1.0 M
±3.0 ±4.0 ±5.0 ±6.0
RL = 600
TA = 25°C
VCC
VCC - 0.2 V
VCC - 0.4 V
VEE + 0.4 V
VEE + 0.2 V
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
7
, EXCESS PHASE (DEGREES)
VCC, VEE, SUPPLY VOLTAGE (V)
ISC , OUTPUT SHORT CIRCUIT CURRENT (mA)SR, SLEW RATE (V/ s)µ
TA, AMBIENT TEMPERATURE (°C)
VCC = +2.5 V
VEE = -2.5 V
VO = ±2.0 V
Figure 14. Output Short Circuit Current
versus Temperature Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
I
Figure 16. Slew Rate
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
Figure 17. Gain Bandwidth Product
versus Temperature
Figure 18. Voltage Gain and Phase
versus Frequency Figure 19. Voltage Gain and Phase
versus Frequency
f, FREQUENCY (Hz)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
A , OPEN LOOP VOLTAGE GAIN (dB)
VCC = +5.0 V
VEE = Gnd
CC , SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 125°C
TA = -55°C
Source
Sink
TA = 25°C
+Slew Rate
-Slew Rate
TA, AMBIENT TEMPERATURE (°C)
VCC = +2.5 V
VEE = -2.5 V
f = 100 kHz
VOL
, EXCESS PHASE (DEGREES)
f, FREQUENCY (Hz)
70
50
30
10
-10
-30
2.0
0
1.5
0.5
1.0
2.0
1.6
0
150
125
75
25
0
70
50
30
100
4.0
3.0
2.0
0
1.0
10
-10
-30
50
1.2
0.8
0.4
±1.0 ±2.0 ±3.0 ±4.0 ±5.0 ±6.0
10 k 100 k 1.0 M 10 M
-55 -40 -25 25 70 1250 85 105 ±0
-55 -40 -25 25 70 1250 85 105 -55 -40 -25 25 70 1250 85 105
10 k 100 k 1.0 M 10 M
240
40
80
120
160
200
40
80
120
160
200
240
A , OPEN LOOP VOLTAGE GAIN (dB)
VOL
1A - Phase, CL = 0 pF
1B - Gain, CL = 0 pF
2A - Phase, CL = 300 pF
2B - Gain, CL = 300 pF
1A - Phase, VS = ±6.0 V
1B - Gain, VS = ±6.0 V
2A - Phase, VS = ±1.0 V
2B - Gain, VS = ±1.0 V
VS = ±6.0 V
TA = 25°C
RL = 600
CL = 0 pF
TA = 25°C
RL = 600
1A
2A
2B
1B
1A
2A
2B
1B
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
8
M, PHASE MARGIN (DEGREES)
i , INPUT REFERRED NOISE CURRENT (pA/ Hz)
n
50
40
30
e , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
20
10
0
n
RT, DIFFERENTIAL SOURCE RESISTANCE ()
CL, CAPACITIVE LOAD (pF)
80
0
70
40
Figure 20. Gain and Phase Margin
versus Temperature Figure 21. Gain and Phase Margin
versus Differential Source Resistance
75
60
0
Figure 22. Gain and Phase Margin
versus Capacitive Load
70
60
40
10
0
TA, AMBIENT TEMPERATURE (°C)
Figure 23. Channel Separation
versus Frequency
Figure 24. Total Harmonic Distortion
versus Frequency Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
10
1.0
0.1
f, FREQUENCY (Hz)
50
150
90
60
0
CS, CHANNEL SEPARATION (dB)
30
THD, TOTAL HARMONIC DISTORTION (%)
0.01
0.001
20
45
30
15
Phase Margin
Gain Margin
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
M, PHASE MARGIN (DEGREES)
30
AM, GAIN MARGIN (dB)
AM, GAIN MARGIN (dB)
60
10
20
30
50
AM, GAIN MARGIN (dB)
AV = 10
120
AV = 100
AV = 10
AV = 1.0
AV = 100
M, PHASE MARGIN (DEGREES)
100 1.0 k 10 k 100 k
10 100 1.0 k 100 k
-55 -40 -25 25 70 1250 85 105 10
10 100 1.0 k 100 1.0 k 10 k
10 100 10 k 100 k10 k 1.0 k
5.0
4.0
3.0
2.0
1.0
0
70
60
40
10
0
50
20
30
75
60
0
45
30
15
16
0
14
8.0
12
2.0
4.0
6.0
10
VCC = +6.0 V
VEE = -6.0 V
RL = 600
CL = 100 pF
VCC = +6.0 V
VEE = -6.0 V
TA = 25°C
Phase Margin
Phase Margin
Gain Margin
VCC = +6.0 V
VEE = -6.0 V
RL = 600
AV = 100
TA = 25°C
Gain Margin
VCC = +6.0 V
VEE = -6.0 V
VO = 8.0 Vpp
TA = 25°C
VCC = +5.0 V
TA = 25°C
VO = 2.0 Vpp
VEE = -5.0 V
RL = 600 VCC = +6.0 V
VEE = -6.0 V
TA = 25°C
Noise Voltage
Noise Current
AV = 1000
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
9
DETAILED OPERATING DESCRIPTION
General Information
The MC33201/2/4 family of operational amplifiers are
unique in their ability to swing rail–to–rail on both the input
and the output with a completely bipolar design. This offers
low noise, high output current capability and a wide
common mode input voltage range even with low supply
voltages. Operation is guaranteed over an extended
temperature range and at supply voltages of 2.0 V, 3.3 V and
5.0 V and ground.
Since the common mode input voltage range extends from
VCC to VEE, it can be operated with either single or split
voltage supplies. The MC33201/2/4 are guaranteed not to
latch or phase reverse over the entire common mode range,
however, the inputs should not be allowed to exceed
maximum ratings.
Circuit Information
Rail–to–rail performance is achieved at the input of the
amplifiers by using parallel NPN–PNP differential input
stages. When the inputs are within 800 mV of the negative
rail, the PNP s tage is on. When the inputs are m o re t han 8 00
mV greater than VEE, the N PN s tage i s o n. This s witching o f
input pairs will cause a reversal of input bias currents (see
Figure 6). Also, slight differences in offset voltage may be
noted between the NPN and PNP pairs. Cross–coupling
techniques h ave b een u sed t o k eep t his c hange t o a minimum.
In addition to its rail–to–rail performance, the output stage
is current boosted to provide 80 mA of output current,
enabling the op amp to drive 600 loads. Because of this
high output current capability, care should be taken not to
exceed the 150°C maximum junction temperature.
O, OUTPUT VOLTAGE (50 mV/DIV)V
t, TIME (10 s/DIV)
Figure 26. Noninverting Amplifier Slew Rate Figure 27. Small Signal Transient Response
t, TIME (5.0 s/DIV)
Figure 28. Large Signal Transient Response
VCC = +6.0 V
VEE = -6.0 V
RL = 600
CL = 100 pF
TA = 25°C
O, OUTPUT VOLTAGE (2.0 mV/DIV)
VCC = +6.0 V
VEE = -6.0 V
RL = 600
CL = 100 pF
AV = 1.0
TA = 25°C
V
VCC = +6.0 V
VEE = -6.0 V
RL = 600
CL = 100 pF
TA = 25°C
t, TIME (10 s/DIV)
O, OUTPUT VOLTAGE (2.0 V/DIV)V
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
10
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount b oard l ayout i s a c ritical portion o f t he t otal
design. T he f ootprint f or t he s emiconductor p ackages m ust b e
the correct size to ensure proper solder connection interface
between the board and the package. With the correct pad
geometry, the packages will self–align when subjected to a
solder reflow process.
mm
inches
0.041
1.04
0.208
5.28
0.015
0.38 0.0256
0.65
0.126
3.20
Micro–8
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
11
ORDERING INFORMATION
Operational
Amplifier Function Device Operating
Temperature Range Package Shipping
MC33201D SO–8 98 Units / Rail
Single
MC33201DR2 TA= –40° to +105°CSO–8 2500 Units / Tape & Reel
Single MC33201P
A
Plastic DIP 50 Units / Rail
MC33201VD TA = –55° to 125°C SO–8 98 Units / Rail
MC33202D SO–8 98 Units / Rail
MC33202DR2
T=40°to +105°C
SO–8 2500 Units / Tape & Reel
MC33202DMR2 TA= –40 ° to +105°CMicro–8 4000 Units / Tape & Reel
Dual
MC33202P Plastic DIP 50 Units / Rail
Dual MC33202VD SO–8 98 Units / Rail
MC33202VDR2
T55°to 125°C
SO–8 2500 Units / Tape & Reel
NCV33202VDR2* TA = –55° to 125°CSO–8 2500 Units / Tape & Reel
MC33202VP Plastic DIP 50 Units / Rail
MC33204D SO–14 55 Units / Rail
MC33204DR2 SO–14 2500 Units / Tape & Reel
MC33204DTB TA= –40 ° to +105°CTSSOP–14 96 Units / Rail
MC33204DTBR2
A
TSSOP–14 2500 Units / Tape & Reel
Quad MC33204P Plastic DIP 25 Units / Rail
MC33204VD SO–14 55 Units / Rail
MC33204VDR2
T=55°to 125°C
SO–14 2500 Units / Tape & Reel
NCV33204DR2* TA = –55° to 125°CSO–14 2500 Units / Tape & Reel
MC33204VP Plastic DIP 25 Units / Rail
*NCV33202 and NCV33204 are qualified for automotive use.
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
12
SO–8
D SUFFIX
CASE 751
PDIP–8
P SUFFIX
CASE 626
SO–8
VD SUFFIX
CASE 751
x = 1 or 2
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
PDIP–8
VP SUFFIX
CASE 626
SO–14
D SUFFIX
CASE 751A
TSSOP–14
DTB SUFFIX
CASE 948G
PDIP–14
P SUFFIX
CASE 646
SO–14
VD SUFFIX
CASE 751A
PDIP–14
VP SUFFIX
CASE 646
MARKING DIAGRAMS
Micro–8
DM SUFFIX
CASE 846A
3202
AYW
1
8
ALYW
3320x
1
8
ALYW
320xV
1
8
1
8
MC3320xP
AWL
YYWW
1
8
MC33202VP
AWL
YYWW
1
14
MC33204D
AWLYWW
1
14
MC33204VD
AWLYWW
1
14
MC33204P
AWLYYWW
1
14
MC33204VP
AWLYYWW
1
14
MC33
204
ALYW
*
*This marking diagram also applies to NCV33204DR2.
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
13
PACKAGE DIMENSIONS
PDIP–8
P, VP SUFFIX
CASE 626–05
ISSUE L
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
14
58
F
NOTE 2 –A–
–B–
–T–
SEATING
PLANE
H
J
GDK
N
C
L
M
M
A
M
0.13 (0.005) B M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.40 10.16 0.370 0.400
B6.10 6.60 0.240 0.260
C3.94 4.45 0.155 0.175
D0.38 0.51 0.015 0.020
F1.02 1.78 0.040 0.070
G2.54 BSC 0.100 BSC
H0.76 1.27 0.030 0.050
J0.20 0.30 0.008 0.012
K2.92 3.43 0.115 0.135
L7.62 BSC 0.300 BSC
M--- 10 --- 10
N0.76 1.01 0.030 0.040

SO–8
D, VD SUFFIX
CASE 751–07
ISSUE AA
SEATING
PLANE
1
4
58
N
J
X 45
K
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
STANDAARD IS 751-07
A
BS
D
H
C
0.10 (0.004)
DIM
A
MIN MAX MIN MAX
INCHES
4.80 5.00 0.189 0.197
MILLIMETERS
B3.80 4.00 0.150 0.157
C1.35 1.75 0.053 0.069
D0.33 0.51 0.013 0.020
G1.27 BSC 0.050 BSC
H0.10 0.25 0.004 0.010
J0.19 0.25 0.007 0.010
K0.40 1.27 0.016 0.050
M0 8 0 8
N0.25 0.50 0.010 0.020
S5.80 6.20 0.228 0.244
–X–
–Y–
G
M
Y
M
0.25 (0.010)
–Z–
Y
M
0.25 (0.010) Z SXS
M

MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
14
PACKAGE DIMENSIONS
PDIP–14
P, VP SUFFIX
CASE 646–06
ISSUE M
17
14 8
B
ADIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.715 0.770 18.16 18.80
B0.240 0.260 6.10 6.60
C0.145 0.185 3.69 4.69
D0.015 0.021 0.38 0.53
F0.040 0.070 1.02 1.78
G0.100 BSC 2.54 BSC
H0.052 0.095 1.32 2.41
J0.008 0.015 0.20 0.38
K0.115 0.135 2.92 3.43
L
M--- 10 --- 10
N0.015 0.039 0.38 1.01

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
F
HG DK
C
SEATING
PLANE
N
–T–
14 PL
M
0.13 (0.005)
L
M
J0.290 0.310 7.37 7.87
SO–14
D, VD SUFFIX
CASE 751A–03
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P7 PL
14 8
71 M
0.25 (0.010) B M
S
B
M
0.25 (0.010) A S
T
–T–
F
RX 45
SEATING
PLANE D14 PL K
C
J
M
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A8.55 8.75 0.337 0.344
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.228 0.244
R0.25 0.50 0.010 0.019
 
MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
15
PACKAGE DIMENSIONS
TSSOP–14
DTB SUFFIX
CASE 948G–01
ISSUE O
S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V S
T
L–U–
SEATING
PLANE
0.10 (0.004)
–T–
ÇÇ
ÇÇ
SECTION N–N
DETAIL E
JJ1
K
K1
ÉÉ
ÉÉ
DETAIL E
F
M
–W–
0.25 (0.010)
8
14
7
1
PIN 1
IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
–V–
14X REFK
N
N
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C--- 1.20 --- 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.50 0.60 0.020 0.024
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.

MC33201, MC33202, MC33204, NCV33202, NCV33204
http://onsemi.com
16
PACKAGE DIMENSIONS
Micro–8
DM SUFFIX
CASE 846A–02
ISSUE E
S
B
M
0.08 (0.003) A S
TDIM MIN MAX MIN MAX
INCHESMILLIMETERS
A2.90 3.10 0.114 0.122
B2.90 3.10 0.114 0.122
C--- 1.10 --- 0.043
D0.25 0.40 0.010 0.016
G0.65 BSC 0.026 BSC
H0.05 0.15 0.002 0.006
J0.13 0.23 0.005 0.009
K4.75 5.05 0.187 0.199
L0.40 0.70 0.016 0.028
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.
–B–
–A–
D
K
G
PIN 1 ID
8 PL
0.038 (0.0015)
–T– SEATING
PLANE
C
HJL
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MC33201/D
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada