E Series Module Datasheet (v002) Functional description Overview The E Series module is an IOT platform for creating cellularconnected products. It is an industrial version of Particle's Electron dev kit. It is specifically designed for mass scale manufacturing and integration. It comes with and an affordable data plan for lowbandwidth applications. Plus it's available for more than 100 countries worldwide! It also comes with Particle's development tools and cloud platform for managing and interacting with your new connected hardware. Features Ublox SARAU260/U270/U201/G350 cellular module STM32F205RGT6 120MHz ARM Cortex M3 microcontroller 1MB flash, 128KB RAM BQ24195 power management unit and battery charger MAX17043 fuel gauge 30 mixedsignal GPIO and advanced peripherals Open source design Realtime operation system (RTOS) FCC, CE and IC certified Interfaces Block diagram Power The E series can be powered via the VIN (3.9V12VDC) pin, the USB Micro B connector or a LiPo battery. USB Most USB ports can supply only a maximum of 500mA, but the uBlox GSM module on the E series alone can consume a peak of 800mA to 1800mA of current during transmission. In order to compensate of this deficit, one must connect the LiPo battery at all times when powering from a traditional USB port. The E series will intelligently source power from the USB most of the time and keep the battery charged. During peak current requirements, the additional power will be sourced from the battery. This reduces the chargedischarge cycle load on the battery, thus improving its longevity. VIN The input voltage range on VIN pin is 3.9VDC to 12VDC. When powering from the VIN pin alone, make sure that the power supply is rated at 10W (for example 5VDC at 2Amp). If the power source is unable to meet this requirement, you'll need connect the LiPo battery as well. An additional bulk capacitance of 470uF to 1000uF should be added to the VIN input when the LiPo Battery is disconnected. The amount of capacitance required will depend on the ability of the power supply to deliver peak currents to the cellular modem. LIPO This pin serves two purposes. You can use this pin to connect a LiPo battery directly without having to use a JST connector or it can be used to connect an external DC power source (and this is where one needs to take extra precautions). When powering it from an external regulated DC source, the recommended input voltage range on this pin is between 3.6V to 4.4VDC. Make sure that the supply can handle currents of at least 3Amp. This is the most efficient way of powering the E series since the PMIC bypasses the regulator and supplies power to the E series module via an internal FET leading to lower quiescent current. When powered from a LiPo battery alone, the power management IC switches off the internal regulator and supplies power to the system directly from the battery. This reduces the conduction losses and maximizes battery run time. The battery provided with the E series module is a LithiumIon Polymer battery rated at 3.7VDC 2000mAh. You can substitute this battery with another 3.7V LiPo with higher current rating. Remember to never exceed this voltage rating and always pay attention to the polarity of the connector. Typical current consumption is around 180mA and up to 1.8A transients at 5VDC. In deep sleep mode, the quiescent current is 130uA (powered from the battery alone). VBUS This pin is internally connected to USB supply rail and will output 5V when the E series module is plugged into an USB port. It is intentionally left unpopulated. This pin will NOT output any voltage when the E series module is powered via VIN and/or the LiPo battery. 3V3 Pin This pin is the output of the onboard 3.3V switching regulator that powers the microcontroller and the peripherals. This pin can be used as a 3.3V power source with a max load of 800mA. Unlike the Photon or the Core, this pin CANNOT be used as an input to power the E series module. VDDA Unlike the Electron, the E series module exposes the VDDA pin of the STM32 microcontroller separately. This pin powers the ADC block of the microcontroller. A maximum difference of 300 mV between VDD (in this case, 3V3) and VDDA can be tolerated during powerup and powerdown operation. Under normal operations, connect the VDDA to 3V3 pin of the E0. VBAT This is the supply to the internal RTC, backup registers and SRAM. You can connect a backup battery to it (1.65 to 3.6VDC), if you wish to retain RTC/RAM when 3V3 is absent or simply tie it up to 3V3. PMID This pin is the output of the internal boost regulator of the PMIC that can source 5.1VDC from the battery in OTG (On The Go) mode. This feature is useful when your circuitry needs a 5V source from the E series module when powered by the battery alone. The confusing bit about this pin is that it will continue to provide 5.1VDC but only when the input voltage (VIN) is between 3.6V to 5.1VDC. As soon as the input voltage exceeds this limit, the PMID starts tracking that voltage. For example if VIN = 9VDC, the PMID will be 9VDC and NOT 5.1VDC. So you need to be careful when using it as a source for powering your external circuitry. The max current draw on this pin is 2.1A but is not recommended due to thermal limitations of the circuit board. FCC approved antennas Antenna Type Manufacturer MFG. Part # Gain PCB antenna Taoglas PC104.07.0165C 1dBi ~ 2.39dBi Peripherals and GPIO Peripheral Type Qty Input(I) / Output(O) FT[1] / 3V3[2] Digital 30 I/O FT/3V3 Analog (ADC) 12 I 3V3 Analog (DAC) 2 O 3V3 UART 3 I/O 3V3 SPI 2 I/O 3V3 I2S 1 I/O 3V3 I2C 1 I/O FT CAN 2 I/O 3V3[4] USB 1 I/O 3V3 PWM 133 O 3V3 Notes: [1] FT = 5.0V tolerant pins. All pins except A3 and DAC are 5V tolerant (when not in analog mode). If used as a 5V input the pullup/pulldown resistor must be disabled. [2] 3V3 = 3.3V max pins. [3] PWM is available on D0, D1, D2, D3, B0, B1, B2, B3, A4, A5, WKP, RX, TX with a caveat: PWM timer peripheral is duplicated on two pins (A5/D2) and (A4/D3) for 11 total independent PWM outputs. For example: PWM may be used on A5 while D2 is used as a GPIO, or D2 as a PWM while A5 is used as an analog input. However A5 and D2 cannot be used as independently controlled PWM outputs at the same time. [4] Technically these pins are 5.0V tolerant, but since you wouldn't operate them with a 5.0V transceiver it's proper to classify them as 3.3V. JTAG AND SWD Pin D3 through D7 are JTAG interface pins. These can be used to reprogram your E series module bootloader or user firmware image with standard JTAG tools such as the STLink v2, JLink, RLink, OLIMEX ARMUSBTINIH, and also the FTDIbased Particle JTAG Programmer. If you are short on available pins, you may also use SWD mode which requires less connections. E series module Pin JTAG SWD STM32F205RGT6 Pin Default Internal[1] D7 JTAG_TMS SWD/SWDIO PA13 ~40k pullup D6 JTAG_TCK CLK/SWCLK PA14 ~40k pulldown D5 JTAG_TDI PA15 ~40k pullup D4 JTAG_TDO PB3 Floating D3 JTAG_TRST PB4 ~40k pullup 3V3 Power GND Ground RST Reset Notes: [1] Default state after reset for a short period of time before these pins are restored to GPIO (if JTAG debugging is not required, i.e. USE_SWD_JTAG=y is not specified on the command line.) Memory Map STM32F205RGT6 Flash Layout Overview Bootloader (16 KB) DCD1 (16 KB), stores keys, mfg info, system flags, etc.. DCD2 (16 KB), swap area for DCD1 EEPROM emulation bank 1 (16 KB) EEPROM emulation bank 2 (64 KB) [only 16k used] System firmware (512 KB) [256 KB comms + 256 KB hal/platform/services] Factory backup, OTA backup and user application (384 KB) [3 x 128 KB] DCD Layout The DCD area of flash memory has been mapped to a separate DFU media device so that we can incrementally update the application data. This allows one item (say, server public key) to be updated without erasing the other items. DCD layout as of v0.4.9 found here in firmware Region Offset Size system flags 0 32 version 32 2 device private key 34 1216 device public key 1250 384 ip config 1634 128 claim code 1762 63 claimed 1825 1 device id 1852 6 version string 1858 32 dns resolve 1890 128 reserved1 2018 64 server public key 2082 768 padding 2850 2 flash modules 2852 100 product store 2952 24 cloud transport 2977 1 alt device public key 2978 128 alt device private key 3106 192 alt server public key 3298 192 alt server address 3490 128 reserved2 3618 1280 Note: Writing 0xFF to offset 3106 (DEFAULT key used on E series module) will cause the device to regenerate a new private UDP/ECC key on the next boot. TCP keys are currently unsupported on the E series module but would be located at offset 34. You should not need to use this feature unless your keys are corrupted. // Regenerate Alternate Keys (Default) echo -e "\xFF" > fillbyte && dfu-util -d 2b04:d00a -a 1 -s 3106 -D fillbyte // Regenerate TCP Keys (Unsupported) echo -e "\xFF" > fillbyte && dfu-util -d 2b04:d00a -a 1 -s 34 -D fillbyte Memory Map (Common) Region Bootloader DCD1 DCD2 EEPROM1 EEPROM2 Start Address 0x8000000 0x8004000 0x8008000 0x800C000 0x8010000 End Address 0x8004000 0x8008000 0x800C000 0x8010000 0x8020000 Size 16 KB 16 KB 16 KB 16 KB 64 KB Memory Map (Modular Firmware default) Before 0.6.0 firmware Region System Part 1 System Part 2 Application Factory Reset/Extended Application OTA Backup Decompress region Since 0.6.0 firmware Region System Part 2 System Part 3 System Part 1 Application Factory Reset/Extended Application OTA Backup Decompress region Start Address 0x8020000 0x8040000 0x8080000 0x80A0000 0x80C0000 0x80E0000 End Address 0x8040000 0x8060000 0x80A0000 0x80C0000 0x80E0000 0x8100000 Size 128 KB 128 KB 128 KB 128 KB 128 KB 128 KB Start Address 0x8020000 0x8040000 0x8060000 0x8080000 0x80A0000 0x80C0000 0x80E0000 End Address 0x8040000 0x8060000 0x8080000 0x80A0000 0x80C0000 0x80E0000 0x8100000 Size 128 KB 128 KB 128 KB 128 KB 128 KB 128 KB 128 KB Memory Map (Monolithic Firmware optional) Region Firmware Factory Reset Unused (factory reset modular) Region Pin and button definition Pin markings: Start Address 0x8020000 0x8080000 0x80E0000 Start Address End Address Size 0x8080000 384 KB 0x80E0000 384 KB 0x8100000 128 KB End Address Size LED Status Charge status LED State Description ON Charging in progress OFF Charging complete Blink at 1Hz Fault condition[1] Rapid blinking Battery disconnected[2] Notes: [1] A fault condition can occur due to several reasons, for example, battery over/under voltage, temperature fault or safety timer fault. You can find the root cause by reading the fault register of the power management IC in firmware. [2] You can stop this behavior by either plugging in the LiPo battery or by disabling the charging using the appropriate firmware command. System RGB LED Unlike the Electron, the E series module does not have an onboard RGB status LED. We have provided its individual control pins for you to connect an LED of your liking. This will allow greater flexibility in the end design of your products. For a detailed explanation of different color codes of the RGB system LED, please take a look [here.](/guide/getting started/modes/E series module/) Pinout diagram You can download a high resolution pinout diagram in a PDF version here. Pin description # PIN 1 VIN FUNCTION DESCRIPTION This pin can be used as an input or output. As an input, supply 5VDC to 12VDC to power the Electron. When the Electron is powered via the USB POWER port, this pin will output a voltage of approximately 4.8VDC due to a reverse polarity protection series Schottky diode between VBUS and VIN. When used as an output, the max load on VIN is 1Amp. # 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIN GND VBUS GND LIPO NC GND PMID 3V3 VDDA VBAT GND USB+ USB GND TX FUNCTION POWER POWER POWER POWER TBD POWER POWER POWER POWER POWER POWER IO IO POWER IO 17 RX 18 GND IO POWER 19 WKP IO 20 DAC IO 21 22 23 24 25 26 27 28 29 30 A5 A4 A3 A2 A1 A0 GND B5 B4 B3 31 B2 32 B1 33 B0 IO IO IO IO IO IO POWER IO IO IO IO IO IO DESCRIPTION System ground. This is connected to the VBUS power pin of the USB port. System ground. This is connected to the +LiPo connector. Do not connect. System ground. This is connected to the PMID pin of the PMIC. This is the output of the 3V3 regulator on the E0. This is the input to the analog block of the STM32. Supply to the internal RTC, backup registers and SRAM when 3V3 is not present (1.65 to 3.6VDC). System ground. Data+ pin of the USB port. Data pin of the USB port. System ground. Primarily used as UART TX, but can also be used as a digital GPIO or PWM. Primarily used as UART RX, but can also be used as a digital GPIO or PWM. System ground. Activehigh wakeup pin, wakes the module from sleep/standby modes. When not used as a WAKEUP, this pin can also be used as a digital GPIO, ADC input or PWM. Can be referred to as A7 when used as an ADC. 12bit DigitaltoAnalog (D/A) output (04095), referred to as DAC or DAC1 in software. Can also be used as a digital GPIO or ADC. Can be referred to as A6 when used as an ADC. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. System ground. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), PWM and also digital GPIOs. 12bit AnalogtoDigital (A/D) inputs (04095), PWM and also digital GPIOs. Digital only GPIO, and PWM. Digital only GPIO, and PWM. # 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 PIN FUNCTION DESCRIPTION GND POWER System ground. D7 IO Digital only GPIO. D6 IO Digital only GPIO. D5 IO Digital only GPIO. D4 IO Digital only GPIO. D3 IO Digital only GPIO, and PWM. D2 IO Digital only GPIO, and PWM. D1 IO Digital only GPIO, and PWM. D0 IO Digital only GPIO, and PWM. GND POWER System ground. C5 IO Digital only GPIO, and PWM. C4 IO Digital only GPIO, and PWM. C3 IO Digital only GPIO. C2 IO Digital only GPIO. C1 IO Digital only GPIO. C0 IO Digital only GPIO. NC TBD Do not connect. GND POWER System ground. BLU IO Blue pin of the RGB LED. GRN IO Green pin of the RGB LED. RED IO Red pin of the RGB LED. MODE IO Connected to the MODE button input. RST I Activelow reset input. STAT O Connected to the charge status pin of the PMIC. GND POWER System ground. GND POWER System ground. GND POWER System ground. UB_USB+ IO Data+ pin of the ublox USB port. UB_USB IO Data pin of the ublox USB port. USB detect pin of the ublox USB port. 5V on this pin enables the ublox's UB_VUSB_DET IO USB interface. [1] PWM is available on D0, D1, D2, D3, B0, B1, B2, B3, A4, A5, WKP, RX, TX with a caveat: PWM timer peripheral is duplicated on two pins (A5/D2) and (A4/D3) for 11 total independent PWM outputs. For example: PWM may be used on A5 while D2 is used as a GPIO, or D2 as a PWM while A5 is used as an analog input. However A5 and D2 cannot be used as independently controlled PWM outputs at the same time. Technical Specifications Absolute maximum ratings [1] Parameter Symbol Min Typ Max Unit Supply Input Voltage VINMAX +17 V Supply Output Current IINMAXL 1 A Battery Input Voltage VLiPo +6 V Supply Output Current I3V3MAXL 800 mA Storage Temperature Tstg 30 +75 C ESD Susceptibility HBM (Human Body Mode) VESD 2 kV [1] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability. Recommended operating conditions Parameter Symbol Min Typ Max Unit Supply Input Voltage VIN +3.88[1] +12 V Supply Output Voltage VIN +4.8 V Supply Output Voltage V3V3 +3.3 V LiPo Battery Voltage VLiPo +3.6 +4.4 V Supply Input Voltage VVBAT +1.65 +3.6 V Supply Input Current (VBAT) IVBAT 19 uA Operating Current (uC on, Cellular ON) IIN avg 180 250 mA Peak Current (uC on, Cellular ON) IIN pk 800[2] 1800[3] mA Operating Current (uC on, Cellular OFF) IIN avg 47 50 mA Sleep Current (4.2V LiPo, Cellular OFF) IQs 0.8 2 mA Deep Sleep Current (4.2V LiPo, Cellular OFF) IQds 110 130 uA Operating Temperature Top 20 +60 C Humidity Range Non condensing, relative humidity 95 % Notes: [1] The minimum input voltage is software defined with a user selectable range of 3.88V to 5.08V in 80mV increments. Out of the box, the minimum input voltage is set to 4.36V in order for the LiPo battery to be able to properly charge. [2] 3G operation [3] 2G operation Radio specifications The E series is available in three different versions: A 2G version based on ublox G350 cellular module, and two 3G versions based on U260 and U270 modules. The difference between the 3G versions is their operating frequency band which differs based on the country. All of these cellular modules are GSM only and do not support CDMA networks. E series Compatible Countries 3G Module States, Australia, Argentina, Brazil, Canada, Chile, Colombia, Costa Rica, Dominican Republic, U260 United El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Venezuela Austria, Bahrain, Belarus, Belgium, Bulgaria, China, Congo, Croatia, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Estonia, Finland, France, Germany, Ghana, Gibraltar, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jersey, Kenya, Republic of Korea, Latvia, Lithuania, Luxembourg, Republic of Macedonia, Malaysia, Republic of Moldova, Republic of U270 Montenegro, Netherlands, New Zealand, Nigeria, Norway, Pakistan, Philippines, Poland, Portugal, Qatar, Reunion, Romania, Russian Federation, Rwanda, Saudi Arabia, Republic of Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, South Africa, Spain, Sri Lanka, Swaziland, Sweden, Switzerland, Taiwan, United Republic of Tanzania, Thailand, Turkey, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Zambia Please be sure to order a board that works in the country where you want to deploy your project. 2G cellular characteristics for G350, U260, and U270 modules: Parameter SARAU260 SARAU270 SARAG350 Protocol 3GPP Release 7 3GPP Release 7 3GPP Release 99 stack MS Class Class B Class B Class B GSM 850 MHz PCS 1900 EGSM 900 MHz DCS 1800 GSM 850 MHz EGSM 900 MHz Bands MHz MHz DCS 1800 MHz PCS 1900 MHz Class 4 (33 dBm) for 850 Class 4 (33 dBm) for 900 Class 4 (33 dBm) for 850/900 Power band Class 1 (30 dBm) for band Class 1 (30 dBm) for bands Class 1 (30 dBm) for Class 1900 band 1800 band 1800/1900 bands 3G cellular characteristics for U260, and U270 modules: Parameter SARAU260 Protocol stack 3GPP Release 7 UE Class Class A Bands Band V (850 MHz) Band II (1900 MHz) Parameter SARAU260 Power Class Class 3 (24 dBm) for all bands I/O Characteristics SARAU270 3GPP Release 7 Class A Band VIII (900 MHz) Band I (2100 MHz) SARAU270 Class 3 (24 dBm) for all bands These specifications are based on the STM32F205RGT6 datasheet, with reference to E series pin nomenclature. Parameter Symbol Conditions Min Typ Max Unit Standard I/O input low level 0.28*(V3V3 V VIL 0.3 voltage 2)+0.8 0.32*(V3V3 V I/O FT[1] input low level voltage VIL 0.3 2)+0.75 Standard I/O input high level 0.41*(V3V3 VIH V3V3+0.3 V voltage 2)+1.3 0.42*(V3V3 I/O FT[1] input high level voltage VIH V3V3 > 2V 5.5 V 2)+1 Parameter Standard I/O Schmitt trigger voltage hysteresis[2] I/O FT Schmitt trigger voltage hysteresis[2] Input leakage current[4] Symbol VIH Vhys Min Typ 0.42*(V3V3 2)+1 200 Vhys 5% V3V3[3] Ilkg Conditions V3V3 2V GND Vio V3V3 GPIOs RPU Max 5.2 Unit V mV mV 1 A Vio = 5V, I/O Input leakage current[4] Ilkg 3 A FT Weak pullup equivalent RPU Vio = GND 30 40 50 k resistor[5] Weak pulldown equivalent RPD Vio = V3V3 30 40 50 k resistor[5] I/O pin capacitance CIO 5 pF DAC output voltage (buffers VDAC 0.2 V3V30.2 V enabled by default) DAC output resistive load (buffers RDAC 5 k enabled by default) DAC output capacitive load CDAC 50 pF (buffers enabled by default) Notes: [1] FT = Fivevolt tolerant. In order to sustain a voltage higher than V3V3+0.3 the internal pullup/pulldown resistors must be disabled. [2] Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. [3] With a minimum of 100mV. [4] Leakage could be higher than max. if negative current is injected on adjacent pins. [5] Pullup and pulldown resistors are designed with a true resistance in series with switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). Mechanical Specifications Dimensions and Weight Width = 36 mm Height = 43 mm Thickness = 4.6 mm Weight = 8 gms Recommended PCB land pattern An E series part for EAGLE can be found in the Particle EAGLE library Schematic All of the E series hardware design files are open source and available under a Creative Commons Public License. The schematic and PCB designs were made using EAGLE CAD. You can access these files here. Note: Clone or Download the complete repository as a ZIP file to avoid corrupted data in Eagle files. USB The USB data lines are terminated with 22 Ohm resistors. These data pins are also exposed via small through holes next to the USB connector and are labeled D+ and D. The VBUS (+5VDC VCC of the USB port) is fed to the PMIC via a 3Amp Schottky diode (SS3P3). The VBUS pin is also available via the unpopulated header hole on the topright side of the E series. PMIC (Power Management Integrated Circuit) The E series uses TI's BQ24195 as the power management and charging unit. This PMIC intelligently sources power from either the VIN pin, the USB port and/or the LiPo battery. When all the power sources as connected, the unit tries to source power from the USB or VIN as default and continues to charge the LiPo battery. When the battery is completely charged, the power is then sourced from USB/VIN alone. If there is a power deficit (which generally occurs during cellular radio transmission), the additional power is then sourced from the battery as required. The unit can also seamlessly switch back to the battery when other sources of power are suddenly removed. The DP data pin of the USB is used by the PMIC to detect the presence of a USB power source. It then adjusts the charge current and the limit based on the type of USB power source it detects. This does not always happen successfully since there are a lot of USB hubs and chargers out there that do not meet the USB design guidelines. If the detection is unsuccessful, the PMIC defaults to a 500mA current limit. A user can always adjust these parameters via software. The microcontroller communicates with the PMIC via an I2C interface (pins PC9 and PA8). This interface allows the microcontroller to read the status of the PMIC and set its various parameters. Microcontroller The E series uses ST Microelectronics's STM32F205RGT6 ARM Cortex M3 microcontroller running at 120MHz. Ublox cellular module The ublox cellular module talks to the microcontroller over a fullduplex USART interface using a standard set of AT commands. The eSIM chip is directly connected to the ublox. The power to the eSIM chip is also provided by the cellular module. Buffers Since ublox module's communication interface operates at 1.8VDC, while the STM32F205RGT6 microcontroller operates at 3.3VDC, we need voltage translators inbetween them. This is achieved with two SN74AVC4T245 non inverting buffers. The default state of the USART pins is set with the help of pullup and pulldown resistors, and the unused input pins are tied to GND. 3.3V Regulator and Fuel Gauge The output (3.8V net) of the PMIC is fed directly to the ublox cellular module and a 3.3VDC high efficiency switching regulator (TPS62290). This 3.3VDC regulator helps power the microcontroller, fuel gauge and the buffers. The E series employs a MAX17043 fuel gauge to monitor the LiPo battery voltage and it's state of charge. The microcontroller communicates with it over an I2C interface (same channel as the PMIC). Product Handling ESD Precautions The E series contains highly sensitive electronic circuitry and is an Electrostatic Sensitive Device (ESD). Handling an E series without proper ESD protection may destroy or damage it permanently. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates EOs. ESD precautions should be implemented on the application board where the E series is mounted. Failure to observe these precautions can result in severe damage to the E series! Connectors There are two connectors on the E series that will get damaged with improper usage. The micro B USB connector on the E series is soldered on the PCB with large surface pads as well as couple of through hole anchor points. Despite this reinforcement, it is very easy to rip out the connector if too much stress is put on in the vertical direction. The u.FL antenna connector is a very fragile piece of hardware ( and is fancy too with all the gold plating). The connector was not designed to be constantly plugged and unplugged. Care must be taken not to put stress on it at any time (yes, swinging the E series by the antenna is a very bad idea, this is not your cat). The antenna pin is also the most static sensitive and you can destroy the radio with improper handling. If you are feeling adventurous, we highly recommend putting a tiny dab of glue (epoxy, rubber cement, liquid tape or hot glue) on the connector to securely hold the plug in place. Default settings The E series comes preprogrammed with a bootloader and a user application called Tinker. This application works with an iOS and Android app also named Tinker that allows you to very easily toggle digital pins, take analog and digital readings and drive variable PWM outputs. The bootloader allows you to easily update the user application via several different methods, USB, OTA, Serial Y Modem, and also internally via the Factory Reset procedure. All of these methods have multiple tools associated with them as well. You may use the online Web IDE Particle Build to code, compile and flash a user application OTA (Over The Air).Particle Dev is a local tool that uses the Cloud to compile and flash OTA as well. There is also a package Spark DFU-UTIL for Particle Dev that allows for Cloud compiling and local flashing via DFU over USB. This requires dfuutil to be installed on your system. 'dfuutil' can also be used with Particle CLI for Cloud compiling and local flashing via the command line. Finally the lowest level of development is available via the GNU GCC tool chain for ARM, which offers local compile and flash via dfuutil. This gives the user complete control of all source code and flashing methods. This is an extensive list, however not exhaustive. Glossary Term SMPS SIM RF SMT LED RGB LED USB Quiescent current FT 3V3 PMIC LiPo GSM CDMA OTA uC Definition Switch Mode Power Supply Subscriber Identity Module Radio Frequency Surface Mount Technology (often associated with SMD which is a surface mount device). Light Emitting Diode Red green and blue LEDs combined and diffused in one package. Universal Serial Bus Current consumed in the deepest sleep state. Fivetolerant; Refers to a pin being tolerant to 5V. +3.3Volt; The regulated +3.3V supply rail. Also used to note a pin is only 3.3V tolerant. Power Management Integrated Circuit Lithiumion Polymer Battery Global System for Mobile Communications Code Division Multiple Access Over The Air; describing how firmware is transferred to the device. Microcontroller Product Variants Name E210 E301 E302 E310 Connectivity 2G only 3G with 2G fallback 3G with 2G fallback 3G with 2G fallback Geography Global Regional(Americas/Aus) Regional(Eur/Asia/Aus) Global ublox variant SARAG350 SARAU260 SARAU270 SARAU201 Band Support 850/900/1800/1900 MHz 850/1900 MHz 900/1800/2100 MHz 850/900/1800/1900/2100 MHz FCC IC CE Warnings and End Product Labeling Requirements Federal Communication Commission Interference Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures: Reorient or relocate the receiving antenna. Increase the separation between the equipment and receiver. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/TV technician for help. FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesired operation. FCC Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This transmitter module must not be colocated or operating in conjunction with any other antenna or transmitter. This End equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body. IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or colocation with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for reevaluating the end product (including the transmitter) and obtaining a separate FCC authorization. End Product Labeling The final end product must be labeled in a visible area with the following: Contains FCC ID: XPYSARAG350 (For 2G E series module using the G350 module) XPYSARAU260 (For 3G E series module using the U260 module) XPYSARAU270 (For 3G E series module using the U270 module) XPYSARAU201 (For 3G E series module using the U201 module) Manual Information to the End User The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. Canada Statement This device complies with Industry Canada's licenceexempt RSSs. Operation is subject to the following two conditions: 1. This device may not cause interference; and 2. This device must accept any interference, including interference that may cause undesired operation of the device. Le present appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisee aux deux conditions suivantes: 1. l'appareil ne doit pas produire de brouillage; 2. l'utilisateur de l'appareil doit accepter tout brouillage radioelectrique subi, meme si le brouillage est susceptible d'en compromettre le fonctionnement. Caution Exposure: This device meets the exemption from the routine evaluation limits in section 2.5 of RSS102 and users can obtain Canadian information on RF exposure and compliance. Le dispositif repond a l'exemption des limites d'evaluation de routine dans la section 2.5 de RSS102 et les utilisateurs peuvent obtenir des renseignements canadiens sur l'exposition aux RF et le respect. The final end product must be labelled in a visible area with the following: The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the Industry Canada certification number of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows: Contains transmitter module IC: 8595ASARAG350 (For 2G E series using the G350 module) 8595ASARAU260 (For 3G E series using the U260 module) 8595ASARAU270 (For 3G E series using the U270 module) 8595ASARAU201 (For 3G E series using the U201 module) This End equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body. Cet equipement devrait etre installe et actionne avec une distance minimum de 20 centimetres entre le radiateur et votre corps. The end user manual shall include all required regulatory information/warning as shown in this manual. For an indepth review on certifications, please click here. Revision history Revision v002 v001 Date 30Aug 2017 09Aug 2017 Known Errata Contact Web https://www.particle.io Community Forums https://community.particle.io Email https://support.particle.io Author Comments naming convention from E0 to E Series, pulled in updates from MB Updated Electron datasheet MB Initial release