Part Number PPC440EP
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 1
PowerPC 440EP Embedded Processor
PPC440EP Data Sheet
Features
•PowerPC
440 processor core operating up to
667MHz with 32KB I-cache and D-cache with
parity checking.
Selectable processor:bus clock ratios of N:1, N:2.
Floating Point Unit with single- and doub le -
precision and single-cycle throughput.
Dual bridged Processor Local Buses (PLBs) with
64- and 128-bit widths.
Double Dat a Rate (DDR) Synchronous DRAM
(SDRAM) interface operating up to 133MHz with
ECC.
DMA support for external peripherals, internal
UART and memory.
PCI V2.2 interface (3.3V only). Thirty-two bits at
up to 66MHz.
Programmabl e interrupt controller supports
interrupts from a variety of sources.
Programmable General Purpose Timers (GPT).
Two Ethernet 10/100Mbps half- or full-duplex
interfaces. Operational modes supported are MII,
RMII, and SMII with packet reject.
Up to four serial ports (16550 compatible UART).
Two USB ports. One USB 1.1 Host interface with
on-chip PHY. One USB 2.0 Device interface, with
dedicated DMA, configured as a 1.1 on-chip PHY
or a 2.0 UTMI.
External peripheral bus (16-bit data) for up to six
devices with external mastering.
Two IIC interfaces (one with boot parameter read
capability).
NAND Flash interface.
SPI interface.
General Purpose I/O (GPIO) interface.
JTAG interface for board level testing.
Boot from PCI memory, NOR Flash on the
external peripheral bus, or NAND Flash on the
NAND Flash interface.
Available in RoHS compliant lead-free package.
Description
Designed specifically to address high-end e mbedded
applications, the PowerPC 440EP (PPC440EP)
provides a high-performance, low- power solution that
interfaces to a wide range of peripherals and
incorporates on-chip power management features.
This chip contains a high-performance RISC
processor, a floating point unit, DDR SDRAM
controller, PCI bus interface, control for external ROM
and peripherals, DMA with scatter-gather support,
Ethernet ports, serial ports, IIC interfaces, SPI
interface, USB ports, NAND Flash interface, and
general purpose I/O.
Technology: CMOS Cu-11, 0.13μm.
Package: 35mm, 456-ball standard plastic ball grid
array (E-PBGA), with and without lead (RoHS
compliant).
Typical power (m easured): Less than 3W at 533MHz,
2.5W at 400MHz.
Supply voltages required: 3.3V, 2.5V, 1.5V.
PPC440EP Embedded Processor Data Sheet
2 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Contents
Ordering and PVR Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PPC440EP Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PowerPC 440 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Floating Point Unit (FPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Internal Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
PCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DDR SDRAM Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
External Peripheral Bus Controller (EBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Ethernet Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DMA to PLB3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DMA to PLB4 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Serial Ports (UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
IIC Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Serial Peripheral Interface (SPI/SCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Universal Serial Bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
NAND Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
General Purpose Timers (GPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
General Purpose IO (GPIO) Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Universal Interrupt Controller (UIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Assembly Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Signal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Clocking Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DDR1 SDRAM I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Boot Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Revision Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 3
Data Sheet
Figures
Figure 1. Order Part Number Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. PPC440EP Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. 35mm, 456-Ball E-PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 5. Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 6. Input Setup and Hold Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 7. Output Delay and Float Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 8. DDR SDRAM Simulation Signal Termination Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 9. DDR SDRAM Write Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 10. DDR SDRAM MemClkOut0 and Read Clock Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 11. DDR SDRAM Read Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 12. DDR SDRAM Read Cycle Timing—Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 13. DDR SDRAM Read Cycle Timing—Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 14. DDR SDRAM Read Cycle Timing—Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PPC440EP Embedded Processor Data Sheet
4 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Tables
Table 1. System Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. DCR Address Map (4KB of Device Configuration Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Recommended Reflow Soldering Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. JEDEC Moisture Sensitivity Level and Ball Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Signals Listed Alphabetically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Signals Listed by Ball Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 7. Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 8. Signal Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 9. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 10. Recommended DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 11. Overshoot and Undershoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 12. Typical DC Power Supply Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 13. VDD Supply Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 14. DC Power Supply Current Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 15. Package Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 16. Clocking Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 17. Peripheral Interface Clock Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 18. I/O Specifications—PCI, USB, UART, IIC, SPI, Ethern et, Syst em and Debug Interfaces . . . . . . . . . 72
Table 19. I/O Specifications—EBC, EBMI, DMA and NAND Flash Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 20. Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 21. DDR SDRAM Output Driver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 22. I/O Timing—DDR SDRAM TDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 23. I/O Timing—DDR SDRAM TSK, TSA, and THA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 24. I/O Timing—DDR SDRAM TSD and THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 25. I/O Timing—DDR SDRAM TSIN and TDIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 26. Strapping Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 5
Data Sheet
Ordering and PVR Information
For information on the availability of the following parts, contact your local AppliedMicro sales office.
Each part number contains a revision code. This is the die mask revision number and is included in the part
number for identification purposes only.
The PVR (Processor Version Register) and the JTAG ID register are software accessible (read-only) and contain
information that uniquely id entifies the part. Refer to the PPC440EP User’s Manual for details on accessin g these
registers.
Figure 1. Order Part Number Key
Product Name Order Part Number
(see Notes:)Package Revision
Level PVR Value JTAG ID
PPC440EP PPC440EP-3pbfffCx 35mm, 456 ball, E-PBGA C 0x422218D4 0x2A950049
Notes:
1. p = Module Package type
B = standard (E-PBGA) and contains lead.
J = standard (E-PBGA) and is lead-free (RoHS compliant)
2. b = Chip revision level
C = Revision level C (2.1)
3. fff = Processor frequency
333 = 333MHz
400 = 400MHz
533 = 533MHz
667 = 667MHz
4. C = Case temperature range:
-40°C to + 90°C for 333MHz and 400 MHz parts
-40°C to +100°C for 533MHz parts
-40°C to +85°C for 667MHz parts
5. x = Shipping package type
Z = tape-and-reel
Blank = tray
AppliedMicro Part Number
PPC440EP-3JC667CZ
Package
Processor Frequency
Grade 3 Reliability
Case Temperature Range
Revision Level
Shipping Package
Note: The example P/N above is a standard lead-free, revision C package, capable of running at
667MHz, and is shipped in tape-and-reel packaging.
PPC440EP Embedded Processor Data Sheet
6 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Block Diagram
Figure 2. PPC440EP Functional Block Diagram
The PPC440EP is a system on a chip (SOC).
Processor Core DCR Bus
32KB
On-chip Peripheral Bus (OPB 0)
GPIO IIC UART
PLB (PLB4—128 bits)
DDR SDRAM
External
Peripheral
Controller
Controller
Clock
Control
Reset
Power
Mgmt
JTAG Trace
Timers
MMU - 30-bit addr
- 16-bit data
- 13-bit addr
- 32-bit data
NAND
Flash
Controller
UIC
I-Cache
32KB
D-Cache
PPC440
PCI
Bridge
x2 x4 MAL
Ethernet
x2
DCRs
GPT
1 MII
or
2 RMII
or
2 SMII
ZMII
66MHz max
10/100
66MHz max
266MHz data rate
PLB (PLB3—64 bits)
PLB
Bridge
SPI
USB 2.0
- 32 bits
- 6 devices
Performance
Monitor
FPU
External
DMA
Controller OPB
Bridge
BSC
10
UTMI
DMA
Controller
OPB
Bridge
1.1PHY
D+/D
OPB 1
USB 1.1
Host
1.1PHY
Device
D+/D
Interrupts
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 7
Data Sheet
Address Maps
The PPC440EP incorporates two addre ss maps. The first is a fixed pr ocessor System Memo ry Addre ss Map. T his
address map defines the possible contents of various address regions which the processor can access. The
second is the DCR Address Map for Device Configuration Registers (DCRs). The DCRs are accessed by software
running on the PPC 44 0E P pro ce sso r thr o ug h th e use of mtdcr and mfdcr instructions.
Table 1. System Memory Address Map (Sheet 1 of 2)
Function Sub Function Start Address End Address Size
Local Memory1DDR SDRAM 0 0000 0000 0 3FFF FFFF 1GB
Reserved 0 4000 0000 0 4FFF FFFF
USB 2.0 Device Bus
OPB Arbiter for USB (OPB 1) 0 5000 0000 0 5000 003F 64B
Reserved 0 5000 0040 0 5000 00FF
USB 2.0 Device 0 5000 0100 0 5000 017F 128B
Reserved 0 5000 0180 0 7FFF FFFF
EBC EBC 0 8000 0000 0 9FFF FFFF 512MB
PCI
PCI Memory 0 A000 0000 0 DFFF FFFF 1GB
Reserved 0 E000 0000 0 E7FF FFFF
PCI I/O 0 E800 0000 0 E800 FFFF 64KB
Reserved 0 E801 0000 0 E87F FFFF
PCI I/O 0 E880 0000 0 EBFF FFFF 56MB
Reserved 0 EC00 0000 0 EEBF FFFF
Configuration Registers 0 EEC0 0000 0 EEC0 0007 8B
Reserved 0 EEC0 0008 0 EECF FFFF
PCI Interrupt Ack / Special Cycle 0 EED0 0000 0 EED0 0003 4B
Reserved 0 EED0 0004 0 EF3F FFFF
Local Configuration Registers 0 EF40 0000 0 EF40 003F 64B
Reserved 0 EF40 0040 0 EF4F FFFF
PPC440EP Embedded Processor Data Sheet
8 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Internal Peripherals
Reserved 0 EF50 0000 0 EF5F FFFF
General Purpose Timer 0 EF60 0000 0 EF60 00FF 256B
Reserved 0 EF60 0100 0 EF60 02FF
UART0 0 EF60 0300 0 EF60 0307 8B
Reserved 0 EF60 0308 0 EF60 03FF
UART1 0 EF60 0400 0 EF60 0407 8B
Reserved 0 EF60 0408 0 EF60 04FF
UART2 0 EF60 0500 0 EF60 0507 8B
Reserved 0 EF60 0508 0 EF60 05FF
UART3 0 EF60 0600 0 EF60 0607 8B
Reserved 0 EF60 0608 0 EF60 06FF
IIC0 0 EF60 0700 0 EF60 071F 32B
Reserved 0 EF60 0720 0 EF60 07FF
IIC1 0 EF60 0800 0 EF60 081F 32B
Reserved 0 EF60 0820 0 EF60 08FF
SPI 0 EF60 0900 0 EF60 0906 6B
Reserved 0 EF60 0907 0 EF60 09FF
OPB Arbiter (OPB 0) 0 EF60 0A00 0 EF60 0A3F 64B
Reserved 0 EF60 0A40 0 EF60 0AFF
GPIO0 Controller 0 EF60 0B00 0 EF60 0B7F 128B
Reserved 0 EF60 0B80 0 EF60 0BFF
GPIO1 Controller 0 EF60 0C00 0 EF60 0C7F 128B
Reserved 0 EF60 0C80 0 EF60 0CFF
Ethernet PHY ZMII 0 EF60 0D00 0 EF60 0D0F 16B
Reserved 0 EF60 0D10 0 EF60 0DFF
Ethernet 0 Controller 0 EF60 0E00 0 EF60 0EFF 256B
Ethernet 1 Controller 0 EF60 0F00 0 EF60 0FFF 256B
USB 1.1 Host 0 EF60 1000 0 EF60 107F 128B
Reserved 0 EF60 1080 0 EFFF FFFF
EBC 0 F000 0000 0 FFDF FFFF 254MB
Boot space (EBC Bank 0 and PCI) 0 FFE0 0000 0 FFFF FFFF 2MB
Notes:
1. DDR SDRAM can be located anywhere in the Local Memory area of the memory map.
2. EBC and PCI are relocatable, but this map reflects the suggested configuration.
Table 1. System Memory Address Map (Sheet 2 of 2)
Function Sub Function Start Address End Address Size
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 9
Data Sheet
Table 2. DCR Address Map (4KB of Device Configuration Registers)
Function Start Address End Address Size
Total DCR Address Space1000 3FF 1KW (4KB)1
By function:
Reserved 000 00B 12W
Clocking Power On Reset (CPR) 00C 00D 2W
System DCRs (SDR) 00E 00F 2W
Memory Controller (SDRAM) 010 011 2W
External Bus Controller (EBC) 012 013 2W
Reserved 014 015 2W
PLB 128 Performance Monitor (PPM) 016 017 2W
Reserved 018 01F 8W
PLB 128 to PLB 64 Bridge Out 020 02F 16W
PLB 64 to PLB 128 Bridge In 030 03F 16W
Reserved 040 06F 64W
PLB 64 Arbiter 070 07F 16W
PLB 128 Arbiter 080 08F 16W
PLB 64 to OPB Bridge Out 090 09F 16W
Reserved 0A0 0A7 8W
OPB to PLB 64 Bridge In 0A8 0AF 8W
Power Management 0B0 0B7 8W
Reserved 0B8 0BF 8W
Interrupt Controller 0 0C0 0CF 16W
Interrupt Controller 1 0D0 0DF 16W
Reserved 0E0 0FF 32W
DMA to PLB 64 Controller 100 13F 64W
Reserved 140 17F 64W
Ethernet MAL 180 1FF 128W
PLB 128 to OPB Bridge 200 20F 16W
Reserved 210 2FF 512W
DMA to PLB 128 Controller 300 33F 64W
Reserved 340 3FF 512W
Notes:
1. DCR address space is addressable with up to 10 bits (1024 or 1K unique addresses). Each unique address represents a single 32-bit
(word) register. One kiloword (1024W) equals 4KB (4096 B).
PPC440EP Embedded Processor Data Sheet
10 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
PPC440EP Features
The following sections provide information on the features of the chip.
PowerPC 440 Processor Core
The PowerPC 440 processor core is designed for high-end applications: RAID controllers, SAN, iSCSI, routers,
switches, printers, set-top boxes, etc. It is the first processor core to implement the new Book E PowerPC
embedded architecture and the first to use the 128-bit version of IBM’s on-chip CoreConnect Bus Architecture .
Features include:
Up to 667MHz operation
PowerPC Book E architecture
32KB I-cache, 32KB D-cache
UTLB Word Wide parity on data and t ag address parity with exception force
Three logical regions in D-cache: locked, transient, normal
D-cache full line flush capability
41-bit virtual address, 36-bit (64GB) physical address
Superscalar, out-of-order ex ecution
7-stage pipeline
3 execution pi pe line s
Dynamic branch prediction
Memory management unit
64-entry, full associative, unified TLB with optional par ity
Separate instruction and data micro-TLBs
Storage attributes for write-through, cache-inhibited, guarded, and big or little endian
Debug facilities
Multiple instruction and data range breakpoints
Data value compare
Single step, branch, and trap events
Non-invasive real-time trac e inte r fac e
24 DSP instructions
Single cycle multiply and multiply-accumulate
32 x 32 integer multiply
16 x 16 -> 32-bit MAC
Floating Point Unit (FPU)
Features include:
Five stages with 2 MFlops/MHz
Hardware support for IEEE 754
Single- and dou ble-p re cis io n
Single-cycle throughput on most instructions
Thirty-two 64-bit floating point registers
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 11
Data Sheet
Internal Buses
The PowerPC 440EP featur es five standard on-chip buses: two Processor Local Buses (PLBs), two On-Chip
Peripheral Buses (OPBs), and th e Device Control Register Bus (DCR). The high performance, high bandwidth
cores such as the PowerPC 440 processor core, the DDR SDRAM memory controlle r, and the PCI br idge connect
to the PLBs. The primary OPB hosts l ower da ta rate p eriphe rals. T he secondar y OPB is d edicated to USB 2.0 a nd
DMA. The daisy-chained DCR provides a lower bandwidth path for passing status and control information between
the proces sor cor e an d th e ot he r on -chip cores.
Features include:
•PLB4
128-bit implementation of the PLB architecture
Separate and simultaneous read and write data paths
36-bit address
Simultaneous control, address, and data phases
Four levels of pipelining
Byte-enable capability supporting unaligned transfers
32- and 64-byte burst transfers
133MHz, maximum 4.25GB/s (simultaneous read and write)
Processor:bus clock ratios of N:1 and N:2
•PLB3
64-bit implementation of the PLB arch itecture
32-bit address
133MHz (1:1 ratio with PLB 128), maximum 1.1GB/s (no simultaneous read and write)
•OPB (2)
32-bit data path
32-bit address
66.66MHz
DCR
32-bit data path
10-bit address
PPC440EP Embedded Processor Data Sheet
12 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
PCI Interface
The PCI interface allows connection of PCI devices to the PowerPC processor and local memory. This interface is
designed to Version 2.2 of the PCI Specification and supports 32- bit PCI devices.
Reference Specifications:
PowerPC CoreConnect Bus (PLB) Specification Version 3.1
PCI Specification Version 2.2
PCI Bus Power Management Interface Specification Version 1.1
Features include:
•PCI 2.2
Frequency to 66MHz
32-bit bus
PCI Host Bus Bridge or an Adapter Device's PCI interface
Internal PCI arbitra tio n fu nct ion , sup p ortin g up to six ex ternal devices, that can be disabled for use with an
external arbit er
Support for Message Signaled Interrupts
Simple message passing capability
Asynchronous to the PLB
PCI Power Management 1.1
PCI register set addressable both from on-chip processor and PCI device sides
Ability to boot from PCI bus memory
Error tracking/statu s
Supports initiation of transfer to the following address spaces:
Single beat I/O reads and writes
Single beat and burst memory reads and writes
Single beat configuration reads and writes (type 0 and type 1)
Single beat special cycles
DDR SDRAM Memory Controller
The Double Data Rate (DDR) SDRAM memory controller supports industry standard discrete devices. Up to four
256MB logical banks are supported in limited configu rations. Global memory timings, ad dress and bank size s, and
memory addressing modes are programmable.
Features include:
Registered and non-registered industry standard discrete devices
32-bit memory interface with optional 8-bit ECC (SEC/DED)
Sustainable 1.1GB/s peak bandwidth at 133MHz
SSTL_2 logic
1 to 4 chip selects
CAS latencies of 2, 2.5 an d 3 su ppor te d
DDR200/266 support
Page mode accesses (up to eight open pages) with configurable paging policy
Programmable address mapping and timing
Hardware and software initiated self-refresh
Power management (self-refresh, suspend, sleep)
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 13
Data Sheet
External Peripheral Bus Controller (EBC)
Features include:
Up to six ROM, EPROM, SRAM, Flash memory, and slave peripheral I/O banks supported
Up to 66.66MHz operation
Burst and non- burst devices
16-bit byte-a dd re ssable data bus
30-bit address
Peripheral Device pacing with external “Ready”
Latch data on Ready, synchron ou s or asyn chro no u s
Programmable access timing per device
256 Wait States for non-burst
32 Burst Wait States for first access and up to 8 Wait States for subsequent accesses
Programmable CSon, CSoff relative to address
Programmable OEon, WEon, WEoff (1 to 4 clock cycles) relative to CS
Programmable address mapping
External DMA Slave Suppo r t
External master interface
Write posting from external master
Read prefetching on PLB for external master reads
Bursting capable from external master
Allows external master access to all non-EBC PLB slaves
External master can control EBC slaves for own access and control
Ethernet Controller Interface
Ethernet support provided by the PPC440EP interfaces to the physical layer but the PHY is not included on the
chip:
One to two 10/100 interfaces running in full- and half-duplex modes
One full Media Independent Interface (MII) with 4-bit parallel data transfer
Two Reduced Media Independent Interfaces (RMII) with 2-bit parallel data transfer
Two Serial Me d i a In de pe n den t Inte rfaces (SMII)
Packet reject support
DMA to PLB3 Controller
This DMA controller provides a DMA interface between the OPB and the 64-bit PLB.
Features include:
Supports the following transfers:
Memory-to-memory transfers
Buffered peripheral to memory transfers
Buffered memory to per iph er a l tran sfe r s
Four channe ls
Scatter/Gather capability for programming multiple DMA operations
32-byte buffer
8-, 16-, 32-bit peripheral support (OPB and external)
32-bit addressing
Address increment or decrement
Supports internal and external peripherals
Support for memory mapped peripherals
Support for peripherals running on slower frequency buses
PPC440EP Embedded Processor Data Sheet
14 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
DMA to PLB4 Controller
This DMA controller provides a DMA interface dedicated to the USB 2.0 device ports and th e 12 8- b it PLB.
Features include:
4 independent channels supporting internal USB 2.0 Device endpo ints 1 and 2
Support for mem ory-to-memory, peripheral-to-memory, and memory-to-peripheral transfe rs
Scatter/gather capability
128-byte buffer with programmable thresholds
Serial Ports (UART)
Features include:
Up to four ports in the following combinations:
One 8-pin
Two 4-pin
One 4-pin and two 2-pin
Four 2-pin
Selectable internal or external serial clock to allow wide range of baud rates
Register compatibility with NS16550 register set
Complete status reporting capability
Fully programmable serial-interface characte ristics
Supports DMA using internal DMA function on PLB 64
IIC Bus Interface
Features include:
Two IIC interfaces provided
Support for Philips® Semiconductors I2C Specification, dated 1995
Operation at 100kHz or 400kHz
•8-bit data
10- or 7-bit address
Slave transmitter and receiver
Master transmitter and receiver
Multiple bus masters
Two independent 4 x 1 byte data buffers
Twelve memory-mapped, fully programmable configuration registers
One programmable interrupt request signal
Provides full management of all IIC bus protocols
Programmable error recovery
Includes an integrated boot-strap co ntroller (BSC) that is multiplexed with the IIC0 interface
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 15
Data Sheet
Serial Peripheral Interface (SPI/SCP)
The Serial Peripheral Interface (also known as the Serial Communications Port) is a full-duplex, synchronous,
character-oriented (byte) port that allows the exchange of data with other serial devices. The SCP is a master on
the serial port supporting a 3-wire interface (receive, transmit, and clock), and is a slave on the OPB.
Features include:
Three-wire serial port interface
Full-duplex synchronous operation
SCP bus master
OPB bus slave
Programmab le clock rate divider
Clock inversion
Reverse data
Local data loop back for test
Universal Serial Bus (USB)
The USB interfaces provide both device and host support for version 1.1 and device support for version 2.0.
Support for the USB 2.0 Transceiver Macrocell Interface (UTMI) specification is included.
Features include:
USB 1.1 Host port with internal PHY
USB 2.0 Device UTMI or USB 1.1 Device PHY
Device support provide s 6 end points (3 in, 3 out)
1024B FIFO (double buffering of 512B packets)
FIFOs are not shared between in and out endpoints
•Endpoints do not support high-bandwidth isochronous transfers
Two USB 2.0 device end point s have DMA dedicated channels (DMA to PLB 128)
NAND Flash Controller
The NAND Flash controller provides a simple interface between the EBC and up to four separate external NAND
Flash devices. It provides both direct command, address, and data access to the external device as well as a
memory-mapped linear region that generates data accesses. NAND Flash device data app ears on the peripheral
data bus.
Features include:
1 to 4 banks supported on EB C
Direct Interfacing to:
Discrete NAND Flash device s (up to 4 devices)
SmartMedia Card socket (22-pins)
Device sizes:
4MB and larger supported for read/write access
4MB to 256MB for boot-from-NAND flash (size supported depends on addressing mode)
(512 + 16)-B or (2K + 64)-B device page sizes supported
Boot-from-NAND: Execute a linear sequence of boot code out of the first 4KB of block 0
Support DMA to allow direct, no-processor-intervention block copy from NAND Flash to SDRAM
ECC provides single-bit error correction and double-bit error detection in each 256B of stored data
Chip selects shared with EBC
PPC440EP Embedded Processor Data Sheet
16 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
General Purpose Timers (GPT)
Provides a separate time base counter and additional system timers in addition to those defined in the processor
core.
Features include:
32-bit Time Base Counter driven by the OPB bus clock
Seven 32-bit compare timers
General Purpose IO (GPIO) Controller
Controller fu nctions and GPIO registers are programmed and accesse d via memory-mapped OPB bus master
accesses.
64 GPIOs are multip lex ed with other functions. DC Rs control whether a particular pin that has GPIO
capabilities acts as a GPIO or is used for another purpose.
Each GPIO output is separately programmable to emulate an open drain driver (that is, drives to zero,
tri-stated if output bit is 1).
Universal Interrupt Controller (UIC)
Two Universal Interrupt Controllers (UIC) are employed. They provide control, status, and communications
necessary between the exter nal and internal sources of interrupts and the on-chip PowerPC processor.
Note: Processor specific interrupts (for example, page faults) do not use UIC resources.
Features include:
10 external interrupts
Edge triggered or level-sensitive
Positive or negative active
Non-critical or critical interrupt to the on -chip processor core
Programma ble inte rr up t pr ior ity or de r i ng
Programmable critical interrupt vector for faster vector processing
JTAG
Features include:
IEEE 1149.1 Test Access Port
IBM RISCWatch Debugger support
JTAG Boundary Scan Description Language (BSDL)
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 17
Data Sheet
Package Diagram
Figure 3. 35mm, 456-Ball E-PBGA
A
s
1.27 TYP
0.75 ± 0.15 SOLDERBALL x 456
26
AF
35.0±0.2
31.75
35.0
B
A
C
0.20
0.30
0.15 sCAB
ss
Gold Gate Release
Corresponds to
0.20
C
C
0.6±0.1
PCB
Substrate
Mold
Compound
BC
DE
FG
HJ
KL
M
AA
N
PR
TU
VW
Y
AB AC
AD AE
Thermal Balls
A1 Ball Location
1357911131517
19
24681012 14 16 18 21 23 25
20 22 24
Top View
Bottom View 0.25
0.35 C
C
Notes:
1. All dimensions are in mm.
2.65 MAX
2. Package is available in both lead-free and leaded versions.
30 TYP
PPC440EP
1YWWBZZZZZ
nprffft
Lot Number
Part Number
PPC440EP Embedded Processor Data Sheet
18 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Assembly Recommendations
Table 3. Recomme nd ed R efl ow Solde rin g Pro file
Profile Feature Sn-Pb Eutectic Assembly Pb Free Reflow Assembly
Average ramp-up rate 3°C/second max 3°C/second max
Preheat
Temperature Min
Temperature Max
Time (min to max)
100°C
150°C
60-120 Seconds
150°C
180°C
60-120 Seconds
Time Maintained Above:
Temperature
–Time 183°C
60-150 Seconds 230°C
30-50 Seconds
Peak Temperature 225 +0/-5°C 260 +5/-0°C
Time within 5°C of Actual Peak Temperature 10-30 Seconds 10-20 Seconds
Ramp-down Rate 6°C/Second Max 6°C/Second Max
Time 25°C to Peak Temperature 6 Minutes Max 8 Minutes Max
Table 4. JEDEC Moisture Sensitivity Level and Ball Composition
Sn-Pb Eutectic Assembly Pb Free Reflow Assembly
MSL Level 3 3
Solder Ball Metallurgy 63Sn/37Pb Sn/4Ag/05Cu
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 19
Data Sheet
Signal Lists
The following table lists all the external signals in alphabetical order and shows the ball (pin) number on which the
signal appears. Multiple xed signals a re shown with the de fault signal (followin g reset) not in brackets and alternate
signals in brackets. Multip lexed signals app ea r al phabe tically multiple times in the list—once for each signal name
on the ball. The page numbe r listed gives the page in “Sig nal Functional Description” on page 52 where the signals
in the indicated inte r fac e gr ou p beg in. In case s wh er e sig nals in the same interface group (for example, Ethernet)
have different names to distinguish var iations in the mo de of operatio n, the names are separated by a comma with
the primary mode name appearing first. These signals are listed only once, and appear alphabetically by the
primary mode name.
Alphabetical Signal List
Table 5. Signals Listed Alphabetically ( Sheet 1 of 24)
Signal Name Ball Interface Group Page
AGND AE17 Power 60
AVDD AD17
BA0 AF03 DDR SDRAM 53
BA1 AF04
BankSel0 R04
DDR SDRAM 53
BankSel1 R02
BankSel2 R01
BankSel3 N01
[BusReq][USB2TermSel]GPIO31 AA23 External Master Peripheral 56
CAS J02 DDR SDRAM 53
ClkEn AF05 DDR SDRAM 53
DM0 AE05
DDR SDRAM 53
DM1 AD07
DM2 J01
DM3 L03
DM8 AF07
[DMAAck0][IRQ8]GPIO47 D18
External Slave Peripheral 55
[DMAAck1][IRQ4]GPIO44 G25
[DMAAck2][PerAddr06]GPIO01 B06
[DMAAck3][PerAddr03]GPIO04 C07
[DMAReq0][IRQ7]GPIO46 B24
External Slave Peripheral 55
DMAReq1[IRQ5][ModeCtrl] AC12
[DMAReq2][PerAddr07]GPIO00 C08
[DMAReq3][PerAddr04]GPIO03 D08
PPC440EP Embedded Processor Data Sheet
20 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
DQS0 AD09
DDR SDRAM 53
DQS1 AC08
DQS2 K03
DQS3 M04
DQS8 AC06
[DrvrInh1]USB2LS0[RejectPkt] Y25 System 59
[DrvrInh2]Halt C25
ECC0 P02
DDR SDRAM 53
ECC1 N02
ECC2 M01
ECC3 M02
ECC4 N03
ECC5 N04
ECC6 L02
ECC7 M03
[EMCCD, EMC1RxErr]GPIO25[NFRdyBusy]AC16
Ethernet 54
[EMCCrS, EMC0CrsDV]GPIO22 AD15
[EMCDV, EMC1CrsDV]GPIO21[NFREn]AF17
EMCMDClk AE16
EMCMDIO AC18
EMCRxClk AF19
[EMCRxD0, EMC0RxD0, EMC0RxD]GPIO12 AD19
[EMCRxD1, EMC0RxD1, EMC1RxD]GPIO13 AE20
[EMCRxD2, EMC1RxD0]GPIO14 AD18
[EMCRxD3, EMC1RxD1]GPIO15 AC17
[EMCRxErr, EMC0RxErr]GPIO20 AD16
EMCTxClk, EMCRefClk AC15
[EMCTxD0, EMC0TxD0, EMC0TxD]GPIO16 AD14
[EMCTxD1, EMC0TxD1, EMC1TxD]GPIO17 AF13
[EMCTxD2, EMC1TxD0]GPIO18[NFCLE] AF14
[EMCTxD3, EMC1TxD1]GPIO19[NFALE] AC14
[EMCTxEn, EMC0TxEn, EMCSync]GPIO24 AF20
[EMCTxErr, EMC1TxEn]GPIO23[NFWEn]AF18
[EOT0/TC0][IRQ9]GPIO48 A19
External Slave Peripheral 55
[EOT1/TC1][IRQ6]GPIO45 H23
[EOT2/TC2][PerAddr05]GPIO02 A05
[EOT3/TC3][PerAddr02]GPIO05 B04
[ExtAck][USB2XcvrSel]GPIO30 AA25 External Master Peripheral 56
[ExtReq][USB2RxErr]GPIO27 AD26 External Master Peripheral 56
Table 5. Signals Listed Alphabetically ( Sheet 2 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 21
Data Sheet
ExtReset B23 External Master Peripheral 56
GND A01
Power 60
GND A02
GND A06
GND A09
GND A11
GND A16
GND A21
GND A26
GND B02
GND B25
GND B26
GND C03
GND C24
GND D04
GND D21
GND D23
GND E09
GND E14
GND E18
GND F01
GND F26
GND J05
GND J22
GND J26
GND L01
GND L04
GND L11
GND L13
GND L14
GND L16
GND L26
GND M12
GND M13
Table 5. Signals Listed Alphabetically ( Sheet 3 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
22 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
GND M15
Power 60
GND M25
GND N05
GND N11
GND N13
GND N14
GND N15
GND N16
GND P11
GND P12
GND P13
GND P14
GND P16
GND P22
GND R12
GND R14
GND R15
GND T01
GND T11
GND T13
GND T14
GND T16
GND T26
GND V05
GND V01
GND V22
GND AA01
GND AA26
GND AB09
GND AB13
GND AB18
GND AC01
GND AC04
GND AC07
GND AC23
Table 5. Signals Listed Alphabetically ( Sheet 4 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 23
Data Sheet
GND AD03
Power 60
GND AD24
GND AE01
GND AE02
GND AE25
GND AF01
GND AF06
GND AF11
GND AF16
GND AF21
GND AF25
GND AF26
Table 5. Signals Listed Alphabetically ( Sheet 5 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
24 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
GPIO00[PerAddr07][DMAReq2] C08
System 59
GPIO01[PerAddr06][DMAAck2] B06
GPIO02[PerAddr05][EOT2/TC2] A05
GPIO03[PerAddr04][DMAReq3] D08
GPIO04[PerAddr03][DMAAck3] C07
GPIO05[PerAddr02][EOT3/TC3] B04
GPIO06[PerCS1][NFCE1]C06
GPIO07[PerCS2][NFCE2]A04
GPIO08[PerCS3][NFCE3]B07
GPIO09[PerCS4]B10
GPIO10[PerCS5]A10
GPIO11[PerErr] E04
GPIO12[EMCRxD0, EMC0RxD0, EMC0RxD] AD19
GPIO13[EMCRxD1, EMC0RxD1, EMC1RxD] AE20
GPIO14[EMCRxD2, EMC1RxD0] AD18
GPIO15[EMCRxD3, EMC1RxD1] AC17
GPIO16[EMCTxD0, EMC0TxD0, EMC0TxD] AD14
GPIO17[EMCTxD1, EMC0TxD1, EMC1TxD] AF13
GPIO18[EMCTxD2, EMC1TxD0][NFCLE] AF14
GPIO19[EMCTxD3, EMC1TxD1][NFALE] AC14
GPIO20[EMCRxErr, EMC0RxErr] AD16
GPIO21[EMCDV, EMC1CrsDV][NFREn]AF17
GPIO22[EMCCrS, EMC0CrsDV] AD15
GPIO23[EMCTxErr, EMC1TxEn][NFWEn]AF18
GPIO24[EMCTxEn, EMC0TxEn, EMCSync] AF20
GPIO25[EMCCD, EMC1RxErr][NFRdyBusy]AC16
GPIO26[USB2RxDV] AC26
GPIO27[USB2RxErr][ExtReq]AD26
GPIO28[USB2TxVal] Y24
GPIO29[USB2Susp][HoldAck] AB25
GPIO30[USB2XcvrSel][ExtAck] AA25
GPIO31[USB2TermSel][BusReq] AA23
Table 5. Signals Listed Alphabetically ( Sheet 6 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 25
Data Sheet
GPIO32[USB2OM0] W24
System 59
GPIO33[USB2OM1] AB26
GPIO34[UART0_DCD/UART1_CTS/UART2_Tx] R25
GPIO35[UART0_DSR/UART1_RTS/UART2_Rx] U26
GPIO36[UART0_CTS/UART3_Rx] V26
GPIO37[UART0_RTS/UART3_Tx] R26
GPIO38[UART0_DTR/UART1_Tx] N24
GPIO39[UART0_RI/UART1_Rx] P24
GPIO40[IRQ0] D03
GPIO41[IRQ1] G04
GPIO42[IRQ2] F02
GPIO43[IRQ3] G02
GPIO44[IRQ4][DMAAck1] G25
GPIO45[IRQ6][EOT1/TC1] H23
GPIO46[IRQ7][DMAReq0] B24
GPIO47[IRQ8][DMAAck0] D18
GPIO48[IRQ9][EOT0/TC0] A19
GPIO49[TrcBS0] AE21
GPIO50[TrcBS1] AC25
GPIO51[TrcBS2] AA24
GPIO52[TrcES0] Y03
GPIO53[TrcES1] AA04
GPIO54[TrcES2] AB03
GPIO55[TrcES3] AB04
GPIO56[TrcES4] AF22
GPIO57[TrcTS0] AC22
GPIO58[TrcTS1] AE24
GPIO59[TrcTS2] AD04
GPIO60[TrcTS3] AD06
GPIO61[TrcTS4] AC09
GPIO62[TrcTS5] AD12
GPIO63[TrcTS6] AE15
Halt[DrvrInh2] C25 System 59
[HoldAck][USB2Susp]GPIO29 AB25
External Master Peripheral 56[HoldPri]USB2LS1[LeakTest] V24
[HoldReq]USB2RxAct[RcvrInh] Y23
IIC0SClk U25 IIC0 Peripheral 56
IIC0SData T24
Table 5. Signals Listed Alphabetically ( Sheet 7 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
26 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
[IIC1SClk]SCPClkOut U24 IIC1 Peripheral 56
[IIC1SData]SCPDI V25
[IRQ0]GPIO40 D03
Interrupts 58
[IRQ1]GPIO41 G04
[IRQ2]GPIO42 F02
[IRQ3]GPIO43 G02
[IRQ4]GPIO44[DMAAck1] G25
[IRQ5][ModeCtrl]DMAReq1 AC12
[IRQ6]GPIO45[EOT1/TC1] H23
[IRQ7]GPIO46[DMAReq0] B24
[IRQ8]GPIO47[DMAAck0] D18
[IRQ9]GPIO48[EOT0/TC0] A19
[LeakTest]USB2LS1[HoldPri] V24 System 59
MemAddr00 P01
DDR SDRAM 53
MemAddr01 P04
MemAddr02 T02
MemAddr03 T04
MemAddr04 U01
MemAddr05 V02
MemAddr06 U04
MemAddr07 W03
MemAddr08 Y02
MemAddr09 AB02
MemAddr10 R03
MemAddr11 AD01
MemAddr12 AD02
MemClkOut0 AF12 DDR SDRAM 53
MemClkOut0 AE13
Table 5. Signals Listed Alphabetically ( Sheet 8 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 27
Data Sheet
MemData00 AE12
DDR SDRAM 53
MemData01 AD13
MemData02 AC13
MemData03 AE11
MemData04 AF10
MemData05 AE10
MemData06 AC11
MemData07 AF09
MemData08 AE09
MemData09 AD10
MemData10 AF08
MemData11 AE08
MemData12 AC10
MemData13 AE07
MemData14 AD08
MemData15 AD05
MemData16 AE03
MemData17 AC05
MemData18 AF02
MemData19 AC03
MemData20 AC02
MemData21 AA03
MemData22 Y04
MemData23 AA02
MemData24 V04
MemData25 Y01
MemData26 V03
MemData27 W02
MemData28 W01
MemData29 U03
MemData30 T03
MemData31 U02
MemSelfRef AE04 DDR SDRAM 53
[ModeCtrl][IRQ5]DMAReq1 AC12 System 59
Table 5. Signals Listed Alphabetically ( Sheet 9 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
28 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
[NFALE][EMCTxD3, EMC1TxD1]GPIO19 AC14
NAND Flash 58
[NFCE0]PerCS0 D06
[NFCE1][PerCS1]GPIO06 C06
[NFCE2][PerCS2]GPIO07 A04
[NFCE3][PerCS3]GPIO08 B07
[NFCLE][EMCTxD2, EMC1TxD0]GPIO18 AF14
[NFRdyBusy][EMCCD, EMC1RxErr]GPIO25 AC16
[NFREn][EMCDV, EMC1CrsDV]GPIO21 AF17
[NFWEn][EMCTxErr, EMC1TxEn]GPIO23 AF18
No ball F06
A physical ball does not exist at these ball
coordinates. NA
No ball F07
No ball F08
No ball F09
No ball F10
No ball F11
No ball F12
No ball F13
No ball F14
No ball F15
No ball F16
No ball F17
No ball F18
No ball F19
No ball F20
No ball F21
No ball G06
No ball G07
No ball G08
No ball G09
No ball G10
No ball G11
No ball G12
No ball G13
No ball G14
No ball G15
Table 5. Signals Listed Alphabetically (Sheet 10 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 29
Data Sheet
No ball G16
A physical ball does not exist at these ball
coordinates. NA
No ball G17
No ball G18
No ball G19
No ball G20
No ball G21
No ball H06
No ball H07
No ball H08
No ball H09
No ball H10
No ball H11
No ball H12
No ball H13
No ball H14
No ball H15
No ball H16
No ball H17
No ball H18
No ball H19
No ball H20
No ball H21
No ball J06
No ball J07
No ball J08
No ball J09
No ball J10
No ball J11
No ball J12
No ball J13
No ball J14
No ball J15
No ball J16
No ball J17
No ball J18
No ball J19
Table 5. Signals Listed Alphabetically (Sheet 11 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
30 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
No ball J20
A physical ball does not exist at these ball
coordinates. NA
No ball J21
No ball K06
No ball K07
No ball K08
No ball K09
No ball K10
No ball K11
No ball K12
No ball K13
No ball K14
No ball K15
No ball K16
No ball K17
No ball K18
No ball K19
No ball K20
No ball K21
No ball L06
No ball L07
No ball L08
No ball L09
No ball L10
No ball L17
No ball L18
No ball L19
No ball L20
No ball L21
No ball M06
No ball M07
No ball M08
No ball M09
No ball M10
No ball M17
No ball M18
Table 5. Signals Listed Alphabetically (Sheet 12 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 31
Data Sheet
No ball M19
A physical ball does not exist at these ball
coordinates. NA
No ball M20
No ball M21
No ball N06
No ball N07
No ball N08
No ball N09
No ball N10
No ball N17
No ball N18
No ball N19
No ball N20
No ball N21
No ball P06
No ball P07
No ball P08
No ball P09
No ball P10
No ball P17
No ball P18
No ball P19
No ball P20
No ball P21
No ball R06
No ball R07
No ball R08
No ball R09
No ball R10
No ball R17
No ball R18
No ball R19
No ball R20
No ball R21
No ball T06
No ball T07
No ball T08
Table 5. Signals Listed Alphabetically (Sheet 13 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
32 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
No ball T09
A physical ball does not exist at these ball
coordinates. NA
No ball T10
No ball T17
No ball T18
No ball T19
No ball T20
No ball T21
No ball U06
No ball U07
No ball U08
No ball U09
No ball U10
No ball U11
No ball U12
No ball U13
No ball U14
No ball U15
No ball U16
No ball U17
No ball U18
No ball U19
No ball U20
No ball U21
No ball V06
No ball V07
No ball V08
No ball V09
No ball V10
No ball V11
No ball V12
No ball V13
No ball V14
No ball V15
No ball V16
No ball V17
Table 5. Signals Listed Alphabetically (Sheet 14 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 33
Data Sheet
No ball V18
A physical ball does not exist at these ball
coordinates. NA
No ball V19
No ball V20
No ball V21
No ball W06
No ball W07
No ball W08
No ball W09
No ball W10
No ball W11
No ball W12
No ball W13
No ball W14
No ball W15
No ball W16
No ball W17
No ball W18
No ball W19
No ball W20
No ball W21
No ball Y06
No ball Y07
No ball Y08
No ball Y09
No ball Y10
No ball Y11
No ball Y12
No ball Y13
No ball Y14
No ball Y15
No ball Y16
No ball Y17
No ball Y18
No ball Y19
No ball Y20
No ball Y21
Table 5. Signals Listed Alphabetically (Sheet 15 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
34 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
No ball AA06
A physical ball does not exist at these ball
coordinates. NA
No ball AA07
No ball AA08
No ball AA09
No ball AA10
No ball AA11
No ball AA12
No ball AA13
No ball AA14
No ball AA15
No ball AA16
No ball AA17
No ball AA18
No ball AA19
No ball AA20
No ball AA21
OVDD E06
Power 60
OVDD E07
OVDD E08
OVDD E13
OVDD E19
OVDD E20
OVDD E21
OVDD F05
OVDD F22
OVDD G05
OVDD G22
OVDD H05
OVDD H22
OVDD L12
OVDD L15
OVDD M11
OVDD M16
OVDD N22
Table 5. Signals Listed Alphabetically (Sheet 16 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 35
Data Sheet
PCIAD00 B16
PCI 52
PCIAD01 C15
PCIAD02 D15
PCIAD03 A17
PCIAD04 B17
PCIAD05 A18
PCIAD06 C16
PCIAD07 D16
PCIAD08 C18
PCIAD09 A20
PCIAD10 C20
PCIAD11 B22
PCIAD12 A23
PCIAD13 A24
PCIAD14 C22
PCIAD15 D22
PCIAD16 H24
PCIAD17 F25
PCIAD18 J24
PCIAD19 K23
PCIAD20 K24
PCIAD21 J25
PCIAD22 L23
PCIAD23 K25
PCIAD24 K26
PCIAD25 M24
PCIAD26 M23
PCIAD27 L25
PCIAD28 N23
PCIAD29 N26
PCIAD30 M26
PCIAD31 P26
PCIC0/BE0 B18
PCI 52
PCIC1/BE1 F23
PCIC2/BE2 F24
PCIC3/BE3 E26
PCIClk B21 PCI 52
PCIDevSel D26 PCI 52
PCIFrame G24 PCI 52
Table 5. Signals Listed Alphabetically (Sheet 17 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
36 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
PCIGnt0/Req D17
PCI 52
PCIGnt1 L24
PCIGnt2 A25
PCIGnt3 D25
PCIGnt4 H25
PCIGnt5 E24
PCIIDSel G26 PCI 52
PCIINT D20 PCI 52
PCIIRDY E25 PCI 52
PCIPar C23 PCI 52
PCIPErr D24 PCI 52
PCIReq0/Gnt N25
PCI 52
PCIReq1 B20
PCIReq2 B19
PCIReq3 C19
PCIReq4 A22
PCIReq5 H26
PCIReset D19 PCI 52
PCISErr J23 PCI 52
PCIStop E23 PCI 52
PCITRDY G23 PCI 52
Table 5. Signals Listed Alphabetically (Sheet 18 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 37
Data Sheet
[PerAddr02]GPIO05[EOT3/TC3] B04
External Slave Peripheral 55
[PerAddr03]GPIO04[DMAAck3] C07
[PerAddr04]GPIO03[DMAReq3] D08
[PerAddr05]GPIO02[EOT2/TC2] A05
[PerAddr06]GPIO01[DMAAck2] B06
[PerAddr07]GPIO00[DMAReq2] C08
PerAddr08 D09
PerAddr09 A07
PerAddr10 C09
PerAddr11 B08
PerAddr12 D10
PerAddr13 A08
PerAddr14 B09
PerAddr15 C10
PerAddr16 C11
PerAddr17 D12
PerAddr18 C12
PerAddr19 B11
PerAddr20 B12
PerAddr21 D13
PerAddr22 A13
PerAddr23 A12
PerAddr24 A14
PerAddr25 B13
PerAddr26 C13
PerAddr27 B14
PerAddr28 A15
PerAddr29 B15
PerAddr30 C14
PerAddr31 D14
PerBLast D11 External Slave Peripheral 55
PerClk C02 External Master Peripheral 56
PerCS0[NFCE0]D06
External Slave Peripheral 55
[PerCS1][NFCE1]GPIO06 C06
[PerCS2][NFCE2]GPIO07 A04
[PerCS3][NFCE3]GPIO08 B07
[PerCS4]GPIO09 B10
[PerCS5]GPIO10 A10
Table 5. Signals Listed Alphabetically (Sheet 19 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
38 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
PerData00 H01
External Slave Peripheral 55
PerData01 K04
PerData02 G01
PerData03 J03
PerData04 J04
PerData05 H03
PerData06 E01
PerData07 G03
PerData08 H04
PerData09 E02
PerData10 D01
PerData11 F03
PerData12 C01
PerData13 F04
PerData14 E03
PerData15 B01
[PerErr]GPIO11 E04 External Master Peripheral 55
PerOE B03 External Slave Peripheral 55
PerReady C05 External Slave Peripheral 55
PerR/W D05 External Slave Peripheral 55
PerWBE0 H02 External Slave Peripheral 55
PerWBE1 C04
PSROOut C26 System 59
RAS K02 DDR SDRAM 53
[RcvrInh]USB2RxAct[HoldReq] Y23 System 59
[RefEn]USB2TxRdy W23 System 59
[RejectPkt]USB2LS0[DrvrInh1] Y25 Ethernet 54
SAGND AF15 Power 60
SAVDD AE14
SCPClkOut[IIC1SClk] U24
Serial Peripheral (SPI) 58SCPDI[IIC1SData] V25
SCPDO T23
Table 5. Signals Listed Alphabetically (Sheet 20 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 39
Data Sheet
SVDD P05
Power 60
SVDD R11
SVDD R16
SVDD T12
SVDD T15
SVDD W05
SVDD W22
SVDD Y05
SVDD Y22
SVDD AA05
SVDD AA22
SVDD AB06
SVDD AB07
SVDD AB08
SVDD AB14
SVDD AB19
SVDD AB20
SVDD AB21
SVREF1 W04
DDR SDRAM 53
SVREF2A P03
SVREF2B AE06
SysClk AE19 System 59
SysErr AB01 System 59
SysReset AE18 System 59
TCK B05 JTAG 58
TDI C17 JTAG 58
TDO C21 JTAG 58
TestEn A03 System 59
TmrClk AD11 System 59
TMS D02 JTAG 58
[TrcBS0]GPIO49 AE21
Trace 60[TrcBS1]GPIO50 AC25
[TrcBS2]GPIO51 AA24
TrcClk AC19 Trace 60
Table 5. Signals Listed Alphabetically (Sheet 21 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
40 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
[TrcES0]GPIO52 Y03
Trace 60
[TrcES1]GPIO53 AA04
[TrcES2]GPIO54 AB03
[TrcES3]GPIO55 AB04
[TrcES4]GPIO56 AF22
[TrcTS0]GPIO57 AC22
Trace 60
[TrcTS1]GPIO58 AE24
[TrcTS2]GPIO59 AD04
[TrcTS3]GPIO60 AD06
[TrcTS4]GPIO61 AC09
[TrcTS5]GPIO62 AD12
[TrcTS6]GPIO63 AE15
TRST D07 JTAG 58
[UART0_CTS/UART3_Rx]GPIO36 V26
UART Peripheral 56
[UART0_RTS/UART3_Tx]GPIO37 R26
UART0_Rx T25
UART0_Tx P25
[UART0_DCD/UART1_CTS/UART2_Tx]GPIO34 R25
[UART0_DSR/UART1_RTS/UART2_Rx]GPIO35 U26
[UART0_DTR/UART1_Tx]GPIO38 N24
[UART0_RI/UART1_Rx]GPIO39 P24
UARTSerClk P23
Table 5. Signals Listed Alphabetically (Sheet 22 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 41
Data Sheet
USB1Clk AD25
Universal Serial Bus 57
USB1DevXcvr R23
USB1DevXcvr R24
USB1HostXcvr W25
USB1HostXcvr W26
USB2Clk AD22
USB2DI0 AD21
USB2DI1 AE23
USB2DI2 AF24
USB2DI3 AC21
USB2DI4 AE26
USB2DI5 AB23
USB2DI6 AC24
USB2DI7 AB24
USB2DO0 AD20
USB2DO1 AE22
USB2DO2 AC20
USB2DO3 AF23
USB2DO4 AD23
USB2DO5 V23
USB2DO6 Y26
USB2DO7 U23
USB2LS0[DrvrInh1][RejectPkt] Y25
USB2LS1[LeakTest][HoldPri] V24
[USB2OM0]GPIO32 W24
[USB2OM1]GPIO33 AB26
USB2RxAct[HoldReq][RcvrInh] Y23
[USB2RxDV]GPIO26 AC26
[USB2RxErr]GPIO27[ExtReq]AD26
[USB2Susp]GPIO29[HoldAck] AB25
[USB2TermSel]GPIO31[BusReq] AA23
USB2TxRdy[RefEn] W23
[USB2TxVal]GPIO28 Y24
[USB2XcvrSel]GPIO30[ExtAck] AA25
Table 5. Signals Listed Alphabetically (Sheet 23 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor Data Sheet
42 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
VDD E05
Power 60
VDD E10
VDD E11
VDD E12
VDD E15
VDD E16
VDD E17
VDD E22
VDD K05
VDD K22
VDD L05
VDD L22
VDD M05
VDD M22
VDD M14
VDD N12
VDD P15
VDD R05
VDD R13
VDD R22
VDD T05
VDD T22
VDD U05
VDD U22
VDD AB05
VDD AB10
VDD AB11
VDD AB12
VDD AB15
VDD AB16
VDD AB17
VDD AB22
WE K01 DDR SDRAM 53
Table 5. Signals Listed Alphabetically (Sheet 24 of 24)
Signal Name Ball Interface Group Page
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 43
Data Sheet
Signals in Ball Assignment Order
In the following table, only the primary (default) signal name is shown for each pin. Multiplexed or multifunction
signals are marked with an a steri sk (*) . To de te rmin e what signals or functions are m ultiple xe d on th ose p ins, lo ok
up the primary signal name in Table 5, Signals Listed Alphabetically.
Table 6. Signals Listed by Ball Assignment (Sheet 1 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
A01 GND B01 PerData15 C01 PerData12 D01 PerData10
A02 GND B02 GND C02 PerClk D02 TMS
A03 TestEn B03 PerOE C03 GND D03 GPIO40*
A04 GPIO07* B04 GPIO05* C04 PerWBE1 D04 GND
A05 GPIO02* B05 TCK C05 PerReady D05 PerR/W
A06 GND B06 GPIO01* C06 GPIO06* D06 PerCS0
A07 PerAddr09 B07 GPIO08* C07 GPIO04* D07 TRST
A08 PerAddr13 B08 PerAddr11 C08 GPIO00* D08 GPIO03*
A09 GND B09 PerAddr14 C09 PerAddr10 D09 PerAddr08
A10 GPIO10* B10 GPIO09* C10 PerAddr15 D10 PerAddr12
A11 GND B11 PerAddr19 C11 PerAddr16 D11 PerBLast
A12 PerAddr23 B12 PerAddr20 C12 PerAddr18 D12 PerAddr17
A13 PerAddr22 B13 PerAddr25* C13 PerAddr26* D13 PerAddr21
A14 PerAddr24* B14 PerAddr27* C14 PerAddr30 D14 PerAddr31
A15 PerAddr28* B15 PerAddr29* C15 PCIAD01 D15 PCIAD02
A16 GND B16 PCIAD00 C16 PCIAD06 D16 PCIAD07
A17 PCIAD03 B17 PCIAD04 C17 TDI D17 PCIGnt0/Req
A18 PCIAD05 B18 PCIC0/BE0 C18 PCIAD08 D18 GPIO47*
A19 GPIO48* B19 PCIReq2 C19 PCIReq3 D19 PCIReset
A20 PCIAD09 B20 PCIReq1 C20 PCIAD10 D20 PCIINT
A21 GND B21 PCIClk C21 TDO D21 GND
A22 PCIReq4 B22 PCIAD11 C22 PCIAD14 D22 PCIAD15
A23 PCIAD12 B23 ExtReset C23 PCIPar D23 GND
A24 PCIAD13 B24 GPIO46* C24 GND D24 PCIPErr
A25 PCIGnt2 B25 GND C25 Halt[DrvrInh2] D25 PCIGnt3
A26 GND B26 GND C26 PSROOut D26 PCIDevSel
PPC440EP Embedded Processor Data Sheet
44 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
E01 PerData06 F01 GND G01 PerData02 H01 PerData00
E02 PerData09 F02 GPIO42* G02 GPIO43* H02 PerWBE0
E03 PerData14 F03 PerData11 G03 PerData07 H03 PerData05
E04 GPIO11* F04 PerData13 G04 GPIO41* H04 PerData08
E05 VDD F05 OVDD G05 OVDD H05 OVDD
E06 OVDD F06 No ball G06 No ball H06 No ball
E07 OVDD F07 No ball G07 No ball H07 No ball
E08 OVDD F08 No ball G08 No ball H08 No ball
E09 GND F09 No ball G09 No ball H09 No ball
E10 VDD F10 No ball G10 No ball H10 No ball
E11 VDD F11 No ball G11 No ball H11 No ball
E12 VDD F12 No ball G12 No ball H12 No ball
E13 OVDD F13 No ball G13 No ball H13 No ball
E14 GND F14 No ball G14 No ball H14 No ball
E15 VDD F15 No ball G15 No ball H15 No ball
E16 VDD F16 No ball G16 No ball H16 No ball
E17 VDD F17 No ball G17 No ball H17 No ball
E18 GND F18 No ball G18 No ball H18 No ball
E19 OVDD F19 No ball G19 No ball H19 No ball
E20 OVDD F20 No ball G20 No ball H20 No ball
E21 OVDD F21 No ball G21 No ball H21 No ball
E22 VDD F22 OVDD G22 OVDD H22 OVDD
E23 PCIStop F23 PCIC1/BE1 G23 PCITRDY H23 GPIO45*
E24 PCIGnt5 F24 PCIC2/BE2 G24 PCIFrame H24 PCIAD16
E25 PCIIRDY F25 PCIAD17 G25 GPIO44* H25 PCIGnt4
E26 PCIC3/BE3 F26 GND G26 PCIIDSel H26 PCIReq5
Table 6. Signals Listed by Ball Assignment (Sheet 2 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 45
Data Sheet
J01 DM2 K01 WE L01 GND M01 ECC2
J02 CAS K02 RAS L02 ECC6 M02 ECC3
J03 PerData03 K03 DQS2 L03 DM3 M03 ECC7
J04 PerData04 K04 PerData01 L04 GND M04 DQS3
J05 GND K05 VDD L05 VDD M05 VDD
J06 No ball K06 No ball L06 No ball M06 No ball
J07 No ball K07 No ball L07 No ball M07 No ball
J08 No ball K08 No ball L08 No ball M08 No ball
J09 No ball K09 No ball L09 No ball M09 No ball
J10 No ball K10 No ball L10 No ball M10 No ball
J11 No ball K11 No ball L11 GND M 11 OVDD
J12 No ball K12 No ball L12 OVDD M12 GND
J13 No ball K13 No ball L13 GND M13 GND
J14 No ball K14 No ball L14 GND M 14 VDD
J15 No ball K15 No ball L15 OVDD M15 GND
J16 No ball K16 No ball L16 GND M 16 OVDD
J17 No ball K17 No ball L17 No ball M17 No ball
J18 No ball K18 No ball L18 No ball M18 No ball
J19 No ball K19 No ball L19 No ball M19 No ball
J20 No ball K20 No ball L20 No ball M20 No ball
J21 No ball K21 No ball L21 No ball M21 No ball
J22 GND K22 VDD L22 VDD M22 VDD
J23 PCISErr K23 PCIAD19 L23 PCIAD22 M23 PCIAD26
J24 PCIAD18 K24 PCIAD20 L24 PCIGnt1 M24 PCIAD25
J25 PCIAD21 K25 PCIAD23 L25 PCIAD27 M25 GND
J26 GND K26 PCIAD24 L26 GND M26 PCIAD30
Table 6. Signals Listed by Ball Assignment (Sheet 3 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
PPC440EP Embedded Processor Data Sheet
46 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
N01 BankSel3 P01 MemAddr00 R01 BankSel2 T01 GND
N02 ECC1 P02 ECC0 R02 BankSel1 T02 MemAddr02
N03 ECC4 P03 SVREF2A R03 MemAddr10 T03 MemData30
N04 ECC5 P04 MemAddr01 R04 BankSel0 T04 MemAddr03
N05 GND P05 SVDD R05 VDD T05 VDD
N06 No ball P06 No ball R06 No ball T06 No ball
N07 No ball P07 No ball R07 No ball T07 No ball
N08 No ball P08 No ball R08 No ball T08 No ball
N09 No ball P09 No ball R09 No ball T09 No ball
N10 No ball P10 No ball R10 No ball T10 No ball
N11 GND P11 GND R11 SVDD T11 GND
N12 VDD P12 GND R12 GND T12 SVDD
N13 GND P13 GND R13 VDD T13 GND
N14 GND P14 GND R14 GND T14 GND
N15 GND P15 VDD R15 GND T15 SVDD
N16 GND P16 GND R16 SVDD T16 GND
N17 No ball P17 No ball R17 No ball T17 No ball
N18 No ball P18 No ball R18 No ball T18 No ball
N19 No ball P19 No ball R19 No ball T19 No ball
N20 No ball P20 No ball R20 No ball T20 No ball
N21 No ball P21 No ball R21 No ball T21 No ball
N22 OVDD P22 GND R22 VDD T22 VDD
N23 PCIAD28 P23 UARTSerClk R23 USB1DevXcvr T23 SCPDO
N24 GPIO38* P24 GPIO39* R24 USB1DevXcvr T24 IIC0SData
N25 PCIReq0/Gnt P25 UART0_Tx R25 GPIO34* T25 UART0_Rx
N26 PCIAD29 P26 PCIAD31 R26 GPIO37* T26 GND
Table 6. Signals Listed by Ball Assignment (Sheet 4 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 47
Data Sheet
U01 MemAddr04 V01 GND W01 MemData28 Y01 MemData25
U02 MemData31 V02 MemAddr05 W02 MemData27 Y02 MemAddr08
U03 MemData29 V03 MemData26 W03 MemAddr07 Y03 GPIO52*
U04 MemAddr06 V04 MemData24 W04 SVREF1 Y04 MemData22
U05 VDD V05 GND W05 SVDD Y05 SVDD
U06 No ball V06 No ball W06 No ball Y06 No ball
U07 No ball V07 No ball W07 No ball Y07 No ball
U08 No ball V08 No ball W08 No ball Y08 No ball
U09 No ball V09 No ball W09 No ball Y09 No ball
U10 No ball V10 No ball W10 No ball Y10 No ball
U11 No ball V11 No ball W11 No ball Y11 No ball
U12 No ball V12 No ball W12 No ball Y12 No ball
U13 No ball V13 No ball W13 No ball Y13 No ball
U14 No ball V14 No ball W14 No ball Y14 No ball
U15 No ball V15 No ball W15 No ball Y15 No ball
U16 No ball V16 No ball W16 No ball Y16 No ball
U17 No ball V17 No ball W17 No ball Y17 No ball
U18 No ball V18 No ball W18 No ball Y18 No ball
U19 No ball V19 No ball W19 No ball Y19 No ball
U20 No ball V20 No ball W20 No ball Y20 No ball
U21 No ball V21 No ball W21 No ball Y21 No ball
U22 VDD V22 GND W22 SVDD Y22 SVDD
U23 USB2DO7 V23 USB2DO5 W23 USB2TxRdy* Y23 USB2RxAct*
U24 SCPClkOut* V24 USB2LS1* W24 GPIO32* Y24 GPIO28*
U25 IIC0SClk V25 SCPDI* W25 USB1HostXcvr Y25 USB2LS0*
U26 GPIO35* V26 GPIO36* W26 USB1HostXcvr Y26 USB2DO6
Table 6. Signals Listed by Ball Assignment (Sheet 5 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
PPC440EP Embedded Processor Data Sheet
48 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
AA01 GND AB01 SysErr AC01 GND AD01 MemAddr11
AA02 MemData23 AB02 MemAddr09 AC02 MemData20 AD02 MemAddr12
AA03 MemData21 AB03 GPIO54* AC03 MemData19 AD03 GND
AA04 GPIO53* AB04 GPIO55* AC04 GND AD04 GPIO59*
AA05 SVDD AB05 VDD AC05 MemData17 AD05 MemData15
AA06 No ball AB06 SVDD AC06 DQS8 AD06 GPIO60*
AA07 No ball AB07 SVDD AC07 GND AD07 DM1
AA08 No ball AB08 SVDD AC08 DQS1 AD08 MemData14
AA09 No ball AB09 GND AC09 GPIO61* AD09 DQS0
AA10 No ball AB10 VDD AC10 MemData12 AD10 MemData09
AA11 No ball AB11 VDD AC11 MemData06 AD11 TmrClk
AA12 No ball AB12 VDD AC12 IRQ5* AD12 GPIO62*
AA13 No ball AB13 GND AC13 MemData02 AD13 MemData01
AA14 No ball AB14 SVDD AC14 GPIO19* AD14 GPIO16*
AA15 No ball AB15 VDD AC15 EMCTxClk* AD15 GPIO22*
AA16 No ball AB16 VDD AC16 GPIO25* AD16 GPIO20*
AA17 No ball AB17 VDD AC17 GPIO15* AD17 AVDD
AA18 No ball AB18 GND AC18 EMCMDIO AD18 GPIO14*
AA19 No ball AB19 SVDD AC19 TrcClk AD19 GPIO12*
AA20 No ball AB20 SVDD AC20 USB2DO2 AD20 USB2DO0
AA21 No ball AB21 SVDD AC21 USB2DI3 AD21 USB2DI0
AA22 SVDD AB22 VDD AC22 GPIO57* AD22 USB2Clk
AA23 GPIO31* AB23 USB2DI5 AC23 GND AD23 USB2DO4
AA24 GPIO51* AB24 USB2DI7 AC24 USB2DI6 AD24 GND
AA25 GPIO30* AB25 GPIO29* AC25 GPIO50* AD25 USB1Clk
AA26 GND AB26 GPIO33* AC26 GPIO26* AD26 GPIO27*
Table 6. Signals Listed by Ball Assignment (Sheet 6 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 49
Data Sheet
AE01 GND AF01 GND
AE02 GND AF02 MemData18
AE03 MemData16 AF03 BA0
AE04 MemSelfRef AF04 BA1
AE05 DM0 AF05 ClkEn
AE06 SVREF2B AF06 GND
AE07 MemData13 AF07 DM8
AE08 MemData11 AF08 MemData10
AE09 MemData08 AF09 MemData07
AE10 MemData05 AF10 MemData04
AE11 MemData03 AF11 GND
AE12 MemData00 AF12 MemClkOut0
AE13 MemClkOut0 AF13 GPIO17*
AE14 SAVDD AF14 GPIO18*
AE15 GPIO63* AF15 SAGND
AE16 EMCMDClk AF16 GND
AE17 AGND AF17 GPIO21*
AE18 SysReset AF18 GPIO23*
AE19 SysClk AF19 EMCRxClk
AE20 GPIO13* AF20 GPIO24*
AE21 GPIO49* AF21 GND
AE22 USB2DO1 AF22 GPIO56*
AE23 USB2DI1 AF23 USB2DO3
AE24 GPIO58* AF24 USB2DI2
AE25 GND AF25 GND
AE26 USB2DI4 AF26 GND
Table 6. Signals Listed by Ball Assignment (Sheet 7 of 7)
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
PPC440EP Embedded Processor Data Sheet
50 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Signal Descriptions
The PPC440EP embedded controller is packaged in a 456-ball enhanced plastic ball grid array (E-PBGA). The
following tables describe the package level pinout.
In the table “Sign al Functional Descriptio n” on page 52, each I/O signal is listed alon g with a short description of its
function. Active-low signals (for example, RAS) are marked with an overline. Please see “Signals Listed
Alphabetically” on page 19 for the pin (ball) number to which each signal is assigned.
Multiplexed Signals
Some signals are multiplexed on the same pin so that the pin can be used for different functions. In most cases,
the signal names shown in this table are not accompanied by signal names that may be multiplexed on the same
pin. If you need to know what, if any, signals are multiplexed with a particular signal, look up the name in “Signals
Listed Alphabetically” on page 19. It is expected that in any single application a particular pin will always be
programmed to serve the same function. The flexibility of multiplexing allows a single chip to offer a richer pin
selection than would otherwise be possible. The circuit type for multiplexed signals is shown as “Multiplex.” The
actual circuit type is the same as the primary signal.
Note: Signals multiplexed with GPIO default to GPIO receivers and float after reset. Initialization software must
configure the GPIO registers for the desired function as described in the GPIO Chapter of the User’s Manual. Any
of these signals requiring a particular state prior to running initialization code must be terminated with pull ups or
pull downs.
Multipurpose Signals
In addition to multiplexing, some pins are also multi-purpose. Fo r example, the EBC peripheral controller address
pins (PerAddr) are use d as outp uts by the PPC440EP to br oadca st an addr ess to extern al slave device s when the
PPC440EP has control of the external bus. When during the course of normal chip operation an external master
gains ownership of the external bus, these same pins are used as inputs which are driven by the external master
and received by the EBC in the PPC440E P. In this example, the pins are also bidirectional, serving both as inputs
and outputs.
Table 7. Pin Summary
Group No. of Pins
Total Signal Pins 304
AVDD 1
SAVDD 1
SAGnd 1
AGnd 1
OVDD 18
SVDD 18
VDD 32
Gnd 80
Total Power Pins 152
Reserved 0
Total Pins 456
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 51
Data Sheet
Multimode Signals
In some cases (for example, Ethernet) the function of a pin may var y with different modes of opera tion. When a pin
has multiple signal names assigned to distinguish different modes of operation, all of the names are shown.
Strapping Pins
One group of pins is used as strapped inputs during system reset. These pins function as strapped inputs only
during reset and are used for other functions during normal operation (see “Strapping” on page 86). Note that
these are not multiplexed pins since the function of the pins is not programmable.
Unused I/Os
Termination of unused receivers is ge nerally required; however there ar e some exceptions that reduce or eliminate
the need for termination.
Signals Multiplexed with GPIO:
By Default after reset, signals shared with GPIO pins are configured as GPIO receivers. Termination however is not needed if
the GPIO during initialization are configured as outputs. To configure as drivers, set and clear the appropriate bits in the
GPIOx_ODR, GPIOx_TCR and GPIOx_OR registers as described in the GPIO chapte r of the user’s manual.
PCI:
When the PCI bridge is unused, configure the PCI controller to park on the bus by pulling the PCIReq0 [Gnt] signal low. Parking
forces the PLB3 to PCI bridge to actively drive PCIAD31:0 and PCIC3:0[BE3:0]. The remaining PCI control signa ls must be
terminated as follows:
Disable the internal PCI arbiter and enable PCI synchronous mode (See IIC Boot S trap Chapter in the user’s manual).
(Note: Synchronous mode is not supported when operating the PCI bus. This mode should only be used for
terminating an unused PC I interface).
Individually connect PCISErr, PCIPErr, PCITRDY, and PCIStop through 3kΩ resistors to +3.3v.
Terminate PCIReq1:5 through 3kΩ resistors to +3.3v.
Terminate PCIReq0[Gnt] through a 1kΩ resistor to GND.
DDR:
When ECC is not used, no termination is needed for unused ECC signals (ECC0:7, DM8, and DS8).
USB Host:
When the USB Host interface is not used, a clock is still required for USB1Clk in order to reset the USB Host. If the USB Host
does not reset, it can interfere with the internal PLB3 and OPB buses. The USB Host signals must be terminated as follows:
A clock must be connected to USB1Clk. The clock can be any frequency from 32kHz to 48MHz.
USB1HostXcvr and USB1HostXcv signals must be pulled down.
USB Device:
The USB Device requires a subset of the USB signals to be terminated.
USB2LS0[Drvrlnh1][RejectPkt] must be pulle d by unless used as a packet reject input.
USB2D10:7, USB1DevXcvr, USB1DevXcvr and USB2Clk signals must be pulled down.
SMII0, RMII0 or MII:
Configure EMAC0 to use internal clocks by setting SDR0_MFR[E0CS]=1 and reset EMAC0 by setting
EMAC0_MR0[SRST]=1.
No pull ups or pull downs required
SMII1, RMII1 or MII:
Configure EMAC1 to use internal clocks by setting SDR0_MFR[E1CS]=1 and reset EMAC1 by setting
EMAC0_MR1[SRST]=1.
No pull ups or downs required.
PPC440EP Embedded Processor Data Sheet
52 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Table 8. Signal Functional Description (Sheet 1 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PCI Interface
PCIAD00:31 Address/Data bus (bidirectional). I/O 3.3V PCI
PCIC0:3/BE0:3 PCI Command/Byte Enables.I/O 3.3V PCI
PCIClk Provides timing to the PCI interface for PCI transactions. I 3.3V PCI 5
PCIDevSel Indicates the driving device has decoded its address as the target
of the current access.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PCIFrame Driven by the current master to indicate beginning and duration of
an access.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PCIGnt0/Req Indicates that the specified agent is granted access to the bus.
When the internal arbiter is enabled, output is PCIGnt0. When the
internal arbiter is disabled, output is Req.O 3.3V PCI
PCIGnt1:5 Indicates that the specified agent is granted access to the bus.
Used only when internal PCI arbiter enabled. O 3.3V PCI
PCIIDSel Used as a chip select during configuration read and write
transactions. I 3.3V PCI
PCIINT Level sensitive PCI interrupt. O 3.3V PCI
PCIIRDY Indicates initiating agent’s ability to complete the current data
phase of the transaction.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PCIPar Even parity. I/O 3.3V PCI
PCIPErr Reports data parity errors during all PCI transactions except a
Special Cycle.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PCIReq0/Gnt
Indicates to the PCI arbiter that the specified agent wishes to use
the bus. When the internal arbiter is enabled, input is PCIReq0.
When internal arbiter is disabled, input is Gnt.
Note: When not using the PCI interface, use termination
recommendation “Unused I/Os” on page 51.
I 3.3V PCI 4
PCIReq1:5 An indication to the PCI arbiter that the specified agent wishes to
use the bus. Used only when internal PCI arbiter enabled. I 3.3V PCI 4
PCIReset Brings PCI device registers and logic to a consistent state. O 3.3V PCI
PCISErr Reports address parity errors, data parity errors on the Special
Cycle command, or other catastrophic system errors.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PCIStop Current target is requesting the master to stop the current
transaction.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PCITRDY Target agent’s ability to complete the current data phase of the
transaction.
(PCI 2.2 specification requires 8.2kΩ pull up on host system) I/O 3.3V PCI
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 53
Data Sheet
DDR SDRAM Interface
BA0:1 Bank Address supporting up to four internal banks. O 2.5V SST L_2
BankSel0:3 Selects up to four external DDR SDRAM banks. O 2.5V SSTL_2
CAS Column Address Strobe. O 2.5V SSTL_2
ClkEn Clock Enable. O 2.5V SSTL_2
DM0:3
DM8 Memory write data byte lane masks. DM8 is the byte lane mask for
the ECC byte lane. O 2.5V SSTL_2
DQS0:3
DQS8 Byte lane data strobe. DQS8 is the data strobe for the ECC byte
lane. I/O 2.5V SSTL_2
ECC0:7 ECC check bits 0:7. I/O 2.5V SSTL_2
MemAddr00:12 Memory address bus. O 2.5V SSTL_2
MemClkOut0
MemClkOut0 Subsystem clock. O 2.5V SSTL_2
Diff driver
MemData00:31 Memory data bus. I/O 2.5V SSTL_2
MemSelfRef Self refresh. I 3.3V tolerant
2.5V CMOS 5
RAS Row Address Strobe. O 2.5V SSTL_2
WE Write Enable. O 2.5V SSTL_2
SVREF1 SSTL reference voltage. I Volt ref receiver
SVREF2A:B Supplemental SSTL reference voltage. I Volt ref pin
(supplemental)
Table 8. Signal Functional Description (Sheet 2 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor Data Sheet
54 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Ethernet Interface
EMCCD, EMC1RxErr MII: Collision detection.
RMII1: Receive error. I/O 3.3V tolerant
2.5V CMOS
EMCCrS, EMC0CrsDV MII: Carrier sense.
RMII0: Carrier sense data valid. I/O 3.3V tolerant
2.5V CMOS
EMCDV, EMC1CrsDV MII: Data valid.
RMII1: Carrier sense data valid. I/O 3.3V tolerant
2.5V CMOS
EMCMDClk MII, RMII, and SMII: Management data clock. O 3.3V tolerant
2.5V CMOS
EMCMDIO MII, RMII, and SMII: Transfer command and status information
with PHY. I/O 3.3V tolerant
2.5V CMOS
EMCRxClk MII: Receive clock. I/O 3.3V tolerant
2.5V CMOS
EMCRxD0:1,
EMC0RxD0:1
EMC0:1RxD
MII: Receive data.
RMII0: Receive data.
SMII0 and SMII1: Receive data. I/O 3.3V tolerant
2.5V CMOS
EMCRxD2:3,
EMC1RxD0:1 MII: Receive data.
RMII1: Receive data. I/O 3.3V tolerant
2.5V CMOS
EMCRxErr,
EMC0RxErr MII: Receive error.
RMII0: Receive error. I/O 3.3V tolerant
2.5V CMOS
EMCTxClk,
EMCRefClk
MII: Transmit clock.
SMII: Reference clock (125MHz).
RMII: Reference clock (50MHz). I3.3V tolerant
2.5V CMOS
EMCTxD0:1,
EMC0TxD0:1
EMC0:1TxD
MII: Transmit data.
RMII0: Transmit data.
SMII0 and SMII1: Transmit data. I/O 3.3V tolerant
2.5V CMOS
EMCTxD2:3,
EMC1TxD0:1 MII: Transmit data.
RMII1: Transmit data. I/O 3.3V tolerant
2.5V CMOS
EMCTxEn,
EMC0TxEn,
EMCSync
MII: Transmit data enabled .
RMII0: Transmit data enabled.
SMII: Sync signal. (Note: Redrive EMCSync when driving more
than one load. EMCSync is a weak driver). O3.3V tolerant
2.5V CMOS
EMCTxErr,
EMC1TxEn MII: Transmit error.
RMII1: Transmit data enabled. I/O 3.3V tolerant
2.5V CMOS
RejectPkt External request to reject a packet. I 3.3V tolerant
2.5V CMOS
Table 8. Signal Functional Description (Sheet 3 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 55
Data Sheet
External Slave Peripheral Interface
DMAAck0:3 Used by the PPC440EP to indicate that data transfers have
occurred. O Multiplex
DMAReq0:3 Used by slave peripherals to indicate they are prepared to transfer
data. I Multiplex 1
EOT0:3/TC0:3 End Of Transfer/Terminal Count. I/O Multiplex 1
PerAddr02:07 Peripheral address bus used by PPC440EP when not in external
master mode, otherwise used by external master. I/O 3.3V LVTTL 1, 2
PerAddr08:31 Peripheral address bus used by PPC440EP when not in external
master mode, otherwise used by external master. I/O 3.3V LVTTL
PerBLast Used by either the peripheral controller, DMA controller, or
external master to indicate the last transfer of a memory access. I/O 3.3V LVTTL 1, 4
PerCS0:5 External peripheral device select. O 3.3V LVTTL 2
PerData00:15 Peripheral data bus used by PPC440EP when not in external
master mode, otherwise used by external master.
Note: PerData00 is the most significant bit (msb) on this bus. I/O 3.3V LVTTL 1
PerOE Used by either peripheral controller or DMA controller depending
upon the type of transfer involved. When the PPC440EP is the bus
master, it enables the selected device to drive the bus. O 3.3V LVTTL 2
PerReady Used by a peripheral slave to indicate it is ready to transfer data. I 3.3V LVTTL
PerR/W
Used by the PPC440EP when not in external master mode, as
output by either the peripheral controller or DMA controller
depending upon the type of transfer involved. High indicates a read
from memory, low indicates a write to memory.
Otherwise, it used by the external master as an input to indicate
the direction of transfer.
I/O 3.3V LVTTL 1, 2
PerWBE0:1 External peripheral data bus byte enables. I/O 3.3V LVTTL 1, 2
PerErr External Error. Used as an input to record external slave peripheral
errors. I/O 3.3V LVTTL 1
Table 8. Signal Functional Description (Sheet 4 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor Data Sheet
56 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
External Master Peripheral Interface
BusReq Bus Request. Used when the PPC440EP needs to regain control
of peripheral interface from an external master. O Multiplex
ExtAck External Acknowledgement. Used by the PPC440EP to indicate
that a data transfer occurred. O Multiplex
ExtReq External Request. Used by an external master to indicate it is
prepared to transfer data. I Multiplex 1
ExtReset Peripheral Reset. Used by an external master and by synchronous
peripheral slaves. O 3.3V LVTTL
HoldAck Hold Acknowledge. Used by the PPC440EP to transfer ownership
of peripheral bus to an external master. O Multiplex
HoldReq Hold Request. Used by an external master to request ownership of
the peripheral bus. I Multiplex 1, 5
HoldPri Hold Primary. Used by an external master to indicate the priority of
a given external master tenure. I Multiplex
PerClk Peripheral Clock. Used by an external master and by synchronous
peripheral slaves. O 3.3V LVTTL
UART Peripheral Interface
UARTSerClk Serial clock input that provides an alternative to the internally
generated serial clock. Used in cases where the allowable
internally generated clock rates are not satisfactory. I 3.3V LVTTL 1, 4
UARTn_Rx UART Receive data. I 3.3V LVTTL 1, 4
UARTn_Tx UART Transmit data. O 3.3V LVTTL
UARTn_DCD UART Data Carrier Detect. I 3.3V LVTTL 6
UARTn_DSR UART Data Set Ready. I 3.3V LVTTL 6
UARTn_CTS UART Clear To Send. I 3.3V LVTTL 1, 6
UARTn_DTR UART Data Terminal Ready. O 3.3V LVTTL
UARTn_RTS UART Request To Send. O 3.3V LVTTL
UARTn_RI UART Ring Indicator. I 3.3V LVTTL 1
IIC Peripheral Interface
IIC0SClk IIC0 Serial Clock. I/O 3.3V LVTTL 1, 2
IIC0SData IIC0 Serial Data. I/O 3.3V LVTTL 1, 2
IIC1SClk IIC1 Serial Clock. I/O Multiplex 2
IIC1SData IIC1 Serial Data. I/O Multiplex 2
Table 8. Signal Functional Description (Sheet 5 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 57
Data Sheet
USB/UTMI Peripheral Interface
USB2DI0:7 Unidirectional data inputs. I 3.3V tolerant
2.5V CMOS 5
USB2DO0:7 Unidirectional data outputs. O 3.3V tolerant
2.5V CMOS
USB2TxRdy Transmit data ready. I 3.3V tolerant
2.5V CMOS
USB2RxAct Receive active. I 3.3V tolerant
2.5V CMOS
USB2RxDV Receive data valid. I 3.3V tolerant
2.5V CMOS
USB2RxErr Receive error. I 3.3V tolerant
2.5V CMOS
USB2LS0 Line state 0. I 3.3V tolerant
2.5V CMOS 2
USB2LS1 Line state 1. I 3.3V tolerant
2.5V CMOS
USB2TxVal Transmit valid. O 3.3V tolerant
2.5V CMOS
USB2Susp Suspend. O 3.3V tolerant
2.5V CMOS
USB2XcvrSel Transceiver select. O 3.3V tolerant
2.5V CMOS
USB2TermSel Termination select. O 3.3V tolerant
2.5V CMOS
USB2OM0:1 Operational mode. O 3.3V tolerant
2.5V CMOS
USB1HostXcvr
USB1HostXcvr USB 1.1 Host differential transceiver. I/O 5V tolerant
USB diff xcvr 5
USB1DevXcvr
USB1DevXcvr USB 1.1 Device differential transceiver. I/O 5V tolerant
USB diff xcvr 5
USB2Clk USB 2.0 Clock
Requires 60MHz signal for operation in 1.1 or 2.0 mode. I3.3V tolerant
2.5V CMOS 5
USB1Clk USB 1.1 Host Clock (48MHz)
Note: If not used for USB, must be connected to a clock signal with
a frequency between 32kHz and 48MHz. I3.3V tolerant
2.5V CMOS
Table 8. Signal Functional Description (Sheet 6 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor Data Sheet
58 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
NAND Flash Interface
NFALE Address Latch Enable. O Multiplex
NFCE0:3 Chip Enable (multiplexed with the PerCS0:3 signals). O Multiplex
NFCLE Command Latch Enable. O Multiplex
NFRdyBusy Ready/Busy.
Indicates status of device during program erase or page read. This
signal is wire-or connected from all NAND Flash devices. I Multiplex
NFREn Read Enable strobe. O Multiplex
NFWEn Write Enab le strobe. O Multiplex
Serial Peripheral Interface
SCPClkOut Clock output. O 3.3V LVTTL 2
SCPDI Data In. I 3.3V LVTTL 2
SCPDO Data output. O 3.3V LVTTL 2
Interrupts Interface
IRQ0:4 External interrupt requests 0 through 4. I/O 3.3V LVTTL 1
IRQ5 External interrupt request 5. I 3.3V tolerant
2.5V CMOS 1
IRQ6:9 External interrupt requests 6 through 9. I/O 3.3V LVTTL 1
JTAG Interface
TCK Test Clock. I 3.3V LVTTL
w/pull-up 1
TDI Test Data In. I 3.3V LVTTL
w/pull-up 4
TDO Test Data Out. O 3.3V LVTTL
TMS Test Mode Select. I 3.3V LVTTL
w/pull-up 1
TRST
Test Reset.
Note: Must be asserted low during a power-on system reset in
order to reset the JTAG interface. If the JTAG interface is not reset,
the processor may not boot.
I3.3V LVTTL
w/pull-up 5
Table 8. Signal Functional Description (Sheet 7 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 59
Data Sheet
System Interface
SysClk Main system clock input. Clock 3.3V tolerant
2.5V CMOS
SysErr
Set to 1 by an instruction machine check. The machine check is a
result of the attempted execution of an instruction transferred on
the PLB with a bus error. This output signal remains a logic 1 until
the machine check error is cleared in the Exception Syndrome
Register (ESR).
O3.3V tolerant
2.5V CMOS
SysReset Main system reset. External logic can drive this bidirectional pin
low (minimum of 16 cycles) to initiate a system reset. A system
reset can also be initiated by software. Implemented as an open-
drain output (two states; 0 or open circuit). I/O 3.3V tolerant
2.5V CMOS 1, 2
Halt Halt from external debugger. I 3.3V LVTTL 1, 2
TmrClk Processor timer external input clock. I 3.3V tolerant
2.5V CMOS
GPIO00:63 General purpose I/O 0 through 63. To access these functions,
software must set DCR register bits. I/O Multiplex
TestEn Test Enable. I 3.3V LVTTL 3
RcvrInh Receiver Inhibit. Active only when TestEn is active. Used for
manufacturing test only. I Multiplex
ModeCtrl Mode Control. Active only when T estEn is active. Used for
manufacturing test only. I Multiplex
LeakTest Leakage Test. Active only when TestEn is active. Used for
manufacturing test only. I Multiplex
RefEn Reference Enable. Active only when TestEn is active. Used for
manufacturing test only. I Multiplex
DrvrInh1 Driver Inhibit. Active only when TestEn is active. Used for
manufacturing test only. I3.3V tolerant
2.5V CMOS
DrvrInh2 Driver Inhibit. Active only when TestEn is active. Used for
manufacturing test only. I3.3V LVTTL
PSROOut Module characterization and screening. Use for test purposes only.
Tie down as specified in Note 3 for normal operation. OPerf screen
ring osc 1, 3
Table 8. Signal Functional Description (Sheet 8 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor Data Sheet
60 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Trace Interface
TrcBS0:2 Trace branch execution status. I/O 3.3V tolerant
2.5V CMOS
TrcClk Trace data capture clock, runs at 1/4 the frequency of the
processor. O3.3V tolerant
2.5V CMOSL
TrcES0:4 Trace Execution Status is presented every fourth processor clock
cycle. I/O 3.3V tolerant
2.5V CMOS
TrcTS0:6 Additional information on trace execution and branch status. I/O 3.3V tolerant
2.5V CMOS
Power
VDD 1.5V supply—Logic voltage. na na
OVDD 3.3V supply—I/O (except DDR SDRAM, Ethernet). na na
SVDD 2.5V supply—SDRAM, Ethernet. na na
GND Ground. na na
AVDD 1.5V—Filtered voltage for system PLLs (analog). na na
AGND PLL (analog) voltage ground. na na
SAVDD 1.5V—Filtered voltage for memory PLL (analog). na na
SAGND PLL (analog) memory voltage ground. na na
Table 8. Signal Functional Description (Sheet 9 of 9)
Notes:
1. Receiver input has hysteresis
2. Must pull up (recommended value is 3kΩ to 3.3V)
3. Must pull down (recommended value is 1kΩ)
4. If not used, must pull up (recommended value is 3kΩ to 3.3V)
5. If not used, must pull down (recommended value is 1kΩ)
6. Strapping input during reset; pull-up or pull-down required
Signal Name Description I/O Type Notes
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 61
Data Sheet
Device Characteristics
Table 9. Absolute Maximum Ratings
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum rati ngs can cause
permanent damage to the device. None of the performance spe cification contained in this document are guaranteed when
operating at these maximum ratings.
Characteristic Symbol Value Unit Notes
Supply Voltage (Internal Logic) VDD 0 to +1.65 V 1
Supply Voltage (I/O, except SDRAM, Ethernet) OVDD 0 to +3.6 V 1
Supply Voltage (SDRAM, Ethernet) SVDD 0 to +2.7 V
PLL Supply Voltage AVDD 0 to +1.65 V 2
SDRAM PLL Supply Voltage SAVDD 0 to +1.65 V 2
Input Voltage (3.3V LVTTL receivers) VIN 0 to +3.6 V
Storage Temperature Range TSTG -55 to +150 °C
Case temperature under bias TC-40 to +120 °C2
Notes:
1. If OVDD 0.4V, it is required that VDD 0.4V. Supply excursions not meeting this criteria must be limited to less than 25ms duration
during each power up or power down event.
2. This value is not a specification of the operational temperature range, it is a stress rating only.
Table 10. Recommended DC Operating Conditions (Sheet 1 of 2)
Device operation beyond the conditions specified is not recommended. Extended operation beyond the recommended
conditions can affect device reliability.
Parameter Symbol Minimum Typical Maximum Unit Notes
Logic Supply Voltage VDD +1.4 +1.5 +1.6 V
I/O Supply Voltage OVDD +3.0 +3.3 +3.6 V
SDRAM Supply Voltage SVDD +2.3 +2.5 +2.7 V
PLL Supply Voltages AVDD +1.4 +1.5 +1.6 V 3
SDRAM PLL Voltage SAVDD +1.4 +1.5 +1.6 V 3
DDR SDRAM Reference Voltage SVREF +1.15 +1.25 +1.35 V 2
Input Logic High (2.5V SSTL)
VIH
SVREF+0.18 SVDD+0.3 V
Input Logic High (2.5V CMOS, 3.3V tolerant receiver) 1.7 V
Input Logic High (3.3V PCI) 0.5OVDD OVDD+0.5 V1
Input Logic High (3.3V LVTTL) +2.0 +3.6 V
PPC440EP Embedded Processor Data Sheet
62 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Input Logic Low (2.5V SSTL)
VIL
-0.3 SVREF-0.18 V
Input Logic Low (2.5V CMOS, 3.3V tolerant receiver) 0.7 V
Input Logic Low (3.3V PCI) -0.5 0.35OVDD V1
Input Logic Low (3.3V LVTTL) 0 +0.8 V
Output Logic High (2.5V SSTL)
VOH
+1.95 SVDD V
Output Logic High (2.5V CMOS, 3.3V tolerant receiver) 2.0 SVDD V
Output Logic High (3.3V PCI) 0.9OVDD OVDD V1
Output Logic High (3.3V LVTTL) +2.4 OVDD V
Output Logic Low (2.5V SSTL)
VOL
00.55V
Output Logic Low (2.5V CMOS, 3.3V tolerant receiver) 0.4 V
Output Logic Low (3.3V PCI) 0.1OVDD V1
Output Logic Low (3.3V LVTTL) 0 +0.4 V
Input Leakage Current (No pull-up or pull-down) IIL1 00
μA
Input Leakage Current for Pull-Down IIL2 0 (LPDL) 200 (MPUL) μA
Input Leakage Current for Pull-Up IIL3 -150 (LPDL) 0 (MPUL) μA
Input Max Allowable Overshoot (3.3V LVTTL) VIMAO +3.9 V 4, 5
Input Max Allowable Undershoot (3.3V LVTTL) VIMAU -0.6 V 4, 5
Output Max Allowable Overshoot (3.3V LVTTL) VOMAO +3.9 V 4, 5
Output Max Allowable Undershoot (3.3V LVTTL) VOMAU3 -0.6 V 4, 5
Case Temperature:
333MHz and 400MHz parts
533MHz parts
667MHz parts TC-40
-40
-40
+90
+100
+85 °C
Notes:
1. PCI drivers meet PCI specifications.
2. SVREF = SVDD/2
3. The analog voltages used for the on-chip PLLs can be derived from the logic voltage, but must be filtered before entering the
PPC440EP. See “Absolute Maximum Ratings” on page 61.
4. Overshoot and undershoot voltages are for 10% duty cycle.
5. The time for overshoot or undershoot is time above OVDD and the time below 0V.
Table 10. Recommended DC Operating Conditions (Sheet 2 of 2)
Device operation beyon d the conditions specified is no t recommended. Extended operation beyond the recommended
conditions can affect device reliability.
Parameter Symbol Minimum Typical Maximum Unit Notes
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 63
Data Sheet
Figure 4. Overshoot Waveform
Table 11. Overshoot and Undershoot
Receiver AC Overshoot (V) DC Overshoot (V) DC Undershoot (V) AC Undershoot (V) TOS
3.3V LVTTL 3.9 3.6 0 -0.6 0.1*TCYC1
2.5V (3.3V tolerant) 3.9 3.6 0 -0.6 0.1*TCYC1
DDR 1.2*SOVDD SOVDD + 0.3 0 -0.6 0.1/MemClkOut
PCI 1.2*OVDD OVDD + 0.5 0-0.2*OVDD 0.1/PCIClk
Notes:
1. TCYC is the period of the bus clock.
1/PerClk - EBC an d NAND flash interfaces.
1/EMCRXClk - MII mode
1/EMCRefclk - RMII mode
1/SMIIRefClk - SMII mode
1/USB2Clk - UTMI
1/TrcClk - instruction trace interface
1/IIC0Clk and 1/IIC1Clk - IIC interfaces
1/SPIClkOut - SPI
AC Undershoot (V)
TOS TOS
DC Overshoot (V)
DC Undershoot (V)
TCYC
AC Overshoot (V)
PPC440EP Embedded Processor Data Sheet
64 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Power Sequencing
Startup sequencing of the power supply voltages is not required. However, a power-down cycle must complete
(OVDD and VDD are below +0.4V) before a new power-up cycle is started.
Analog Voltage Filter
The analog voltages used for the on-chip PLLs can be derived from the logic voltage, but must be filtered before entering the
PPC440EP. A Separate filter, as shown below, is recommended for each voltage.
The filter should keep the AVDD-AGND (SAGND-SAGND) compression/expansion due to noise less than +50
mV.
All wire of the fil ter circuit should be kept as short as possible to minimize coupling from other signals.
AGND (SAGND) must be connecte d to the digital ground plane at the AVDD (SAVDD) capacitor.
The impedance of the ferrite bead sh ould be much greater than that of the capacitor at frequencies where noise is
expected.
VDD
C
AVDD, SAVDD
LL – SMT ferrite bead chip, Murata BLM21PG600SN1
C – 0.1μF ceramic
AGND, SAGND
GND
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 65
Data Sheet
Power Specifications
The following tables contain measured power numbers. The measurement conditions are listed as Notes below
each table.
Table 12. Typical DC Power Supply Requirements
Frequency (MHz) +1.5V Supply
(VDD+AVDD+SAVDD)+2.5V Supply
(SVDD)+3.3V Supply
(OVDD)Total Unit Notes
333 1.15 1.15 0.04 2.34 W 1
400 1.24 1.15 0.04 2.43 W 1
533 1.43 1.15 0.04 2.62 W 1
667 2.08 1.15 0.04 3.27 W 1
Notes:
1. Typical Power is based on nominal voltage of VDD = +1.5V and TC = max. specified in Table 10 on page 61, while running Linux and a
test application that exercises each core with representative traffic.
Table 13. VDD Supply Power Dissipation
Frequency (MHz) +1.4V +1.5V +1.6V Unit Notes
333 0.96 1.15 1.38 W 1
400 1.04 1.24 1.49 W 1
533 1.20 1.43 1.71 W 1
667 1.74 2.08 2.52 W 1
Notes:
1. Power is based on VDD specified in the table and TC = max. specified in Table 10 on page 61, while running Linux and a test application
that exercises each core with representative traffic.
PPC440EP Embedded Processor Data Sheet
66 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Table 14. DC Power Supply Current Loads
Parameter Symbol Typical Maximum Unit Notes
VDD (1.5V) active operating current IDD 1380 2200 mA
OVDD (3.3V) active operating current IODD 10 100 mA
SVDD (2.5V) active operating current ISDD 460 600 mA
AVDD (1.5V) input current IADD 3.2 5 mA 1
SAVDD (1.5V) active operating current ISADD 6.05 10 mA 1
Notes:
1. See “Absolute Maximum Ratings” on page 61 for filter recommendations.
2. The maximum current values listed above are not guaranteed to be the highest obtainable. These values are dependent on many factors
including the type of applications running, clock rates, use of internal functional capabilities, external interface usage, case temperature,
and the power supply voltages. Your specific application can produce significantly different results. VDD current and power are primarily
dependent on the applications running and the use of internal chip functions (DMA, PCI, Ethernet, and so on). OVDD current and power
are primarily dependent on the capacitive loading, frequency, and utilization of the external buses.
3. Typical current is estimated at 667MHz with VDD = +1.5V, OVDD = +3.3V, SVDD = +2.5V, and TC = +85°C, while running Linux and a test
application that exercises each core with representative traffic.
4. Maximum current is estimated at 667MHz with VDD = +1.6V, OVDD = +3.6V, SVDD = +2.7V, TC = +85°C, and a best-case process (which
drives worst-case power), while running Linux and a test application that exercises each core with representative traffic.
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 67
Data Sheet
Package Thermal Specifications
Heat Sink
The following heat sinks were used in the ab ove thermal analysis:
ALPHA W35-15W (35mm x 35mm x15mm)
ALPHA LPD35-15B (35mm x 35mm x15mm)
The heat sinks are manufactured by:
Alpha Novatech, Inc. (www.alphanovatech.com)
473 Sapena Court, #12
Santa Clara, CA 95054
Phone: 408-567-8082
Table 15. Package Thermal Specifications
Thermal resistance values for the E-PBGA and TE-PBGA package are as follows:
Parameter Symbol Package
Airflow
ft/min (m/sec) Unit Notes
0 (0) 100 (0.51) 200 (1.02)
Junction-to-ambient thermal resistance
without heat sink θJA E-PBGA 20.0 18.7 17.9 °C/W
Junction-to-ambient thermal resistance
with heat sink θJA E-PBGA 15.3 11.9 10.5 °C/W
Resistance Value
Junction-to-case thermal resistance θJC E-PBGA 8.3 °C/W
Junction-to-board thermal resistance θJB E-PBGA 14.3 °C/W
Notes:
1. Case temperature, TC, is measured at top center of case surface with device soldered to circuit board.
2. TA = TC - P×θCA, where TA is ambient temperature and P is power consumption.
3. TCMax = TJMax - P×θJC, where TJMax is maximum junction temperature (+125°C) and P is power consumption.
4. The preceding equations assume that the chip is mounted on a board with at least one signal and two power planes.
5. Values in the table were achieved with a JEDEC standard board: 114.5mm x 101.6mm x 1.6mm, 4 layers.
6. Values for an attached heat sink were achieved with a 35mm x 35mm x 15mm unit (see Heat Sink below), attached with a 0.1mm
thickness of adhesive having a thermal conductivity of 1.3W/mK.
PPC440EP Embedded Processor Data Sheet
68 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Clocking Specifications
Table 16. Clocking Specifications
Symbol Parameter Min Max Units Notes
SysClk Input
FCFrequency 33.33 66.66 MHz 1
TCPeriod 15 30 ns
TCS Edge stability (cycle-to-cycle jitter) ±0.15 ns 2
TCH High time 40% of nominal period 60% of nominal period ns
TCL Low time 40% of nominal period 60% of nominal period ns
Note: Input rising and falling edge slew rate 1V/ns 3
CPU Clock
FCFrequency 333 667
MemClkOut and PLB Clock
FCFrequency 100 133.33 MHz
TCPeriod 7.5 10 ns
TCH High time 45% of nominal period 55% of nominal period ns
PLL VCO
FCFrequency 600 1334 MHz
TCPeriod 0.7496 1.66 ns
TrcClk
FCFrequency CPU FC/4 CPU FC/4
MAL Clock
FCFrequency 45 83.33 MHz
TCPeriod 12 22.2 ns
Notes:
1. SysClk supports spread spectrum clocking with a -1% down-spread and a 40 kHz or less modulation frequency. For a 33.33MHz mini-
mum SysClk, the modulation frequency range o f 33.00 MHz to 33.33 MHz is supported.
2. The maximum input cycle-to-cycle jitter is ± 100 ps within the frequency range 100 kHz to 20 MHz. Outside the frequency range of 100
kHz to 20 MHz, the maximum input cycle-to-cycle jitter is ± 150 ps.
3. Slew rate is measured between 0.7V and 1.7V.
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 69
Data Sheet
Figure 5. Timing Waveform
Note: SysClk is a 2.5V/3.3V tolerant receiver. Slew rate should be measured between 0.7V and 1.7V.
Spread Spectrum Clocking
Care must be taken when using a spread spectrum clock generator (SSCG) with the PPC440EP. This controller
uses a PLL for clock generation inside the chip. The accuracy with which the PLL follows the SSCG is referred to
as tracking skew. The PLL bandwidth and phase ang le determine how much tracking skew there is between the
SSCG and the PLL for a given frequency deviation and modulation frequency. When using an SSCG with the
PPC440EP the following conditions must be met:
The frequency deviation must not violate the minimum clock cycle time. Therefore, when operating the
PPC440EP with one or more internal clocks at their maximum supported frequency, the SSCG can only lower
the frequency.
The maximum freq uency deviation of SysClk cannot exceed 1%, and the modulation frequency cannot
exceed 40kHz. In some cases, on-board PPC440EP peripherals impose more stringent requir ements.
Notes:
1. The serial por t baud rates are synchronou s to the modulated clock. The serial port has a tolerance of
approximately 1.5% on baud rate before framing errors begin to occur. The 1.5% tolerance assu m es tha t
the connected device is running at precise baud rates.
2. Ethernet operation is una ffected.
3. IIC operation is unaffected.
Important: It is up to the system designer to ensure that any SSCG used with the PPC440EP meets the above
requirements and does not adversely affect other aspects of the system.
TCL
TCH TC
1.7V (1.8 V)
1.25V (1.5V)
0.7V (0.8V)
PPC440EP Embedded Processor Data Sheet
70 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
I/O Specifications
Table 17. Peripheral Interface Clock Timings
Parameter Min Max Units Notes
PCIClk input frequency (asynchronous mode) 66.66 MHz
PCIClk period (asynchronous mode) 15 ns
PCIClk input high time 40% of nominal period 60% of nominal period ns
PCIClk input low time 40% of nominal period 60% of nominal period ns
EMCMDClk output frequency 2.5 MHz
EMCMDClk period 400 ns
EMCMDClk output high time 160 ns
EMCMDClk output low time 160 ns
EMCTxClk input frequency MII 2.5 25 MHz
EMCTxClk period MII 40 400 ns
EMCTxClk input high time 35% of nominal period ns
EMCTxClk input low time 35% of nominal period ns
EMCRxClk input frequency MII 2.5 25 MHz
EMCRxClk period MII 40 400 ns
EMCRxClk input high time 35% of nominal period ns
EMCRxClk input low time 35% of nominal period ns
EMCRefClk input frequency RMII (SMII) 50 (125) 50 (125) MHz 2
EMCRefClk period RMII (SMII) 20 (8) 20 (8) ns
EMCRefClk input high time 35% of nominal period 65% of nominal period ns
EMCRefClk input low time 35% of nominal period 6 5% of nominal period ns
PerClk (and OPB clock) output frequency (for ext. master or
sync. slaves) 33.33 66.66 MHz
PerClk period 15 30 ns
PerClk output high time 50% of nominal period 66% of nominal period ns
PerClk output low time 33% of nominal period 50% of nominal period ns
UARTSerClk input frequency 1000 / (2TOPB1+2ns) MHz 1
UARTSerClk period 2TOPB+2 –ns1
UARTSerClk input high time TOPB+1 –ns1
UARTSerClk input low time TOPB+1 –ns1
USB2Clk input frequency 60 60 MHz
USB1Clk input frequency 48 48 MHz
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 71
Data Sheet
Figure 6. Input Setup and Hold Waveform
Figure 7. Output Delay and Float Timing Waveform
TmrClk input frequency 100 MHz
TmrClk period 10 ns
TmrClk input high time 40% of nominal period 60% of nominal period ns
TmrClk input low time 40% of nominal period 6 0% of nominal period ns
Notes:
1. TOPB is the period in ns of the OPB clock. The internal OPB clock runs at 1/2 the frequency of the PLB clock. The maxi-
mum OPB clock frequency is 66.66 MHz.
2. In RMII mode, a 50MHz +/- 50PPM input EMCRefClk is required. In SMII mode, a 125 MHz +/- 100PPM input EMCRefClk
is required.
Table 17. Peripheral Interface Clock Timings (Continued)
Parameter Min Max Units Notes
Clock
TIS TIH
min min
Inputs
Valid
1.25V
Valid
Clock
Outputs
Valid
TOHmin
TOVmax
TOVmax
TOHmin
TOVmax
TOHmin
Float (High-Z)
High (Drive)
Low (Drive)
1.25V
PPC440EP Embedded Processor Data Sheet
72 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Table 18. I/O Specifications—PCI, USB, UART, IIC, SPI, Ethernet, System and Debug Interfaces (Sheet 1 of 3)
Notes:
1. Ethernet interface meets timing requirements as defined by IEEE 802.3 standard.
2. EMCSync is a weak driver. Redrive EMCSync when driving more than one load.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
PCI Interface
PCIAD31:00 5 0 6 2 0.5 1.5 PCIClk
PCIC3:0/BE3:0 5 0 6 2 0.5 1.5 PCIClk
PCIDevSel 5 0 6 2 0.5 1.5 PCIClk
PCIFrame 5 0 6 2 0.5 1.5 PCIClk
PCIGnt0:5 6 2 0.5 1.5 PCIClk
PCIIDSel 5 0 n/a n/a PCIClk
PCIINT 6 2 0.5 1.5 PCIClk async
PCIIRDY 5 0 6 2 0.5 1.5 PCIClk
PCIPar 5 0 6 2 0.5 1.5 PCIClk
PCIPErr 5 0 6 2 0.5 1.5 PCIClk
PCIReq0:5 5 0 n/a n/a PCIClk
PCIReset n/a n/a PCIClk
PCISErr 5 0 6 2 0.5 1.5 PCIClk
PCIStop 5 0 6 2 0.5 1.5 PCIClk
PCITRDY 5 0 6 2 0.5 1.5 PCIClk
Ethernet MII Interface
EMCCD 10 10 5.1 6.8 1, async
EMCCrS 10 10 5.1 6.8 1, async
EMCDV 10 10 5.1 6.8
EMCMDClk 5.1 6.8 1, async
EMCMDIO 5.1 6.8 EMCMDClk 1
EMCRxClk 5.1 6.8 1, async
EMCRxD0:3 10 10 5.1 6.8 EMCRxClk 1
EMCRxErr 10 10 5.1 6.8 EMCRxClk 1
EMCTxClk n/a n/a 1, async
EMCTxD0:3 20 0 5.1 6.8 EMCTxClk 1
EMCTxEn 20 0 5.1 6.8 EMCTxClk 1
EMCTxErr 20 0 5.1 6.8 EMCTxClk 1
RejectPkt 3 1 EMCRxClk for MII,
RMII,
SMII
Ethernet RMII Interface
EMC0CRSDV 4 2
EMC0RxD0:1 4 2 5.1 6.8 EMCRefClk
EMC0RxErr 4 2 5.1 6.8 EMCRefClk
EMC0TxD0:1 12.5 2 5.1 6.8 EMCRefClk
EMC1CRSDV 4 2
EMC1RxD0:1 4 2 5.1 6.8 EMCRefClk
EMC1RxErr 4 2 5.1 6.8 EMCRefClk
EMC1TxD0:1 12.5 2 5.1 6.8 EMCRefClk
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 73
Data Sheet
Ethernet SMII Interface
EMC0RxD 1.5 1 5.1 6.8 EMCRefClk
EMC0TxD 3.5 0 5.1 6.8 EMCRefClk
EMC1RxD 1.5 1 5.1 6.8 EMCRefClk
EMC1TxD 3.5 0 5.1 6.8 EMCRefClk
EMCSync 3.5 0 5.1 6.8 EMCRefClk 2
Internal Peripheral Interface
IIC0SClk n/a 10.2 IIC0Clk
IIC0SData 5 0 n/a 10.2
IIC1SClk n/a 10.2
IIC0SData 0 5 n/a 10.2 IIC0Clk
SCPClkOut 7 2 0 n/a 10.2
SCPDI 7 2 n/a 10.2 SCPClkOut
SCPDO 6 0 n/a 10.2 SCPClkOut
UARTn_Rx n/a n/a async
UARTn_Tx 10.3 7.1 async
UARTn_DCD n/a n/a async
UARTn_DSR n/a n/a async
UARTn_CTS na na async
UARTn_DTR 10.3 7.1 async
UARTn_RI n/a n/a async
UARTn_RTS 10.3 7.1 async
USB1DevXcvr 3 0 USB 1.1 USB 1.1 USB1Clk
USB1DevXcvr 3 0 USB 1.1 USB 1.1 USB1Clk
USB1HostXcvr 3 0 USB 1.1 USB 1.1 USB1Clk
USB1HostXcvr 3 0 USB 1.1 USB 1.1 USB1Clk
USB2DI0:7 7 0.05 n/a n/a USB2Clk
USB2DO0:7 3 0 5.1 6.8 USB2Clk
USB2LS0:1 5.2 0.02 n/a n/a USB2Clk
USB2OM0:1 3 0 7.1 9.6 USB2Clk
USB2RxAct 7 0.05 n/a n/a USB2Clk
USB2RxDV 3 0 7.1 9.6 USB2Clk
USB2RxErr 3 0 7.1 9.6
USB2Susp 3 0 7.1 9.6
USB2TermSel 3 0 7.1 9.6
USB2TxRdy 6 0.1 n/a n/a
USB2TxVal 3 0 7.1 9.6
USB2XcvrSel 3 0 7.1 9.6
Interrupts Interface
IRQ0:9 n/a n/a async
Table 18. I/O Specifications—PCI, USB, UART, IIC, SPI, Ethernet, System and Debug Interfaces (Sheet 2 of 3)
Notes:
1. Ethernet interface meets timing requirements as defined by IEEE 802.3 standard.
2. EMCSync is a weak driver. Redrive EMCSync when driving more than one load.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
PPC440EP Embedded Processor Data Sheet
74 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
JTAG Interface
TCK n/a n/a async
TDI n/a n/a async
TDO 15.3 10.2 async
TMS n/a n/a async
TRST n/a n/a async
System Interface
SysReset n/a n/a async
Halt n/a n/a async
SysErr 10.3 7.1 async
GPIO00:63 10.3 7.1
Trace Interface
TrcClk 10.3 7.1
TrcBS0:2 10.3 7.1 TrcBS0:2
TrcES0:4 10.3 7.1 TrcES0:4
TrcTS0:6 10.3 7.1 TrcTS0:6
Table 18. I/O Specifications—PCI, USB, UART, IIC, SPI, Ethernet, System and Debug Interfaces (Sheet 3 of 3)
Notes:
1. Ethernet interface meets timing requirements as defined by IEEE 802.3 standard.
2. EMCSync is a weak driver. Redrive EMCSync when driving more than one load.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 75
Data Sheet
Table 19. I/O Specifications—EBC, EBMI, DMA and NAND Flash Interfaces
Notes:
1. PerClk rising edge at package pin with a 10pF load trails the internal PLB clock by approximately 1.3ns.
Signal Input (ns) Output (ns) Output Current (mA) Clock Notes
Setup Time
(TIS min) Hold Time
(TIH min) Valid Delay
(TOV max) Hold Time
(TOH min) I/O H
(minimum) I/O L
(minimum)
External Slave Peripheral Interface
DMAAck0:1 10 1 5.1 6.8 PerClk
DMAAck2:3 10 1 15.3 10.2 PerClk
DMAReq0:3 11.7 0.5 na na PerClk
EOT0:1/TC0:1 11.7 0.5 10 1 5.1 6.8 PerClk
EOT2:3/TC2:3 11.7 0.5 10 1 15.3 10.2 PerClk
PerAddr02:31 4 1 7.2 1.5 15.3 10.2 PerClk
PerBLast 4 1 6.5 1.5 15.3 10.2 PerClk
PerCS0:5 6.5 1.5 10.3 7.1 PerClk
PerData00:15 4 1 7.2 1.5 15.3 10.2 PerClk
PerOE 6.5 1.5 15.3 10.2 PerClk
PerReady 6 1 15.3 10.2 PerClk
PerR/W 4 1 6.5 1.5 15.3 10.2 PerClk
PerWBE0:1 4 1 6.5 1.5 15.3 10.2 PerClk
External Master Peripheral Interface
BusReq 6.5 1.5 7.1 9.6 PerClk
ExtAck 6.5 1.5 7.1 9.6 PerClk
ExtReq 41 n/an/aPerClk
ExtReset 6.0 1.5 15.3 10.2 PerClk
HoldAck 6.5 1.5 7.1 9.6 PerClk
HoldReq 4 1 na na PerClk
HoldPri 4 1 na na HoldPri
PerClk 15.3 10.2 PLB Clk 1
PerErr 6 1 10.3 7.1 PerClk
NAND Flash Interface
NFALE 6.5 1.5 5.1 6.8 Perclk
NFCE0:3 6.5 1.5 10.3 7.1 Perclk
NFCLE 6.5 1.5 5.1 6.8 Perclk
NFRdyBusy 4 1 na na Perclk
NFREn 6.5 1.5 5.1 6.8 Perclk
NFWEn 6.5 1.5 5.1 6.8 Perclk
Table 20. Input Capacitance
Parameter Symbol Maximum Unit Notes
Group 1 (2.5V SSTL I/O) CIN1 2.5 pF
Group 2 (3.3V LVTTL I/O) CIN2 2.1 pF
Group 3 (PCI I/O) CIN3 2.5 pF
Group 4 (Receivers) CIN4 0.9 pF
Group 5 (3.3V tolerant CMOS I/O) CIN5 2.4 pF
Group 6 (USB) CIN6 4.5 pF
PPC440EP Embedded Processor Data Sheet
76 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Test Conditions
Clock timing and switching characteristics are specified in accordance with operating
conditions shown in the table “Recommended DC Operating Conditions.” AC
specifications are characterized with VDD =1.5V, T
J = +125°C and a 50pF test load as
shown in the figure to the right.
Output
Pin
50pF
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 77
Data Sheet
DDR1 SDRAM I/O Specifications
The DDR1 SDRAM controller times its operation with internal PLB clock signals and generates MemClkOut0 from
the PLB clock. The PLB clock is an internal signal that cannot be directly observed. However MemClkOut0 is the
same frequency as the PLB clock signal and is in phase with the PLB clock signal.
Note: MemClkOut0 can be advanced with respect to the PLB clock by means of the SDRAM0_CLKTR
programming register. In a typical system, users advance MemClkOut by 90°. This depends on the specific
application and requires a thorough understanding of the memory system in general (refer to the DDR
SDRAM controller chapter in the PowerPC 440EP User’s Manual).
In the following sections, the label MemClkOut0(0) refers to MemClkOut0 when it has not been phase-shifted, and
MemClkOut0(90) refers to MemClkOut0 when it has been phase-advanced 90°. Advancing MemClkOut0 by 90°
creates a 3/4 cycle setup time and 1/4 cycle hold time for the address and control signals in relation to
MemClkOut0(90). The rising edge of MemClkOut0(90) aligns with the first rising edge of the DQS signal.
The following DDR data is generated by means of simulation and includes logic, driver , package RLC, and lengths.
Values are calculated over best case and worst case processes with speed, temperature, and voltage as follows:
Best Case = Fast process, -40°C, +1.6V
Worst Case = Slow process, +85°C, +1.4V
Note: In all the following DDR tables and timing diagrams, minimum values are measured under best case
conditions and maximum values are measured under worst case conditions.
The signals are terminated as indicated in the figure below for the DDR timing data in the following sections.
Figure 8. DDR SDRAM Simulation Signal Termination Model
10pF
10pF
MemClkOut0
MemClkOut0
120Ω
50
Ω
30pF
Addr/Ctrl/Data/DQS
VTT = SVDD/2
PPC440EP
Note: This diagram illustrates the model of the DDR SDRAM interface used when generating simulation timing data.
It is not a recommended physical circuit design for this interface. An actual interface design will depend on many
factors, including the type of memory used and the board layout.
PPC440EP Embedded Processor Data Sheet
78 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Table 21. DDR SDRAM Output Driver Specifications
Signal Path Output Current (mA)
I/O H (maximum) I/O L (minimum)
Write Data
MemData00:07 15.2 15.2
MemData08:15 15.2 15.2
MemData16:23 15.2 15.2
MemData24:31 15.2 15.2
ECC0:7 15.2 15.2
DM0:8 15.2 15.2
MemClkOut0 15.2 15.2
MemAddr00:12 15.2 15.2
BA0:1 15.2 15.2
RAS 15.2 15.2
CAS 15.2 15.2
WE 15.2 15.2
BankSel0:3 15.2 15.2
ClkEn0:3 15.2 15.2
DQS0:8 15.2 15.2
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 79
Data Sheet
DDR SDRAM Write Operation
The following diagram illustrates the relationship among the signals involved with a DDR write operation.
Figure 9. DDR SDRAM Write Cycle Timing
DQS
MemData
PLB Clk
MemClkOut0
MemClkOut0(90)
Addr/Cmd
TSK
TSA
THA
TDS
TDS
TSD
THD
TSD
THD
TSA = Setup time for address and command si gnals to MemClkOut0(90)
TSK = Delay from rising edge of MemClkOut0(0) to rising/falling edge of signal (skew)
THA = Hold time for address and command signals from MemClkOut0(90)
TDS = Delay from rising/falling edge of clock to the rising /falling edge of DQS
TSD = Setup time for data signals (minimum time data is valid before rising/falling edge of DSQ)
THD = Hold time for data signals (minimum time data is valid after rising/falling edge of DSQ)
PPC440EP Embedded Processor Data Sheet
80 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Note: The timing data in the following ta bles is based on simulation runs using Einstimer.
Table 22. I/O Timing—DDR SDRAM TDS
Notes:
1. All of the DQS signals are referenced to MemClkOut0(0).
2. Clock speed is 133MHz.
3. The TDS value s in the table inclu de 3/4 of a cycle at 133MHz (7.5ns x 0.75 = 5.625 ns).
4. To obtain adjusted values for lower clock frequencies, subtract 5.625 ns from the values in the table and add 3/4 of the cycle
time for the lower clock frequency (TDS - 5.625 + 0.75TCYC).
Signal Name TDS (ns)
Minimum Maximum
DQS0 5.76 5.86
DQS1 5.78 5.91
DQS2 5.82 5.90
DQS3 5.79 5.89
DQS8 5.75 5.88
Table 23. I/O Timing—DDR SDRAM TSK, TSA, and THA
Notes:
1. Clock speed is 133MHz. TSK is referenced to MemClkOut0(0). TSA and THA are referenced to MemClkOut0(90).
2. To obtain adjusted TSA values for lower clock frequencies, use 3/4 of the cycle time for the lower clock frequency and subtract
TSK maximum (0.75TCYC - TSKmax).
3. To obtain adjusted THA va lues for lower clock frequencies, use 1/4 of the cycle time for the lower clock frequency and add
TSK minimum (0.25TCYC + TSKmin).
Signal Name TSK (ns) TSA (ns) THA (ns)
MinimumMaximumMinimumMinimum
MemAddr00:12 0.11 0.32 5.31 1.99
BA0:1 0.07 0.31 5.32 1.95
BankSel0:3 0.05 0.25 5.38 1.93
ClkEn0:3 0.07 0.28 5.35 1.95
CAS 0.05 0.31 5.32 1.93
RAS 0.05 0.28 5.35 1.93
WE 0.08 0.22 5.41 1.96
Table 24. I/O Timing—DDR SDRAM TSD and THD
Notes:
1. TSD and THD are measured under worst case conditions.
2. Clock speed for the values in the table is 133MHz.
3. The time values in the table include 1/4 of a cycle at 133MHz (7.5ns x 0.25 = 1.875 ns).
4. To obtain adjusted TSD and THD value s for lowe r clock frequencies, subtract 1.875 ns from the values in the table and add
1/4 of the cycle time for the lower clock frequency (e.g., TSD - 1.875 + 0.25TCYC).
Signal Names Reference Signal TSD (ns) THD (ns)
MemData00:07, DM0 DQS0 1.795 1.866
MemData08:15, DM1 DQS1 1.775 1.865
MemData16:23, DM2 DQS2 1.745 1.862
MemData24:31, DM3 DQS3 1.765 1.864
ECC0:7, DM8 DQS8 1.685 1.857
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 81
Data Sheet
DDR SDRAM Read Operation
The following examples of timing for DDR SDRAM read operations are based on the relationship between the
incoming data and the PLB clock signal. Since the PLB clock cannot be directly observed, the delay of
MemClkOut(0) relative to the PLB clock (TMD) is provided.
The internal Read Clo ck signal, like MemClkOut0 , is deriv ed from the PLB clock and can be delayed relative to the
PLB clock by programming the RDCT and RDCD fields in the SDRAM0_TR1 register. The delay can be
programmed from 0 to 1/2 cycle in steps using RDCT. Setting RDCD results in a 1/2 cycle delay plus the value set
in RDCT. The delay of Read Clock relative to the PLB clock (TRD) shown below assumes the programmable Read
Clock delay is set to zero.
Figure 10. DDR SDRAM MemClkOut0 and Read Clock Delay
In operation, following the receipt of an address and read command from the PPC440EP, the SDRAM generates
data and the DQS signals coincident with MemClkOut0. The data is latche d into the PPC440EP using a DQS
signal that is delayed 1/4 of a cycle. In order to accommodate timing variation s introd u ce d by th e sys tem de sig ns
using this chip, the three-stage data path shown below is used to eliminate metastability and allow data sampling to
be adjusted for minimum latency. This ad justment requires programming th e Read Clock delay and the selection of
Stage 1, Stage 2, or Stage 3 data for sampling at Read Sample Point flipflop (RDSP).
PPC440EP Embedded Processor Data Sheet
82 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Figure 11. DDR SDRAM Read Data Path
In the following examples, the data strobes (DQS) and the data are shown to be coincident. There is actually a
slight skew as specified by the SDRAM specifications, and there can be additional skew due to loading and signal
routing. It is recommended that the signa l length for all of the eight DQS signals be matched.
Table 25. I/O Timing—DDR SDRAM TSIN and TDIN
Notes:
1. TSIN = Delay from DQS at package pin to C on Stage 1 FF.
2. TDIN = Delay from data at package pin to D on Stage 1 FF.
3. Clock speed for the values in the table is 133MHz.
4. The time values for TSIN include 1/4 of a cycle at 133MHz (7.5ns x 0.25 = 1.875 ns).
Signal Name TSIN (ns)
minimum TSIN (ns)
maximum Signal Name TDIN (ns)
minimum TDIN (ns)
maximum
DQS0 2.74 3.70 MemData00:07 0.86 1.87
DQS1 2.75 3.69 MemData08:15 0.87 1.86
DQS2 2.74 3.69 MemData16:23 0.89 1.86
DQS3 2.76 3.69 MemData24:31 0.88 1.85
DQS8 2.77 3.68 ECC0:7 0.89 1.83
(SDRAM0_TR1[RCT])
Stage 1 Stage 2 Stage 3
Read Sample Point
PLB bus
FF, FF FF
FF
Data
Read Select
(SDRAM0_TR1[RDSL])
DQS 1/4
Cycle
Delay
PLB Clock
Programmed
Delay
D
C
Package pins Mux
Read Clock
CC
C
DD
D
FF Timing:
TIS = Input setup time = 0.2ns
TIH = Input hold time = 0.1ns
TP = Propagation delay (D to Q or C to Q) = 0.4ns maximum
XL
ECC
FF: Flip-Flop
XL: Transparent Latch
QQQ
Q
flipflop (RDSP)
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 83
Data Sheet
Example 1:
If the data-to-PLB clock timing is as shown in the example below, then the read clock is not delayed and the Stage
1 data is sampled at (1). Except for small, low frequency memory systems with the memory located physically
close to the PPC440EP, it is unlike ly th at Stage 1 data can b e sampled. When th e data comes later, it is ne cessary
to sample Stage 2 or Stage 3 data. (see Examples 2 and 3). Another way to get the desired data-to-PLB timing to
allow Stage 1 sampling is to buffer MemClkOut0 and skew it enough to guarantee the timing. In this example, TT is
system dependent and taken into account by controller initialization software.
Figure 12. DDR SDRAM Read Cycle Timing—Example 1
DQS at pin
PLB Clock
TSIN
TDIN = Delay from data at package pin to D on Stage 1 FF.
TSIN = Delay from DQS at package pin to C on Stage 1 FF.
Data at pin D0 D1 D2 D3
DQS Stage 1 C
D0 D1 D2 D3
TDIN
D0 D2
Data in Stage 1 D
D1 D3
Data out Stage 1 High
Low
T
P
D0 D2
D1 D3
Data in at RDSP High
Low
with no ECC
T
T
TP = Propagation delay through FFs
TT = Propagati on delay, Stage 1 input to RDSP input w/ o ECC
D0 D2
D1 D3
Data out RDSP High
Low
(1)
D2
D2
T
P
D0
D0
PPC440EP Embedded Processor Data Sheet
84 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Example 2:
In this example Read Clock is delayed almost 1/2 cycle. Withou t ECC, Stage 2 da ta can be sampled at (2). If ECC
is enabled, Stage 3 data must be sampled (see Example 3). In this example, TT and TTE are system depe n de n t
and taken into account by controller initialization software.
Figure 13. DDR SDRAM Read Cycle Timing—Example 2
DQS at pin
PLB Clock
Read Clock Delayed
TSIN
Data at pin D0 D1 D2 D3
DQS Stage 1 C
D0 D1 D2 D3
TDIN
D0 D2
Data in Stage 1 D
D1 D3
Data out Stage 1 High
Low
T
P
D0 D2
D1 D3
Data in at RDSP High
Low
without ECC
TT = Propagation delay from Stage 2 input to RDSP input w/o ECC
D0 D2
D1 D3
Data out Stage 2 High
Low
Data out at RDSP High
Low
(2)
without ECC
T
P
D0 D2
D1 D3
Data in at RDSP High
Low
with ECC
D0 D2
D1 D3
TTE = Propagation delay from Stage 2 input to RDSP input with ECC
TTTTE
D0 D2
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 85
Data Sheet
Example 3:
In this example, ECC is ena bled. This requir es that Stage 3 data be sampled at (3). If ECC is disabled, the system
will still work, but there will be more latency before the data is sampled into RDSP. In this example, TT and TTE are
system dependent and taken into account by controller initialization software.
Figure 14. DDR SDRAM Read Cycle Timing—Example 3
DQS at pin
PLB Clock
Read Clock Delayed
TSIN
Data at pin D0 D1 D2 D3
DQS Stage 1 C
D0 D1 D2 D3
TDIN
D0 D2
Data in Stage 1 D
D1 D3
Data out Stage 1 High
Low
T
P
D0 D2
D1 D3
Data out Stage 3 High
Low
with ECC
TT = Propagation delay from Stage 2 input to RDSP input w/o ECC
D0 D2
D1 D3
Data out Stage 2 High
Low
Data out RDSP High
Low
(3)
with ECC
T
P
D0 D2
D1 D3
Data in at RDSP High
Low
with ECC
D0 D2
D1 D3
TTE = Propagation delay from Stage 2 input to RDSP input with ECC
TTE
D0 D2
PPC440EP Embedded Processor Data Sheet
86 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Boot Configuration
The PPC440EP has several configurable boot parameters that must be initialized prior to booting. These
parameters are configured by one of several default boot options or programmed by data read from an IIC serial
EEPROM (see “Serial EEPROM” below). Strap signals sampled during reset select which method is used to
initialize the boot parameters (see “Strapping” below).
Strapping
The Bootstrap Controller selects the boot options base d on the state of the strap signals during reset. The strap
signals are sampled on the rising edge of SysClk while SysReset is driven low. They must not change state until
after SysReset is driven high in order to guarantee the correct boot option is selected.
These pins are used for strap functions only during reset. Following reset, they are used as UART signals. The
UART signal names are shown in parentheses following the pin number.
The following table lists the strapping pins along with their functions and boot strap op tions:
Serial EEPROM
Boot Options G and H enable the Bootstrap Contro ller to read 16 bytes of configuration data from a serial
EEPROM attached to the IIC0 bus after SysReset deasserts. The Bootstrap Controller stores the data in the
SDR0_SDSTP0:3 registers.
Note: The IIC serial EEPROM must have a one-byte offset address. Multi-byte offset addresses are not
supported.
The initialization settings and their default values are covered in detail in the PowerPC 440EP User’s Manual.
Table 26. Strapping Pin Assignments
Function Option
Ball Strapping
R25
(UART0_DCD)U26
(UART0_DSR)V26
(UART0_CTS)
Serial device is disabled. Each of the six options (A–
F) is a combination of boot source, boot-source
width, and clock frequency specifications. Refer to
the IIC Bootstrap Controller chapter in the
PPC440EP Embedded Processor User’s Manual for
details.
A 000
B 001
C 010
D 011
E 100
F 110
Serial device is enabled. Boot Option G and H
enable the Bootstrap Controller to program boot
parameters using data read from an IIC serial
EEPROM. Option G and H support different IIC
addresses.
Option G - Address 0xA8 is left justified (0x1010100
+ R/W bit).
Option H - Address 0xA4 is left justified (0x1010010
+ R/W bit).
Note: If reading of configuration data from the serial
device fails, the PPC440EP defaults to configuration
X.
G (0xA8)101
H (0xA4)111
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 87
Data Sheet
Revision Log
Date Version Contents of Modification
08/21/2003 Initial creation of document.
09/22/2003 Misc. updates and corrections.
10/07/2003 Misc. updates and corrections.
10/13/2003 Add I/O timing.
10/31/2003 Miscellaneous updates.
11/03/2003 Correct initialization str apping pins and response IIC interface.
11/25/2003 Correct OVDD and SVDD pin assignments.
12/15/2003 Delete heat sink mounting information placeholders and remove Confidential status.
12/19/2003 Restore Confidential status.
01/12/2004 Update DDR SDRAM interface timing section.
03/15/2004
Correct MemClkOut0 pin assignment.
Correct SDRAM PLL voltage.
Add Note 6 to UARTn_CTS signal.
Correct SDRAM I/O worst case spec temperature.
Change 333MHz to 400MHz.
04/7/2004 Correct label on Ethernet transmit signals.
09/2/2004 Convert to AppliedMicro format.
09/8/2004 Modify headers to flip between left and right pages like the footers.
Change part numbers to AppliedMicro part numbers.
Remove Confidential status, again
09/28/2004 Add USB clock frequency numbers.
Number table and figure captions.
10/06/2004 Correct USB block diagram and description.
Update formatting and PDF book marking.
10/12/2004 Add missing DDR SDRAM timing data.
10/28/2004 Miscellaneous updates.
11/18/2004
Add RejectPkt signal to pin Y25. Issue 31
Corrected numbering on PCIReq signal. Issue 30
Added notes to USB signals to correctly define required pull-ups and pull-downs. Issue 20
Correct typo on voltage specification for SAVDD in the DC Power Supply Loads table. Issue 9
Misc. typo corrections. Issue 29
11/19/2004 Change bootstrap option numbers to letters and add two options.
11/22/2004 Correct bootstrap pin settings to match new letter designations.
12/17/2004 Add Revision B part numbers for both leaded and lead-free packages and tape-and-reel
shipping.
01/18/2005 Add input capacitance values.
Update and add missing voltage supply currents.
01/31/2005 Update DDR SDRAM timing.
02/08/2005 Change circuit type info for some system interface signals and move RejectPkt to the Ethernet
group.
PPC440EP Embedded Processor Data Sheet
88 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
02/15/2005 Miscellaneous updates
03/10/2005 Miscellaneous updates
03/25/2005 Correct I/O timing specs for ExtReq signal.
04/27/2005 USB 2.0 I/O and DDR SDRAM timing updates.
05/24/2005 Add RoHS compliance statement.
06/14/2005 Updates and additions to power and thermal specifications.
Add new 667MHz PNs and remove old 466MHz PNs.
07/06/2005 Change maximum NAND Flash to 256MB.
08/08/2005 Change solder ball size specification and add thermally enhanced package specification.
10/05/2005 1.20 Miscellaneous updates
11/18/2005 1.21
Remove metal-layer specification from technology description.
Change default configuration when bootstrap IIC read fails from option A to configuration X.
Add package nomenclature.
Correct MemClkOut duty cycle.
Correct and move PerErr signal description from master to slave.
Change maximum VCO frequency to 1334MHz.
02/16/2006 1.22 Add revision level 2.1 (C) part number and PVR number.
05/24/2006 1.23 Update power dissipation and add additional temperature data.
07/19/2006 1.24 Correct enable/disable specifications for PCI Gnt/Req signals.
12/18/2006 1.25
Change analog voltage filter circuit inductor part number.
Change all multiplexed GPIO signal defaults to the GPIO signals.
Change AC12 default from IRQ5 to DMAReq1.
Correct descriptions of LeakTest, RcvrInh, ModeCtrl, RefEn, an d DrvrInh1:2 signals
Remove “Preliminary” status from header.
04/25/2007 1.26 Remove thermally enhanced package.
01/07/2008 1.27
Added Assembly Requirements section on page 17, added Unused I/Os section on page 50,
place the analog filter diagram in its own sectio n.
Added changes to the Internal Buses, changes to Assembly Requirements, moved diagram
from under Device Characteristics to Power Sequencing and added more information, added
information to DDR SDRAM Read Data Path Diagram, added information to Test Condition
and I/O Specifications diagrams.
Changed the techncial support telephone and fax number.
Changed temperature rating for 333MHz and 400MHz parts on page 4 as per Product Change
Notification: 091207-01.
Added note for EMCSync signal to I/O Specification table.
Added timing references to I/O Specification tables.
Corrected setup and hold timing for RejectPK in I/O Specification table.
Added definition for RDSP abbreviation to DDR SDRAM Read Data Path figure.
Added notes 3 and 4 to Recommended DC Operating Conditions table.
Added Overshoot/Undershoot specification.
Removed references to PPC440EP Rev B part number since these parts are no longer
available for ordering.
03/18/2008 1.28 Replaced 16750 compatible UART to 16550
Replaced NS16750 with NS16550.
05/07/2008 1.29 Deleted incorrect MDIO timing data from table 19.
Date Version Contents of Modification
PPC440EP Embedded Processor
Revision 1.30 – June 21, 2012
AppliedMicro Proprietary 89
Data Sheet
06/21/2012 1.30
Updated to new logos.
Doc Issue 5632: Updated “Boot Configuration”, “Strapping”, and “Serial EEPROM” information
on page 86.
Doc Issue 5652: Corrected RMII write timing in Table 18.
Updated PDF bookmarks.
Updated SysErr description in Table 8.
Doc Issue 5856: Added notes to Table 16 regarding Spread Sp ectrum, SysClk jitter, and slew
rate.
Doc Issue 7101: Corrected the Case Temperatures in Table 10.
Date Version Contents of Modification
PPC440EP Embedded Processor Data Sheet
90 AppliedMicro Proprietary
Revision 1.30 – June 21, 2012
Applied Micro Circuits Corporation
215 Moffett Park Drive, Sunnyvale, CA 94089
Phone: (408 ) 54 2- 86 0 0 — (8 00 ) 84 0- 6 05 5 — Fa x : (4 08 ) 54 2- 8 60 1
http://www.apm.com
AppliedMicro reserves the right to make changes to its products, its data sheets, or related documentation, without notice and
warrants its products solely pursuant to its terms and conditions of sale, only to substantially comply with the latest available
data sheet. Please con sult AppliedMicro’s Term and Conditions o f Sale for its warranti es and other terms, conditions and
limitations. AppliedMicro may discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant in formation to ver ify, bef ore placing orders, t hat the informa tion is current. Ap pliedMicro
does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it
convey any license under its patent rights nor the rights of others. AppliedMicro reserves the right to ship devices of higher
grade in place of those of lower grade.
APPLIEDMICRO SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.
AppliedMicro and AMCC are Trademarks of Applied Micro Circuits Corporation. PowerPC and the PowerPC logo are
registered trademarks of IBM Corporation. Power and the Power logo are registered trademarks of Power.org.
Copyright © 2007 Applied Micro Circuits Corporation.
All Rights Reserved.