AYf, Ritson i LF153 LF253 - LF353 WIDE BANDWIDTH DUAL J-FET OPERATIONAL AMPLIFIERS | a LOW POWER CONSUMPTION ja WIDE COMMON-MODE (UP TO Vcc*t) AND : DIFFERENTIAL VOLTAGE RANGE > @ LOW INPUT BIAS AND OFFSET CURRENT ! a OUTPUT SHORT-CIRCUIT PROTECTION a HIGH INPUT IMPEDANCE J-FET INPUT ' STAGE = INTERNAL FREQUENCY COMPENSATION 7 sos | LATCH UP FREE OPERATION DIPS as | HIGH SLEW RATE: 16V/us (typ) (Plastic Package) (Plastic Micropackage) H TOSS (Metal Can) |/DESCRIPTION The LF353 are high speed J-FET input dual oper- ORDER CODES ational amplifiers incorporating well matched, high volt- Part Package age LET and bipolar transistors in a monolithic inte- Number Temperature Hi D grated circuit. 7 ; The devices feature high slew rates, low input bias and LF363 9 , +70 C offset currents, and low offset voltage temperature LF253 40C, +105C * . coefficient. LF153 -55C, +125C PIN CONNECTIONS (top views) Togs DIPS/SO8 1 - Output 1 +Ch rs 2 - inverting input 1 3 - Non-inverting input 1 eo 7 4- Voc! aU re 5 - Non-inverting input 2 6 - Inverting input 2 4C rs 7 - Output 2 8 - Vec* 153-02.EPS uW7 269 153-01. TBLLF153 - LF253 - LF353 SCHEMATIC DIAGRAM (each amplifier) Voo* + Non-inverting inpu Invertin inpu l 4 1002 | aoa {-] Output 100g 30k | Ply pt 4 I a ~ 4 8.2k | , 1.3k | 35k 1000 ~ | Voc CI 153-03.EPS | ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit Vcc | Supply Voltage - (note 1) 18 v Vi Input Voltage - (note 3) +15 Vv Via Differential Input Voltage - (note 2) +30 Vv Prot Power Dissipation 680 mw Output Short-circuit Duration - (note 4) Infinite Toper | Operating Free Air Temperature Range LF353 Oto 70 c LF253 40 to 105 LF153 55 to 125 Tsig | Storage Temperature Range -65 to 150 C Notes: 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the Zero reference level is the midpoint between Voc" and Vcc 2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 4. The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the dissipation rating is not e: 270ELECTRICAL CHARACTERISTICS Vcc = +15V, Tamb = 25C (unless otherwise specified) LF153 - LF253 - LF353 Symbol Parameter LF15S - LF253 - LF353 Unit Min. | Typ. | Max. Vio Input Offset Voltage (As = 10kQ) mV Tam = 25C 3 10 Tin. S Tamb S Tmax. 13 DVio | Input Offset Voltage Drift 10 pvfc lio Input Offset Current * Tamb = 25C 5 100 pA Trin. < Tamb < Tmax. 4 nA lb Input Bias Current . Tamb = 25C 20 200 pA Tmin. < Tamb S Tmax. 20 nA Avg Large Signal Voltage Gain (Ri = 2kQ, Vo = 10V) VimvV Tamb = 25C 50 200 Tin. < Tamb < Tmax. 25 SVR | Supply Voltage Rejection Ratio (Rs = 10k) dB amb = 80 86 Trin. < we < Tmax. 80 lec Supply Current, per Amp, no Load mA Tame = 25C 1.4 3.2 Trin. S Tamb < Tmax. 3.2 Vien input Common Mode Voltage Range +11 +18 Vv CMR_ | Common Mode Rejection Ratio (Rs = 10kQ) dB Tamb = 25C 70 86 Tmin. < Tamb < Tmax. 70 los Output Short-circuit Current mA Tamp = 25C 10 40 60 Tin, < Tamb < Tmax. 10 60 tVopp Output Voltage : Swing v : Tamb = 25 Ri= 2k2 10 12 Ri = 10k2 12 13.5 Twin, S Tamb S Tmax. RL= 2kQ 10 Ri = 10kQ 12 SR Slew Rate Vis (Vi = 10V, AL = 2kQ, Ci = 100pF, Tamb = 25C, unity gain) 12 16 t Rise Time us (Vi = 20mV, Ri = 2kQ, CL= 100pF, Tam = 25C, unity gain) 0.1 Koy Overshoot % {Vi = 20mV, Ri = 2kQ, C. = 100pF, Tam = 25C, unity gain) 10 . GBP | Gain Bandwidth Product MHz (f = 100kHz, Tamb = Oat, Vin = 10mV, Ri = 2kQ, Ci = 100pF) 25 4 Ri Input Resistance 10? Q THD Total Harmonic Distortion (f = 1kHz, Av = 20dB, Ri = 2kQ, % CL = 100pF, Tamb = 25C, Vo = 2Vpp) 0.01 . . nv en Equivalent Input Noise Voltage (f = 1kHz, Rs = 100) 15 Vaz om Phase Margin . 45 Degrees Vo1/Voz2 | Channel Separation (Av = 100, Tamp = 25C) 120 dB * The input bias currents are junction leakage currents which approximately double for every 10C increase in the junction temperature. 37 271 153-03. TBLLF153 - LF253 - LF353 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY ~ k Al= 2ko z amb = +25 5 See Figure 2 = se Du ag oz KE =o 6 > a = 5S = 2 100 mK. 10K 100K 1M 10M FREQUENCY (Hz) 153-04.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY 30 5 2s Tam = +25C Voc = + 15V 5 R, =2kQ 3 20 See Figure 2 > 3 cw x a 15 Ee Tame = -55C xa 10 o = 5 3 Tomb = +125C = 10k = 40k 100k 400k, 1M aM 10M FREQUENCY (Hz) 153-06.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE 30 Voc =415V 25 | Tem = +25C See Figure 2 15 10 5 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V} 0 0102 04 O71 2 4 7 10 LOAD RESISTANCE (kQ) 153-08.EPS kyg, Sescnteanes MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY AL 1OkKQ. Tamb = +25 See Figure 2 Vogs +15 if 14 Vv +10V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) 400 = 1K 10K = 100K = IMO FREQUENCY (Hz) 153-05.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP. 5 }Vog = t15V See Figure 2 | 0 -75 -50 -25 0 25 60 75 -50 125 TEMPERATURE (C) 5 a0 4 L| 25: ewes 5 danecleeecee wee -s g 20 = R_ = 10kKQ ew 15 R 4 359 U2 2ko Z 10 | ae | oa = 2 5 = 13-07.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE R, = 10k Q Tam = +25C MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) 0 2 4 6 8 0 12 14 = 16 SUPPLY VOLTAGE (V} 153-09.EPSINPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE 10 0.1 INPUT BIAS CURRENT (nA) G.01 50-25 0 2 80 75 100 125 TEMPERATURE (C) 153-10.EPS LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY if Veg = 7 5V to +15V wo 10 R, = 2k ae Tamp = 425C 5S 4 0 3 z 10 KN | DIFFERENTIAL VOLTAGE Zk 19 |} t ~ampiricaTion | 45 z 2 102 | NK. (eft scale) 90 w! PHASE SHIFT \ Z jp! [tight scale) 135 ! 180 1 10 100 ik 10k 100k 1M 10M FREQUENCY (Hz) 153-12.EPS SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AiR TEMPERATURE 20 18 Vog = + 15V 1.6 No signal 14 No load 12 1.0 08 06 0.4 0.2 0 SUPPLY CURRENT (mA) 75 50 -25 O 2 50 75 100 125 TEMPERATURE (C) 153-14.EPS i SGS-THOMSON JF imerozecrroscs LF153 - LF253 - LF353 LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AIR TEMPERATURE 1000 400 uw 200 2 = 10 85 #0 ae 20 Ee 10 Vog = 218V ea 4 E Vox tov iE 2 2 [A,=2ka 1 % 50 25 0 2 3 75 100 125 TEMPERATURE ("C) 153-11.EPS TOTAL POWER DISSIPATION VERSUS FREE AIR TEMPERATURE 250 225 200 175 150 125 100 75 50 25 0 TOTAL POWER DISSIPATION (mW) 75 60 -26 O 2% 50 75 100 125 TEMPERATURE (C) 153-13.EPS SUPPLY CURRENT PER AMPLIFIER VERSUS SUPPLY VOLTAGE Tamb = +25C No signal No load SUPPLY CURRENT (mA) 0 2 4 6 8 10 12 14 = 16 SUPPLY VOLTAGE (V) 153-15.EPS 5/7 273LF153 - LF253 - LF353 COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 6 I -----p-f Tf 3 4 OUTPUT. = : : 3 ot |_i\ 6 INPUT: \ ES 0 t+\ 3 1 Veg= +18 : 9 2 f A, =2ka \ 5 4 C, = 100pF \ z 6 me = #25C Cc 0 05 1 #18 2 25 3 35 163-17.EPS EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY 70 Veo = + w 60 Ay =10 oa 50 Rs =1009 = 0 Tam) =+25C a =w 30 en 3 8 10 > & 10 40 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) 153-19.EPS TOTAL HARMONIC DISTORTION VERSUS FREQUENCY 89 3 S Wu a. OW? ue ue ge ue 85 g = eA Z Pa 5 75 8) 2 0 2 80 75 100 125 TEMPERATURE ('C) 159-16.EPS j OUTPUT VOLTAGE VERSUS . ELAPSED TIME 28 = 24 => = 20 3 o 16 a 12 > 5 8 V2 15V & 4 cc 2 Ry =2ka 0 Tamb = +25C 4 tr 0 01 02 03 04 05 06 O7 TIME (us) 159-18.ERS 1 3 04 5 B oA of 0.04 : 0.01 = a0 a S goot 100 400 6/7 274 4k 10k 40k 100k FREQUENCY (Hz) 153-20.EPSLF153 - LF253 - LF353 - PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier 153-21.EPS 153-22.EPS TYPICAL APPLICATION QUADRUPLE OSCILLATOR 18k Q 1N 4148 15V 1kQ 18pF Lp 6 cos wt 2 kQ 1N 4148 18k Q +15V 153-23.EPS Sir $5S:THomson mn Sf MICROELECTRONICS 275