SED1330F/1335F/1336F LCD Controller ICs Technical Manual DATA IMAGE DECEMBER, 1998 Version 0.4 268-0.4 S-MOS Systems, Inc. * 2460 North First Street * San Jose, CA 95131 * Tel: (408) 922-0200 * Fax: (408) 922-0238 1 THIS PAGE INTENTIONALLY BLANK 2 268-0.4 Table of Contents SED1330F/1335F/1336F CONTENTS 1.0 Overview ............................................................................................................. 9 1.1 Description .................................................................................................................................. 11 1.2 Features ...................................................................................................................................... 11 1.3 Block Diagram ............................................................................................................................. 12 1.4 Pinouts ........................................................................................................................................ 14 1.4.1 SED1330FBA, 1335FBB and SED1336F0A Pinouts ............................................. 14 1.4.2 SED1330FBA and SED1335F0A Pinouts .............................................................. 14 1.5 Package Dimensions ................................................................................................................... 15 2.0 Pin Description ................................................................................................. 17 2.1 SED1330FBA/BB Pin Summary .................................................................................................. 18 2.2 SED1330F/1335F0A/0B Pin Summary ....................................................................................... 19 2.3 SED1336F0A Pin Summary ........................................................................................................ 20 2.4 Pin Functions ............................................................................................................................... 21 2.4.1 Power Supply .......................................................................................................... 21 2.4.2 Oscillator ................................................................................................................. 21 2.4.3 Microprocessor Interface ........................................................................................ 21 2.4.4 Display Memory Control ......................................................................................... 23 2.4.5 LCD Drive Signals .................................................................................................. 23 3.0 Command Description ..................................................................................... 25 3.1 The Command Set ...................................................................................................................... 27 3.2 System Control Commands ........................................................................................................ 28 3.2.1 SYSTEM SET ......................................................................................................... 28 3.2.1.1 C ........................................................................................................ 29 3.2.1.2 M0 ...................................................................................................... 29 3.2.1.3 M1 ...................................................................................................... 29 3.2.1.4 M2 ...................................................................................................... 29 3.2.1.5 W/S .................................................................................................... 29 3.2.1.6 IV ........................................................................................................ 32 3.2.1.7 T/L ...................................................................................................... 32 3.2.1.8 DR ...................................................................................................... 32 3.2.1.9 FX ...................................................................................................... 32 3.2.1.10 WF ................................................................................................... 33 3.2.1.11 FY ..................................................................................................... 33 3.2.1.12 C/R .................................................................................................... 34 3.2.1.13 TC/R ................................................................................................. 34 3.2.1.14 L/F .................................................................................................... 35 3.2.1.15 AP .................................................................................................... 35 3.2.2 SLEEP IN................................................................................................................ 36 268-0.4 3 SED1330F/1335F/1336F Table of Contents 3.3 Display Control Commands ......................................................................................................... 36 3.3.1 DISP ON/OFF ......................................................................................................... 36 3.3.1.1 D ........................................................................................................ 37 3.3.1.2 FC ...................................................................................................... 37 3.3.1.3 FP ...................................................................................................... 37 3.3.2 SCROLL ................................................................................................................. 37 3.3.2.1 C ........................................................................................................ 37 3.3.2.2 SL1, SL2 ............................................................................................ 38 3.3.3 CSRFORM.............................................................................................................. 42 3.3.3.1 CRX ................................................................................................... 42 3.3.3.2 CRY .................................................................................................... 42 3.3.3.3 CM ..................................................................................................... 43 3.3.4 CSRDIR .................................................................................................................. 43 3.3.5 OVLAY .................................................................................................................... 43 3.3.5.1 MX0, MX1 .......................................................................................... 43 3.3.5.2 DM1, DM2 .......................................................................................... 45 3.3.5.3 OV ...................................................................................................... 45 3.3.6 CGRAM ADR .......................................................................................................... 45 3.3.7 HDOT SCR ............................................................................................................. 45 3.3.7.1 D0 to D2 ............................................................................................. 45 3.4 Drawing Control Commands ....................................................................................................... 46 3.4.1 CSRW ..................................................................................................................... 46 3.4.2 CSRR ...................................................................................................................... 46 3.5 Memory Control Commands ....................................................................................................... 47 3.5.1 MWRITE ................................................................................................................. 47 3.5.2 MREAD ................................................................................................................... 47 4.0 Specifications ................................................................................................... 49 4.1 Absolute Maximum Ratings ......................................................................................................... 51 4.1.1 SED1330 ................................................................................................................ 51 4.1.2 SED1335/SED1336 ................................................................................................ 51 4.2 SED 1330 Electrical Characteristics............................................................................................ 52 4.3 SED1335/1336 Electrical Characteristics.................................................................................... 53 4.4 SED1330 Timing Diagrams ......................................................................................................... 54 4.4.1 System bus READ/WRITE timing I (8080) ............................................................. 54 4.4.1.1 SED1330F ......................................................................................... 54 4.4.2 System bus READ/WRITE timing II (6800) ............................................................ 55 4.4.2.1 SED1330F ......................................................................................... 55 4.4.3 Display memory READ timing ................................................................................ 56 4.4.3.1 SED1330F ......................................................................................... 56 4.4.4 Display memory WRITE timing ............................................................................... 57 4.4.4.1 SED1330F ......................................................................................... 57 4.4.5 LCD control timing .................................................................................................. 58 4.4.5.1 SED1330F ......................................................................................... 59 4 268-0.4 Table of Contents SED1330F/1335F/1336F 4.4.6 Oscillator timing ...................................................................................................... 60 4.4.6.1 SED1330F ......................................................................................... 60 4.4.7 Measurement circuit ............................................................................................... 61 4.5 SED1335/SED1336 AC Timing Diagrams ................................................................................... 62 4.5.1 8080 family Interface Timing ................................................................................... 62 4.5.1.1 SED1335F ......................................................................................... 62 4.5.1.2 SED1336F ......................................................................................... 63 4.5.2 6800 family Interface Timing ................................................................................... 64 4.5.2.1 SED1335F ......................................................................................... 65 4.5.2.2 SED1336F ......................................................................................... 65 4.5.3 Display Memory Read Timing ................................................................................. 66 4.5.3.1 SED1335F ......................................................................................... 66 4.5.3.2 SED1336F ......................................................................................... 67 4.5.4 Display Memory Write Timing ................................................................................. 68 4.5.4.1 SED1335F ......................................................................................... 69 4.5.4.2 SED1336F ......................................................................................... 70 4.5.5 SLEEP IN Command Timing .................................................................................. 71 4.5.5.1 SED1335F ......................................................................................... 71 4.5.5.2 SED1336F ......................................................................................... 71 4.5.6 External Oscillator Signal Timing ............................................................................ 72 4.5.6.1 SED1335F ......................................................................................... 72 4.5.6.2 SED1336F ......................................................................................... 72 4.5.7 E-1330 LCD Controller IC ........................................................................................................ 73 4.5.7.1 SED1335F ......................................................................................... 75 4.5.7.2 SED1336F ......................................................................................... 75 5.0 Display Control Functions .............................................................................. 77 5.1 Character Configuration .............................................................................................................. 79 5.2 Screen Configuration ................................................................................................................... 81 5.2.1 Screen Configuration .............................................................................................. 81 5.2.2 Display Address Scanning ...................................................................................... 81 5.2.3 Display Scan Timing ............................................................................................... 84 5.3 Cursor Control ............................................................................................................................. 85 5.3.1 Cursor Register Function ........................................................................................ 85 5.3.2 Cursor Movement ................................................................................................... 85 5.3.3 Cursor Display Layers ............................................................................................ 85 5.4 Memory to Display Relationship .................................................................................................. 87 5.5 Scrolling ....................................................................................................................................... 90 5.5.1 On-page Scrolling ................................................................................................... 90 5.5.2 Inter-page Scrolling ................................................................................................. 91 5.5.3 Horizontal Scrolling ................................................................................................. 92 5.5.4 Bidirectional Scrolling ............................................................................................. 93 5.5.5 Scroll Units.............................................................................................................. 93 268-0.4 5 SED1330F/1335F/1336F Table of Contents 6.0 Character Generator ........................................................................................ 95 6.1 CG Characteristics ...................................................................................................................... 97 6.1.1 Internal Character Generator .................................................................................. 97 6.1.2 External Character Generator ROM ....................................................................... 97 6.1.3 Character Generator RAM ...................................................................................... 97 6.2 CG Memory Allocation................................................................................................................. 98 6.3 Setting the Character Generator Address ................................................................................... 99 6.3.1 M1 = 1 ................................................................................................................... 100 6.3.2 CG RAM Addressing Example .............................................................................. 100 6.4 Character Codes ....................................................................................................................... 101 7.0 TV Mode (SED1336F only) ............................................................................. 103 7.1 Sync Generator Circuit Timing .................................................................................................. 105 8.0 Description of Circuit Blocks ........................................................................ 109 8.1 Microprocessor Interface ........................................................................................................... 111 8.1.1 System Bus Interface............................................................................................ 111 8.1.1.1 8080 series ...................................................................................... 111 8.1.1.2 6800 series ...................................................................................... 111 8.1.2 Microprocessor Synchronization........................................................................... 111 8.1.2.1 Display Status Indication Output For SED1336F only...................... 111 8.1.2.2 Internal Register Access .................................................................. 111 8.1.2.3 Display Memory Access ................................................................... 111 8.1.3 Interface Examples ............................................................................................... 113 8.1.3.1 Z80(R) to SED1330F/1335F/1336F Interface .................................... 113 8.1.3.2 6802 to SED1330F/1335F/1336F Interface ..................................... 114 8.2 Display Memory Interface .......................................................................................................... 115 8.2.1 Static RAM ............................................................................................................ 115 8.2.2 Supply Current during Display Memory Access .................................................... 115 8.3 Oscillator Circuit ........................................................................................................................ 116 8.4 Status Flag ................................................................................................................................ 116 8.5 Reset ......................................................................................................................................... 117 9.0 Application Notes ........................................................................................... 119 9.1 Initialization Parameters ............................................................................................................ 121 9.1.1 SYSTEM SET Instruction and Parameters ........................................................... 121 9.1.2 Initialization Example ............................................................................................ 122 9.1.3 Display Mode Setting Example 1: Combining Text and Graphics ......................... 128 9.1.4 Display Mode Setting Example 2: Combining Graphics and Graphics ................. 129 9.1.5 Display Mode Setting Example 3: Combining Three Graphics Layers ................. 130 9.2 System Overview ...................................................................................................................... 132 6 268-0.4 Table of Contents SED1330F/1335F/1336F 9.3 System Interconnection ............................................................................................................. 133 9.3.1 SED1330F/1335F ................................................................................................. 133 9.3.2 SED1336F ............................................................................................................ 134 9.4 Smooth Horizontal Scrolling ...................................................................................................... 135 9.5 Layered Display Attributes ......................................................................................................... 137 9.5.1 Inverse Display ..................................................................................................... 137 9.5.2 Half-tone Display .................................................................................................. 137 9.5.2.1 Menu Pad Display ............................................................................ 137 9.5.2.2 Graph Display .................................................................................. 138 9.5.3 Flashing Areas ...................................................................................................... 138 9.5.3.1 Small Area ........................................................................................ 138 9.5.3.2 Large Area ....................................................................................... 138 9.6 16 x 16-dot Graphic Display ...................................................................................................... 139 9.6.1 Command Usage .................................................................................................. 139 9.6.2 Kanji Character Display ........................................................................................ 139 10.0 Internal Character Generator Font ............................................................. 141 11.0 Glossary of Terms ........................................................................................ 145 268-0.4 7 SED1330F/1335F/1336F Table of Contents THIS PAGE INTENTIONALLY BLANK 8 268-0.4 1.0 Overview 268-0.4 9 THIS PAGE INTENTIONALLY BLANK 10 268-0.4 1.0 - 1.2 1.0 Overview 1.0 Overview 1.1 Description The SED1330/1335F/1336F is a family of versatile LCD controller ICs that can display text and graphics on a medium size LCD panel. The software is compatible among all three chips. S-MOS recommends new designs use the SED1335 since the SED1330 will gradually be replaced by the SED1335. The SED1336F incorporates a TV sync generator circuit that is compatible with both NTSC and PAL systems. The 256 x 200 pixel TV display comprises three superimposed layers, and is identical to the simultaneous LCD panel display. When driving an LCD only, up to 3 overlapping layers can be displayed on LCD panels up to 640 x 256 pixels in size. The SED1330/1335F does not incorporate a TV controller. The SED1330/1335F/1336F can display layered text and graphics, scroll the display in any direction and partition the display into multiple screens. The SED1330/1335F/1336F stores text, character codes and bit-mapped graphics data in external frame buffer memory. Display controller functions include transferring data from the controlling microprocessor to the buffer memory, reading memory data, converting data to display pixels and generating timing signals for the buffer memory, TV monitor and LCD panel. The SED1330/1335F/1336F has an internal character generator with 160, 5 x 7 pixel characters in internal mask ROM. The character generators support up to 64, 8 x 16 pixel characters in external character generator RAM and up to 256, 8 x 16 pixel characters in external character generator ROM. 268-0.4 1.2 Features * Text, graphics and combined text/graphics display modes * Three overlapping screens in graphics mode * 640 x 256 pixel LCD panel display resolution * Programmable cursor control * Smooth horizontal and vertical scrolling of all or part of the display * 1/2-duty to 1/256-duty LCD drive * Up to 64 Kbytes of external static RAM frame buffer memory * Internal character generator * 160, 5 x 7 pixel characters in internal maskprogrammed character generator ROM * Up to 64, 8 x 16 pixel characters in external character generator RAM * Up to 256, 8 x 16 pixel characters in external character generator ROM * 6800 and 8080 family microprocessor interfaces * NTSC and PAL systems compatible (SED1336F only) * 256 x 200 pixel TV monitor display resolution (SED1336F only) * Low power consumption--3.5 mA operating current (VDD = 3.5V), 0.05 A standby current * 4.5 to 5.5V (SED1330F) * 2.7 to 5.5V (SED1330F/1335F) * 3.0 to 5.5V (SED1336F) * Available in 60-pin QFPs 11 1.0 Overview 1.3 1.3 Block Diagram Character Generator ROM Display Address Controller Refresh Counter Dot Counter Character Generator ROM Layered Controller Oscillator D0 to D7 A0, CS RD, WR RES XD0 to XD3 LCD Controller Microprocessor Interface SEL1 SEL0 XSCL, XECL YSCL,YD,YDIS Input/Output Register Video RAM Interface Cursor Address Controller LCD VD0 to VD7 VR/W VCE VA0 to VA15 Character Generator RAM LP, WF Video RAM OSC1 OSC2 Figure 1. SED1330F block diagram 12 268-0.4 1.3 1.0 Overview 1.3 Block Diagram Cursor Address Controller Display Address Controller Refresh Counter Dot Counter TV Controller* Character Generator ROM Layered Controller Oscillator D0 to D7 A0, CS RD, WR RES XD0 to XD3 LCD Controller Microprocessor Interface SEL1 SEL0 XSCL, XECL LCD YSCL, YD, YDIS VSD VD0 to VD7 VRD VCE, VRD, VWR VA0 to VA15 VWR Input/Output Register Video RAM Interface TV LP, WF Character Generator ROM Character Generator RAM SNC Video RAM XG XD *SED1336F only Figure 2. SED1335F/1336F block diagram 268-0.4 13 1.0 Overview 1.4 - 1.4.2 50 60 1 Index 5 6 45 40 SED1330FBA 10 30 29 15 20 VA8 VA9 VA10 VA11 VA12 VA13 NC VA14 VA15 VD0 VD1 VD2 VD3 VD2 VD1 VD0 VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 NC 50 60 1 Index 5 6 45 40 SED1335FOA 10 30 29 15 20 D7 XD3 XD2 XD1 XD0 XECL XSCL VSS LP WF YDIS YD YSCL VD7 VD6 VD5 VD4 VD3 D2 D3 D4 D5 D6 55 31 30 SED1330FBB Index 16 15 60 1 XD3 D7 D6 D5 D4 D3 D2 D1 D0 VDD A0 CS OSC2 OSC1 SEL 1 VD4 VD5 VD6 VD7 YSCL(SNC) YD YDIS WF LP VSS XSCL XECL(VSD) XD0 XD1 XD2 XG SEL1 SEL2 WR RD NC NC RES VRD VCE VWR VA0 VA1 VA2 VA3 VA4 VA5 VA6 VA7 XD CS A0 VDD D0 D1 45 46 VA5 VA4 VA3 VA2 VA1 VA0 VR/W VCE NC RES NC NC RD WR SEL 2 D7 XD3 XD2 XD1 XD0 XECL XSCL VSS LP WF YDIS YD YSCL VD7 VD6 VD5 VD4 VD3 D2 D3 D4 D5 D6 55 VA8 VA9 VA10 VA11 VA12 VA13 NC VA14 VA15 VD0 VD1 VD2 VD3 VD2 VD1 VD0 VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 NC 45 46 31 30 SED1335F0B (SED1336F0A) Index 60 1 16 15 XD3 D7 D6 D5 D4 D3 D2 D1 D0 VDD A0 CS XD XG SEL1 VA5 VA4 VA3 VA2 VA1 VA0 VWR VCE VRD RES NC NC(CLO) RD WR SEL 2(NT/PL) XD CS A0 VDD D0 D1 VD4 VD5 VD6 VD7 YSCL YD YDIS WF LP VSS XSCL XECL XD0 XD1 XD2 XG SEL1 SEL2 WR RD NC NC RES NC VCE VWR VA0 VA1 VA2 VA3 VA4 VA5 VA6 VA7 1.4 Pinouts Figure 3. SED1330F and SED1335F pinouts 14 268-0.4 1.4 - 1.4.2 1.0 Overview 1.5 Package Dimensions QFP5 Unit: mm 25.6 0.4 20.0 0.1 54 36 55 30 Index 29 5 24 6 1.0 0.1 2.7 0.1 0.15 0.05 19.6 0.4 60 1 14.0 0.1 35 0.35 0.1 23 0 ~ 12 1.5 0.3 2.8 Figure 4. SED1330FBA and 1335F0A package dimensions 17.6 0.4 QFP6 Unit: mm 14.0 0.2 45 31 46 Index 16 60 2.7 0.1 1 0.15 0.05 17.6 0.4 14.0 0.2 30 15 0.8 0.15 0.35 0.15 0 ~ 12 0.8 0.3 1.8 Figure 5. SED1330FBB , 1335F0B and SED1336F0A 268-0.4 15 THIS PAGE INTENTIONALLY BLANK 16 268-0.4 2.0 Pin Description 268-0.4 17 2.0 Pin Description 2.0 - 2.1 2.0 Pin Description 2.1 SED1330FBA/BB Pin Summary Name Number Type Description SED1330F0A SED1330FBB 27 to 28 30 to 43 44 45 47 29, 46, 48, 49 50 to 59 1 to 6 7 8 10 9, 11, 12, 60 RD 50 13 Input WR 51 14 Input SEL2 52 15 Input SEL1 53 16 Input OSC1 OSC2 CS A0 VDD 54 55 56 57 58 59 to 60 1 to 6 10 to 7 11 12 17 18 19 20 21 Input Output Input Input Supply 22 to 29 Input/output 33 to 30 34 35 Output Output Output X-driver data X-driver enable chain clock X-driver data shift clock LP WF 13 14 15 36 37 38 Supply Output Output YDIS 16 39 Output 17 18 26 to 19 40 41 49 to 42 Output Output Input/output Ground Latch pulse Frame signal Power-down signal when display is blanked Scan start pulse Y-driver shift clock VRAM data bus VA0 to VA15 VR/W VCE RES NC D0 to D7 XD0 to XD3 XECL XSCL VSS YD YSCL VD0 to VD7 18 Output VRAM address bus Output Output Input -- VRAM write signal Memory control signal Reset No connection 8080 family: Read signal 6800 family: Enable clock (E) 8080 family: Write signal 6800 family: R/W signal 8080 or 6800 family interface select 8080 or 6800 family interface select Oscillator connection Oscillator connection Chip select Data type select 4.5 to 5.5V supply Data bus 268-0.4 2.0 - 2.2 2.0 Pin Description 2.0 Pin Description 2.2 SED1330F/1335F0A/0B Pin Summary Name VA0 to VA15 VWR VCE VRD RES NC Number SED1335F0B SED1335F0A 27 to 28 50 to 59 30 to 43 1 to 6 44 7 45 8 46 9 47 10 29, 48, 49 11, 12, 60 Type Description Output VRAM address bus Output Output Output Input -- RD 50 13 Input WR 51 14 Input SEL2 52 15 Input SEL1 53 16 Input XG XD CS A0 VDD 54 55 56 57 17 18 19 20 Input Output Input Input VRAM write signal Memory control signal VRAM read signal Reset No connection 8080 family: Read signal 6800 family: Enable clock (E) 8080 family: Write signal 6800 family: R/W signal 8080 or 6800 family interface select 8080 or 6800 family interface select Oscillator connection Oscillator connection Chip select Data type select 58 59 to 60 1 to 6 10 to 7 11 12 13 14 15 21 Supply 2.7 to 5.5V supply 22 to 29 Input/output 33 to 30 34 35 36 37 38 Output Output Output Supply Output Output 16 39 Output 17 18 26 to 19 40 41 49 to 42 Output Output Input/output D0 to D7 XD0 to XD3 XECL XSCL VSS LP WF YDIS YD YSCL VD0 to VD7 268-0.4 Data bus X-driver data X-driver enable chain clock X-driver data shift clock Ground Latch pulse Frame signal Power-down signal when display is blanked Scan start pulse Y-driver shift clock VRAM data bus 19 2.0 Pin Description 2.3 2.3 SED1336F0A Pin Summary Name VA0 to VA15 VWR VCE VRD RES NC CLO Number 1 to 6 50 to 59 7 8 9 10 11, 60 12 Type Output VRAM address bus Output Output Output Input -- Output VRAM write signal Memory control signal VRAM read signal Reset No connection Clock output 8080 family: Read signal 6800 family: Enable clock (E) 8080 family: Write signal 6800 family: R/W signal NTSC or PAL TV mode select 8080 or 6800 family interface select Oscillator connection Oscillator connection RD 13 Input WR 14 Input NT/PL SEL1 OSC1 OSC2 15 16 17 18 Input Input Input Output 19 20 21 22 to 29 30 to 33 34 35 36 37 38 Input Input Supply Input/output Output Output Output Supply Output Output 39 Output 40 41 42 to 49 Output Output Input/output CS A0 VDD D0 to D7 XD0 to XD3 VSD XSCL VSS LP WF YDIS YD SNC VD0 to VD7 20 Description Chip select Data type select 3.0 to 5.5V supply Data bus X-driver data Video data Data shift clock Ground Latch pulse Frame signal Power-down signal when display is blanked Scan start pulse TV sync signal VRAM data bus 268-0.4 2.4 - 2.4.3 2.0 Pin Description 2.4 Pin Functions 2.4.1 Power Supply Pin Name VDD VSS Function 4.5 to 5.5V (SED1330F), 3.0 to 5.5V (SED1336F) or 2.7 to 5.5V (SED1330F/1335F) supply. This may be the same supply as the controlling microprocessor. Ground Note: The peak supply current drawn by the SED1330F/1335F/1336F may be up to ten times the average supply current. The power supply impedance must be kept as low as possible by ensuring that supply lines are sufficiently wide and by placing 0.47 F decoupling capacitors that have good high-frequency response near the device's supply pins. 2.4.2 Oscillator Pin Name (OSC) XG (OSC2) XD CLO Function Crystal connection for internal oscillator (see Section 8.3). This pin can be driven by an external clock source that satisfies the timing specifications of the EXT 0 signal (see Section 4.3.6). Crystal connection for internal oscillator. Leave this pin open when using an external clock source. Clock output (SED1336F only). Same phase as XG. Clock is output when system command P1 is executed. Output stops during system reset. 2.4.3 Microprocessor Interface Pin Name D0 to D7 SEL1, SEL2 Function Tristate input/output pins. Connect these pins to an 8- or 16-bit microprocessor bus. Microprocessor interface select pin. The SED1336F supports both 8080 family processors (such as the 8085 and Z80(R)) and 6800 family processors (such as the 6802 and 6809). SEL1* 0 SEL2 0 Interface 8080 family A0 A0 RD RD WR WR CS CS 1 0 6800 family A0 E R/W CS * SED1330F and SED1335F only Note: SEL1 should be tied directly to VDD or V SS to prevent noise. If noise does appear on SEL1, decouple it to ground using a capacitor placed as close to the pin as possible. 268-0.4 21 2.0 Pin Description Pin Name A0 2.4.3 Function A0, in conjunction with the RD and WR or R/W and E signals, controls the type of access to the SED1336F, as shown below. 8080 family interface A0 RD WR 0 1 0 0 1 1 Status flag read Display data and cursor address read Function 0 1 0 Display data and parameter write 1 1 0 Command write 6800 family interface RD or E WR or R/W CS RES 22 A0 R/W E Function 0 1 1 1 1 1 Status flag read Display data and cursor address read 0 0 1 Display data and parameter write 1 0 1 Command write When the 8080 family interface is selected, this signal acts as the active-LOW read strobe. The SED1330F/1335F/1336F's output buffers are enabled when this signal is active. When the 6800 family interface is selected, this signal acts as the active-HIGH enable clock. Data is read from or written to the SED1330F/1335F/1336F when this clock goes HIGH. When the 8080 family interface is selected, this signal acts as the active-LOW write strobe. The bus data is latched on the rising edge of this signal. When the 6800 family interface is selected, this signal acts as the read/write control signal. Data is read from the SED1330F/1335F/1336F if this signal is HIGH, and written to the SED1330F/ 1335F/1336F if it is LOW. Chip select. This active-LOW input enables the SED1330F/1335F/1336F. It is usually connected to the output of an address decoder device that maps the SED1330F/1335F/1336F into the memory space of the controlling microprocessor. This active-LOW input performs a hardware reset on the SED1330F/1335F/1336F. It is a Schmitt-trigger input for enhanced noise immunity; however, care should be taken to ensure that it is not triggered if the supply voltage is lowered. 268-0.4 2.4.4 - 2.4.5 2.0 Pin Description 2.4.4 Display Memory Control The SED1330F/1335F/1336F can directly access static RAM and PROM. The designer may use a mixture of these two types of memory to achieve an optimum trade-off between low cost and low power consumption. Pin Name Function 16-bit display memory address. When accessing character generator RAM or ROM, VA0 to VA0 to VA15 VA3, reflect the lower 4 bits of the row counter. VD0 to VD7 8-bit tristate display memory data bus. These pins are enabled when VR/W is LOW. VR/W Active-LOW display memory write control output (SED1330). VRD Active-LOW display memory read control output (SED1335/6). VCE Active-LOW static memory standby control signal. VCE can be used with CS. VWR Active-LOW display memory write control output (SED1335/6). 2.4.5 LCD Drive Signals In order to provide effective low-power drive for LCD matrixes, the SED1330F/1335F/1336F can directly control both the X- and Y-drivers using an enable chain. Pin Name XD0 to XD3 XSCL XECL LP WF YSCL YD YDIS 268-0.4 Function 4-bit X-driver (column drive) data outputs. Connect these outputs to the inputs of the X-driver chips. The falling edge of XSCL latches the data on XD0 to XD3 into the input shift registers of the X-drivers. To conserve power, this clock halts between LP and the start of the following display line (see Section 4.3.7). The falling edge of XECL (SED1330F/1335F only) triggers the enable chain cascade for the X-drivers (SED1600/SED1180). Every 16th clock pulse is output to the next X-driver. LP latches the signal in the X-driver shift registers into the output data latches. LP is a fallingedge triggered signal, and pulses once every display line. Connect LP to the Y-driver shift clock on modules that use the SED1600 and SED1610 drivers. LCD panel AC drive output. The WF period is selected to be one of two values with SYSTEM SET command. The falling edge of YSCL (SED1330F/1335F only) latches the data on YD into the input shift registers of the Y-drivers. YSCL is not used with the SED1600, SED1610 or other driver ICs which use LP as the Y-driver shift clock. YD is the data pulse output for the Y drivers. It is active during the last line of each frame, and is shifted through the Y drivers one by one (by YSCL), to scan the display's common connections. Power-down output signal. YDIS is HIGH while the display drive outputs are active. YDIS goes LOW one or two frames after the sleep command is written to the SED1330F/ 1335F/1336F. All Y-driver outputs are forced to an intermediate level (de-selecting the display segments) to blank the display. In order to implement power-down operation in the LCD unit, the LCD power drive supplies must also be disabled when the display is disabled by YDIS. 23 1.0 Overview 1.3 THIS PAGE INTENTIONALLY BLANK 24 268-0.4 1.3 - 1.4 1.0 Overview 3.0 Command Description 268-0.4 25 THIS PAGE INTENTIONALLY BLANK 26 268-0.4 3.0 - 3.1 3.0 Command Description 3.0 Command Description 3.1 The Command Set Table 1. The Command Set Command Read Hex Command Description Parameters No. of SecRD WR A0 D7 D6 D5 D4 D3 D2 D1 D0 Bytes tion Code Class System control Display control Drawing control Memory control Command Initialize device and display SYSTEM SET 1 0 1 0 1 0 0 0 0 0 0 40 SLEEP IN 1 0 1 0 1 0 1 0 0 1 1 DISP ON/OFF 1 0 1 0 1 0 1 1 0 0 D 53 Enter standby mode 58, Enable and disable dis59 play and display flashing SCROLL 1 0 1 0 1 0 0 0 1 0 0 CSRFORM 1 0 1 0 1 0 1 1 1 0 1 0 0 Set display start address and display regions 5D Set cursor type 44 Set start address of char5C acter generator RAM 8 3.2.1 0 3.2.2 1 3.3.1 10 3.3.2 2 3.3.3 2 3.3.6 0 3.3.4 1 3.3.7 1 3.3.5 2 3.4.1 CGRAM ADR 1 0 1 0 1 0 1 1 1 CSRDIR 1 0 1 0 1 0 0 1 1 HDOT SCR 1 0 1 0 1 0 1 1 OVLAY 1 0 1 0 1 0 1 1 0 1 1 CSRW 1 0 1 0 1 0 0 0 1 1 0 Set display overlay format 46 Set cursor address CSRR 1 0 1 0 1 0 0 0 1 1 1 47 Read cursor address 2 3.4.2 MWRITE 1 0 1 0 1 0 0 0 0 1 0 -- 3.5.1 MREAD 1 0 1 0 1 0 0 0 0 1 1 42 Write to display memory Read from display mem43 ory -- 3.5.2 4C CD CD Set direction of cursor to 1 0 movement 4F Set horizontal scroll pos0 1 0 5A ition 5B Notes: 1. In general, the internal registers of the SED1330F/1335F/1336F are modified as each command parameter is input. However, the microprocessor does not have to set all the parameters of a command and may send a new command before all parameters have been input. The internal registers for the parameters that have been input will have been changed but the remaining parameter registers are unchanged. 2-byte parameters (where two bytes are treated as one data item) are handled as follows: a. CSRW, CSRR: Each byte is processed individually. The microprocessor may read or write just the low byte of the cursor address. b. SYSTEM SET, SCROLL, CGRAM ADR: Both parameter bytes are processed together. If the command is changed after half of the parameter has been input, the single byte is ignored. 2. APL and APH are 2-byte parameters, but are treated as two 1-byte parameters. 268-0.4 27 3.0 Command Description 3.2 - 3.2.1 3.2 System Control Commands 3.2.1 SYSTEM SET Initializes the device, sets the window sizes, and selects the LCD interface format. Since the command sets the basic operating parameters of the SED1330F/ 1335F/1336F, an incorrect SYSTEM SET command may cause other commands to operate incorrectly. MSB LSB D7 D6 D5 D4 D3 D2 D1 D0 A0 WR RD C 0 1 0 0 0 0 0 0 1 0 1 P1 DR T/L IV 1 W/S M2 M1 M0 0 0 1 P2 WF 0 0 0 0 0 0 1 P3 0 0 0 0 0 0 1 FX FY P4 C/R 0 0 1 P5 TC/R 0 0 1 P6 L/F 0 0 1 P7 APL 0 0 1 P8 APH 0 0 1 Figure 7. SYSTEM SET instruction 28 268-0.4 3.2.1.1 - 3.2.1.5 3.2.1.1 C 3.0 Command Description as character generator RAM, and the CG RAM2 address space is treated as character generator ROM. This control byte performs the following: M1 = 1: 64 char CG RAM + CG RAM2 1. Resets the internal timing generator 2. Disables the display 3. Cancels sleep mode The CG RAM1 and CG RAM2 address spaces are contiguous and are both treated as character generator RAM. Parameters following P1 are not needed if only canceling sleep mode. 3.2.1.4 M2 3.2.1.2 M0 Selects the internal or external character generator ROM. The internal character generator ROM contains 160, 5 x 7 pixel characters. These characters are fixed at fabrication by the metalization mask. The external character generator ROM can contain up to 256 user-defined characters. M0 = 0: Internal CG ROM M0 = 1: External CG ROM Note that if the CG ROM address space overlaps the display memory address space, that portion of the display memory cannot be written to. Selects the height of the character defined in external CG ROM and CG RAM. Characters more than 16 pixels high can be displayed by creating a bitmap for each portion of each character and using the SED1330F/1335F/1336F's graphics mode to reposition them. M2 = 0: 8-pixel character height (2716 or equivalent ROM) M2 = 1: 16-pixel character height (2732 or equivalent ROM) 3.2.1.5 W/S Selects the LCD drive method. 3.2.1.3 M1 W/S = 0: Single-panel drive W/S = 1: Dual-panel drive Selects the CG RAM area for user-definable characters. The CG RAM codes are selected from the 64 codes shown in Figure 59. M1 = 0: CG RAM1; 32 char The CG RAM1 and CG RAM2 address spaces are not contiguous, the CG RAM1 address space is treated 268-0.4 29 3.0 Command Description EI 3.2.1.5 X driver X driver YD Y driver LCD Figure 8. Single-panel display EI X driver X driver YD Upper Panel Y driver Lower Panel X driver X driver Figure 9. Dual-panel display 30 268-0.4 3.2.1.5 3.0 Command Description EI X driver X driver X driver X driver YD Y driver Left Panel Right Panel Note: There are no Seiko-Epson LCD units in the configuration shown in Figure 10. Figure 10. Left-and-right two-panel display Table 3. LCD parameters Parameter C/R TC/R L/F SL1 SL2 SAD1 SAD2 SAD3 SAD4 Cursor movement range W/S = 0 W/S = 1 IV = 1 C/R TC/R L/F IV = 0 IV = 1 IV = 0 C/R C/R C/R TC/R (see note 1) TC/R TC/R L/F L/F L/F 00H to L/F + 1 00H to L/F (L/F) / 2 (L/F) / 2 (see note 2) 00H to L/F + 1 00H to L/F (L/F) / 2 (L/F) / 2 (see note 2) First screen block First screen block First screen block First screen block Second screen block Second screen block Second screen block Second screen block Third screen block Third screen block Third screen block Third screen block Invalid Invalid Fourth screen block Fourth screen block Above-and-below configuration: Continuous movement over whole screen continuousmovement over whole screen Notes: 1. See table 31 (page 105) for further details on setting the C/R and TC/R parameters when using the HDOT SCR command. 2. The value of SL when IV = 0 is equal to the value of SL when IV = 1, plus one. 268-0.4 31 3.0 Command Description 3.2.1.6 - 3.2.1.9 3.2.1.6 IV 3.2.1.7 T/L Screen origin compensation for inverse display. IV is usually set to 1. Selects TV or LCD mode. When TV mode is selected, the TV sync generator circuit is ON. The best way of displaying inverted characters is to Exclusive-OR the text layer with the graphics background layer. However, inverted characters at the top or left of the screen are difficult to read as the character origin is at the top-left of its bitmap and there are no background pixels either above or to the left of these characters. The IV flag causes the SED1330F/1335F/1336F to offset the text screen against the graphics back layer by one vertical pixel. Use the horizontal pixel scroll function (HDOT SCR) to shift the text screen 1 to 7 pixels to the right. All characters will then have the necessary surrounding background pixels that ensure easy reading of the inverted characters. See Section 5.5 for information on scrolling. IV = 0: IV = 1: Back layer 3.2.1.8 DR Selects output of an additional shift-clock cycle for every 64 pixels. The extra cycles are required for correct operation of the enable chain when using a two-panel display. DR = 0: Normal operation DR = 1: Additional shift-clock cycles 3.2.1.9 FX Screen top-line correction No screen top-line correction (no offset) Display start point T/L = 0: LCD mode T/L = 1: TV mode IV Sets the width, in pixels, of the character field. The character width in pixels is equal to FX + 1, where FX can range from 00 to 07H inclusive. If data bit 3 is set (FX is in the range 08 to 0FH) and an 8-pixel font is used, a space is inserted between characters. Note that the maximum character width in TV mode is eight pixels. 1 dot Table 4. Horizontal character size selection HDOT SCR Character Dots 1 to 7 HEX 00 01 07 D3 0 0 0 FX D2 D1 D0 0 0 0 0 0 1 1 1 1 [FX] character width (pixels) 1 2 8 Figure 11. IV and HDOT SCR adjustment Since the SED1330F/1335F/1336F handles display data in 8-bit units, characters larger than 8 pixels wide must be formed from 8-pixel segments. As Figure 12 shows, the remainder of the second eight bits are not displayed. This also applies to the second screen layer. In graphics mode, the normal character field is also eight pixels. If a wider character field is used, any remainder in the second eight bits is not displayed. 32 268-0.4 3.2.1.10 - 3.2.1.11 3.0 Command Description FX FX FY 8 bits 8 bits FY 8 bits Address A 8 bits Address B Non-display area Figure 12. FX and FY display addresses 3.2.1.10 WF 3.2.1.11 FY Selects the AC frame drive waveform period. WF is usually set to 1. Sets the height, in pixels, of the character. The height in pixels is equal to FY + 1. WF = 0: 16-line AC drive WF = 1: two-frame AC drive In two-frame AC drive, the WF period is twice the frame period. FY can range from 00 to 0FH inclusive. Set FY to zero (vertical size equals one) when in graphics mode. Table 5. Vertical character size selection In 16-line AC drive, WF inverts every 16 lines. Although 16-line AC drive gives a more readable display, horizontal lines may appear when using high LCD drive voltages or at high viewing angles. 268-0.4 HEX 00 01 07 0E 0F D3 0 0 0 1 1 FY D2 D1 D0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 [FY] character height (pixels) 1 2 8 15 16 33 3.0 Command Description 3.2.1.12 - 3.2.1.13 3.2.1.12 C/R Sets the address range covered by one display line, that is, the number of characters less one, multiplied by the number of horizontal bytes per character. C/R can range from 0 to 239. For example, if the character width is 10 pixels, then the address range is equal to twice the number of characters, less 2. See Section 9.1.1 for the calculation of C/R. [C/R] cannot be set to a value greater than the address range. It can, however, be set smaller than the address range, in which case the excess display area is blank. The number of excess pixels must not exceed 64. Table 6. Display line address range HEX 00 01 4F EE EF D7 0 0 0 1 1 D6 0 0 1 1 1 D5 0 0 0 1 1 C/R D4 0 0 0 0 0 D3 0 0 1 1 1 D2 0 0 1 1 1 D1 0 0 1 1 1 D0 0 1 1 0 1 [C/R] bytes per display line 1 2 80 239 240 3.2.1.13 TC/R Sets the length, including horizontal blanking, of one line. The line length is equal to TC/R + 1, where TC/ R can range from 0 to 255. according to the equation given in section 9.1.1 in order to hold the frame period constant and minimize jitter for any given main oscillator frequency, fOSC. TC/R must be greater than or equal to C/R + 4. Provided this condition is satisfied, [TC/R] can be set Table 7. Line length selection HEX 00 01 52 FE FF 34 D7 0 0 0 1 1 D6 0 0 1 1 1 TC/R D5 D4 0 0 0 0 0 1 1 1 1 1 D3 0 0 0 1 1 D2 0 0 0 1 1 D1 0 0 1 1 1 D0 0 1 0 0 1 [TC/R] line length (bytes) 1 2 83 255 256 268-0.4 3.2.1.14 - 3.2.1.15 3.0 Command Description 3.2.1.14 L/F Sets the height, in lines, of a frame. The height in lines is equal to L/F + 1, where L/F can range from 0 to 255. If W/S is set to 1, selecting two-screen display, the number of lines must be even and L/F must, therefore, be an odd number. Table 8. Frame height selection HEX 00 01 7F FE FF D7 0 0 0 1 1 D6 0 0 1 1 1 D5 0 0 1 1 1 L/F D4 0 0 1 1 1 D3 0 0 1 1 1 D2 0 0 1 1 1 Table 9. Frame heights and compatible LCD units Number of lines [LF] Panel Duty Cycle 64 1/64 128 1/64 D1 0 0 1 1 1 [L/F] lines per frame D0 0 1 1 0 1 1 2 128 255 256 Table 10. Horizontal address range Hex code APH APL 0 0 0 0 0 0 0 0 5 F F F F F F 3.2.1.15 AP [AP] addresses per line 0 1 0 E F 0 1 80 16 2 -2 216 - 1 Defines the horizontal address range of the virtual screen. APL is the least significant byte of the address. APL AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0 APH AP15 AP14 AP13 AP12 AP11 AP10 AP9 AP8 Figure 13. AP parameters 268-0.4 35 3.0 Command Description 3.2.1.15 - 3.3.1 1. The YDIS signal goes LOW between one and two frames after the SLEEP IN command is received. Since YDIS forces all display driver outputs to go to the deselected output voltage, YDIS can be used as a power-down signal for the LCD unit. This can be done by having YDIS turn off the relatively high-power LCD drive supplies at the same time as it blanks the display. Display area C/R 2. Since all internal clocks in the SED1330F/ 1335F/1336F are halted while in the sleep state, a DC voltage will be applied to the LCD panel if the LCD drive supplies remain on. Display memory limit AP If reliability is a prime consideration, turn off the LCD drive supplies before issuing the SLEEP IN command. Figure 14. AP and C/R relationship 3.2.2 SLEEP IN Places the system in standby mode. This command has no parameter bytes. At least one blank frame after receiving this command, the SED1330F/1335F/1336F halts all internal operations, including the oscillator, and enters the sleep mode. Blank data is sent to the X-drivers, and the Y-drivers have their bias supplies turned off by the YDIS signal. Using the YDIS signal to disable the Y-drivers guards against any spurious displays. The internal registers of the SED1330F/1335/1336F maintain their values during the sleep mode. The display memory control pins maintain their logic levels to ensure that the display memory is not corrupted. The SED1330F/1335F/1336F can be removed from the sleep state by sending the SYSTEM SET command with only the P1 parameter. The DISP ON command should be sent next to enable the display. 3. Note that, although the bus lines become high impedance in the sleep state, pull-up or pull-down resistors on the bus line will force these lines to a known state. 3.3 Display Control Commands 3.3.1 DISP ON/OFF Turns the whole display on or off. The single-byte parameter enables and disables the cursor and layered screens, and sets the cursor and screen flash rates. The cursor can be set to flash over one character or over a whole line. MSB C 0 LSB 1 0 1 1 0 0 0 P1 FP5 FP4 FP3 FP2 FP1 FP0 FC1 FC0 MSB C LSB 0 1 0 1 0 0 1 1 Figure 16. DISP ON/OFF parameters Figure 15. SLEEP IN instruction 36 268-0.4 3.3.1.1 - 3.3.2.1 3.3.1.1 D Turns the display ON or OFF. The D bit takes precedence over the FP bits in the parameter. D = 0: D = 1: Display OFF Display ON 3.0 Command Description Note: If SAD4 is enabled by setting W/S to 1, FP3 and FP2 control both SAD2 and SAD4. The attributes of SAD2 and SAD4 cannot be set independently. 3.3.2 SCROLL 3.3.2.1 C 3.3.1.2 FC Enables/disables the cursor and sets the flash rate. The cursor flashes with a 70% duty cycle (ON/OFF). Sets the scroll start address and the number of lines per scroll block. Parameters P1 to P10 can be omitted if not required. The parameters must be entered sequentially as shown in Figure 17. Table 11. Cursor flash rate selection MSB FC1 0 0 FC0 0 1 1 0 1 1 Cursor display OFF (blank) No flashing Flash at fFR/32 Hz ON (approx. 2 Hz) Flash at fFR/64 Hz (approx. 1 Hz) Note: As the MWRITE command always enables the cursor, the cursor position can be checked even when performing consecutive writes to display memory while the cursor is flashing. 3.3.1.3 FP Each pair of bits in FP sets the attributes of one screen block, as follows. LSB C 0 1 0 0 0 1 0 0 P1 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 1L) P2 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 1H) P3 L7 L6 L5 L4 L3 L2 L1 L0 (SL 1) P4 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 2 L) P5 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 2H) P6 L7 L6 L5 L4 L3 L2 L1 L0 (SL 2) P7 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 3L) P8 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 3H) P9 A7 A2 A1 A0 (SAD 4L) P10 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 4H) Table 12. Screen block attribute selection FP1 FP0 FP3 FP2 FP5 0 0 FP4 0 1 1 0 1 1 268-0.4 First screen block (SAD1) Second screen block (SAD2, SAD4). See note. Third screen block (SAD3) OFF (blank) No flashing Flash at fFR/32 Hz ON (approx. 2 Hz) Flash at fFR/4 Hz (approx. 16 Hz) A6 A5 A4 A3 Note: Set parameters P9 and P10 only if both two-screen drive (W/S = 1) and two-layer configuration are selected. SAD4 is the fourth screen block display start address. Figure 17. SCROLL instruction parameters 37 3.0 Command Description 3.3.2.1 - 3.3.2.2 Table 13. Screen block start address selection HEX 00 01 7F FE FF L7 0 0 0 1 1 L6 0 0 1 1 1 SL1, SL2 L5 L4 0 0 0 0 1 1 1 1 1 1 L3 0 0 1 1 1 L2 0 0 1 1 1 L1 0 0 1 1 1 [SL] screen lines L0 0 1 1 0 1 1 2 128 255 256 3.3.2.2 SL1, SL2 SL1 and SL2 set the number of lines per scrolling screen. The number of lines is SL1 or SL2 plus one. The relationship between SAD, SL and the display mode is described below. Table 14. Text display mode W/S Screen First screen block Second screen block First Layer Second Layer SAD1 SAD2 SL1 SL2 SAD3 (see note 1) Set both SL1 and SL2 to L/F + 1 if not using a partitioned screen. Third screen block (partitioned screen) Screen configuration example: SAD2 SAD1 SL2 0 SL1 Character display page 1 Graphics display page 2 SAD3 Character display page 3 Layer 2 Layer 1 (continued) 38 268-0.4 3.3.2.2 3.0 Command Description Table 14. Text display mode (continued) W/S Screen First Layer SAD1 Upper screen SL1 SAD3 Lower screen (see note 2) Set both SL1 and SL2 to ((L/F) / 2 + 1) Screen configuration example: Second Layer SAD2 SL2 SAD4 (see note 2) SAD2 SAD1 1 SL1 Graphics display page 2 Character display page 1 SAD3 Graphics display page 4 (SAD4) Character display page 3 Layer 1 Layer 2 Notes: 1. SAD3 has the same value as either SAD1 or SAD2, whichever has the least number of lines (set by SL1 and SL2). 2. Since the parameters corresponding to SL3 and SL4 are fixed by L/F, they do not have to be set in this mode. 268-0.4 39 3.0 Command Description 3.3.2.2 Table 15. Graphics display mode W/S Screen First Layer Second Layer SAD1 SAD2 Two-layer composition SL1 SL2 SAD3 (see note 3) Set both SL1 and SL2 to Upper screen L/F + 1 if not using a partitioned screen Screen configuration example: Third Layer SAD2 SAD1 SL2 0 SL1 Graphics display page 2 Character display page 1 SAD3 Character display page 3 Layer 1 Layer 2 SAD1 SL1 = L/F + 1 Screen configuration example: Three-layer configuration SAD2 SL2 = L/F + 1 SAD3 SAD2 SAD1 SAD3 -- Graphics display page 3 SL2 0 SL1 Graphics display page 2 Graphics display page 1 Layer 1 40 Layer 3 Layer 2 268-0.4 3.3.2.2 3.0 Command Description Table 15. Graphics display mode (continued) W/S Screen First Layer Second Layer SAD1 SAD2 Upper screen SL1 SL2 SAD3 SAD4 Lower screen (see note 2) (see note 2) Set both SL1 and SL2 to ((L/F) / 2 + 1) Screen configuration example (see note 3): Third Layer -- -- SAD2 SAD1 1 SL1 Graphics display page 2 Graphics display page 1 SAD3 Graphics display page 4 Graphics display page 3 Layer 1 Layer 2 Notes: 1. SAD3 has the same value as either SAD1 or SAD2, whichever has the least number of lines (set by SL1 and SL2). 2. Since the parameters corresponding to SL3 and SL4 are fixed by L/F, they do not have to be set. 3. If, and only if, W/S = 1, the differences between SL1 and (L/F + 1) / 2, and between SL2 and (L/F + 1) / 2, are blanked. SL1 Upper Panel L L/2 Lower Panel Graphics Figure 18. Two-panel display height 268-0.4 41 3.0 Command Description 3.3.3 - 3.3.3.2 3.3.3 CSRFORM 3.3.3.2 CRY Sets the cursor size and display mode. Although the cursor is normally only used in text displays, it may also be used in graphics displays when displaying special characters. Sets the location of an underscored cursor in lines, from the character origin. When using a block cursor, CRY sets the vertical size of the cursor from the character origin. CRY is equal to the number of lines less one. MSB C 0 LSB 1 0 1 1 1 0 Table 17. Cursor height selection 1 P1 0 0 0 0 X3 CRX X2 X1 X0 P2 CM 0 0 0 Y3 CRY Y2 Y1 Y0 Figure 19. CSRFORM parameter bytes HEX 0 1 8 E F CRY Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 [CRY] cursor height (lines) illegal 2 9 15 16 3.3.3.1 CRX Sets the horizontal size of the cursor from the character origin. CRX is equal to the cursor size less one. CRX must be less than or equal to FX. Table 16. Horizontal cursor size selection Character start point 0 0 1 2 3 4 5 6 * * * 1 CRX HEX X3 X2 X1 X0 0 0 0 0 0 1 0 0 0 1 8 1 0 0 0 E 1 1 1 0 F 1 1 1 1 [CRX] cursor width (pixels) 1 2 9 15 16 2 3 4 5 6 7 8 9 CRX = 5 dots CRY = 9 dots CM = 0 Figure 20. Cursor size and position 42 268-0.4 3.3.3.3 - 3.3.5.1 3.0 Command Description 3.3.3.3 CM Table 18. Cursor shift direction Sets the cursor display mode. Always set CM to 1 when in graphics mode. CM = 0: Underline cursor CM = 1: Block cursor C 4CH 4DH 4EH 4FH CD1 0 0 1 1 CD0 0 1 0 1 Shift direction Right Left Up Down Note: Since the cursor moves in address units even if FX 9, the cursor address increment must be preset for movement in character units. See Section 5.3. 3.3.4 CSRDIR Sets the direction of automatic cursor increment. The cursor can move left or right one character, or up or down by the number of bytes specified by the address pitch, AP. When reading from and writing to display memory, this automatic cursor increment controls the display memory address increment on each read or write. 3.3.5 OVLAY Selects layered screen composition and screen text/ graphics mode. MSB MSB C LSB C 0 1 0 P1 0 0 0 1 1 0 1 1 LSB 0 1 0 0 1 1 CD1 CD2 Figure 21. CSRDIR parameters OV DM2 DM1 MX1 MX0 Figure 23. OVLAY parameter 3.3.5.1 MX0, MX1 10 -AP -1 +1 01 00 +AP MX0 and MX1 set the layered screen composition method, which can be either OR, AND, Exclusive-OR or Priority-OR. Since the screen composition is organized in layers and not by screen blocks, when using a layer divided into two screen blocks, different composition methods cannot be specified for the individual screen blocks. The Priority-OR mode is the same as the OR mode unless flashing of individual screens is used. 11 Figure 22. Cursor direction 268-0.4 43 3.0 Command Description 3.3.5.1 Table 19. Composition method selection MX1 0 MX0 0 Function L1 L2 L3 Composition Method OR 0 1 (L1 L2) L3 Exclusive-OR 1 1 0 1 (L1 L2) L3 L1 > L2 > L3 AND Priority-OR Applications Underlining, rules, mixed text and graphics Inverted characters, flashing regions, underlining Simple animation, three-dimensional appearance Notes: L1: First layer (text or graphics). If text is selected, layer L3 cannot be used. L2: Second layer (graphics only) L3: Third layer (graphics only) Layer 1 Layer 2 Layer 3 Visible display 1 EPSON EPSON OR 2 EPSON EPSON Exclusive OR 3 EPSON 4 EPSON SON AND EPSON Prioritized OR Notes: L1: Not flashing L2: Flashing at 1 Hz L3: Flashing at 2 Hz Figure 24. Combined layer display 44 268-0.4 3.3.5.2 - 3.3.7.1 3.0 Command Description 3.3.5.2 DM1, DM2 3.3.7 HDOT SCR DM1 and DM2 specify the display mode of screen blocks 1 and 3, respectively. While the scroll command only allows scrolling by characters, HDOT SCR allows the screen to be scrolled horizontally by pixels. HDOT SCR cannot be used on individual layers. DM1/2 = 0: Text mode DM1/2 = 1: Graphics mode Note 1: Screen blocks 2 and 4 can only display graphics. Note 2: DM1 and DM2 must be the same, regardless of the setting of W/S. MSB LSB C 0 1 0 1 1 0 1 0 P1 0 0 0 0 0 D2 D1 D0 3.3.5.3 OV Figure 26. HDOT SCR parameters Specifies two- or three-layer composition in graphics mode. OV = 0: Two-layer composition OV = 1: Three-layer composition Set OV to 0 for mixed text and graphics mode. 3.3.6 CGRAM ADR 3.3.7.1 D0 to D2 Specifies the number of pixels to scroll. The C/R parameter has to be set to one more than the number of horizontal characters before using HDOT SCR. Smooth scrolling can be simulated if the controlling microprocessor repeatedly issues the HDOT SCR command to the SED1330F/1335F/1336F. See Section 5.5 for more information on scrolling the display. Specifies the CG RAM start address. Table 20. Scroll step selection MSB LSB C 0 1 0 1 1 1 0 0 P1 A7 A6 A5 A4 A3 A2 A1 A0 (SAGL) P2 A15 A14 A13 A12 A11 A10 A9 A8 (SAGH) Figure 25. CGRAM ADR parameters HEX 00 01 02 06 07 P1 D2 D1 D0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 Number of pixels to scroll 0 1 2 6 7 Note: See Section 6 for information on the SAG parameters. 268-0.4 45 3.0 Command Description 3.4 - 3.4.2 Note that the microprocessor cannot directly access the display memory. M B A Z A Z X B A The MREAD and MWRITE commands use the address in this register. Y X M=0 Y B N=0 X Display width The cursor address register can only be modified by the CSRW command, and by the automatic increment after an MREAD or MWRITE command. It is not affected by display scrolling. Y N M/N is the number of bits (dots) that parameter 1 (P1) is incremented/decremented by. If a new address is not set, display memory accesses will be from the last set address or the address after previous automatic increments. Figure 27. Horizontal scrolling 3.4.2 CSRR Reads from the cursor address register. After issuing the command, the data read address is read twice, for the low byte and then the high byte of the register. 3.4 Drawing Control Commands 3.4.1 CSRW The 16-bit cursor address register contains the display memory of the data at the cursor position as shown in Figure 28. MSB LSB C 0 1 0 0 0 1 1 P1 A7 A6 A5 A4 A3 A2 A1 A0 (CSRL) P2 A15 A14 A13 A12 A11 A10 A9 A8 (CSRH) MSB LSB C 0 1 0 0 0 1 1 1 P1 A7 A6 A5 A4 A3 A2 A1 A0 (CSRL) P2 A15 A14 A13 A12 A11 A10 A9 A8 (CSRH) 0 Figure 29. CSRR parameters Figure 28. CSRW parameters 46 268-0.4 3.5 - 3.5.2 3.0 Command Description 3.5 Memory Control Commands 3.5.2 MREAD 3.5.1 MWRITE Puts the SED1330F/1335F/1336F into the data output state. On the MREAD command, the display memory data at the cursor address is read into a buffer in the SED1330F/1335F/1336F. The microprocessor may write a sequence of data bytes to display memory by issuing the MREAD command and then writing the bytes to the SED1330F/ 1335F/1336F. There is no need for further MWRITE commands or for the microprocessor to update the cursor address register after each byte as the cursor address is automatically incremented by the amount set with CSRDIR, in preparation for the next data write. MSB C LSB 0 1 0 0 0 0 1 Each time the microprocessor reads the buffer, the cursor address is incremented by the amount set by CSRDIR and the next data byte fetched from memory, so a sequence of data bytes may be read without further MREAD commands or by updating the cursor address register. If the cursor is displayed, the read data will be from two positions ahead of the cursor. 0 MSB P1 C 0 LSB 1 0 0 0 0 1 1 P2 P1 n1 Pn P2 Note: P1, P2, ..., Pn: display data. n1 Pn Figure 30. MWRITE parameters Figure 31. MREAD parameters 268-0.4 47 1.0 Overview 1.3 THIS PAGE INTENTIONALLY BLANK 48 268-0.4 3.3.2.2 3.0 Command Description 4.0 Specifications 268-0.4 49 THIS PAGE INTENTIONALLY BLANK 50 268-0.4 4.0 - 4.1 4.0 Specifications 4.0 Specifications 4.1 Absolute Maximum Ratings 4.1.1 SED1330 Parameter Supply voltage range Input voltage range Power dissipation Operating temperature range Storage temperature range Soldering temperature (10 seconds). See note 1. Symbol VDD VIN PD Topr Tstg Tsolder Rating -0.3 to 7.0 -0.5 to VDD + 0.5 300 -20 to 75 -65 to 150 260 Unit V V mW C C C Symbol VDD VIN PD Topr Tstg Tsolder Rating -0.3 to 7.0 -0.3 to VDD + 0.3 300 -20 to 75 -65 to 150 260 Unit V V mW C C C 4.1.2 SED1335/SED1336 Parameter Supply voltage range Input voltage range Power dissipation Operating temperature range Storage temperature range Soldering temperature (10 seconds). See note 1. Notes: 1. The humidity resistance of the flat package may be reduced if the package is immersed in solder. Use a soldering technique that does not heatstress the package. 2. If the power supply has a high impedance, a large voltage differential can occur between the input and supply voltages. Take appropriate care with the power supply and the layout of the supply lines. (See Section 2.3.) 3. All supply voltages are referenced to VSS = 0V. 268-0.4 51 4.0 Specifications 4.2 4.2 SED 1330 Electrical Characteristics Parameter Supply voltage Register data retention voltage Input leakage current Output leakage current Operating supply current Quiescent supply current min 4.5 2.0 -- -- -- Rating typ 5.0 -- 0.05 0.10 8 max 5.5 5.5 2.0 5.0 12 VOSC1 = VCS = VRD = VDD -- 0.05 20.0 A Measured at OSC1 1.0 -- 0.5 -- -- 1.0 10.0 10.0 5.0 MHz MHz M 2.2 -0.3 -- -- VDD + 0.3 0.8 V V 2.4 -- -- V -- -- 0.4 V -- -- -- -- -- 0.2V DD -- 0.4 V V V V 0.7V DD 0.3V DD 0.8V DD 0.5V DD V V Symbol VDD VOH ILI ILO Iopr IQ VDD = 5V 10%, VSS = 0V, Ta = -20 to 75C Condition VI = VDD. VI = VSS. See note 4. Oscillator frequency External clock frequency Oscillator feedback resistance TTL HIGH-level input voltage LOW-level input voltage fOSC fCL Rf HIGH-level output voltage VOHT LOW-level output voltage VOLT IOL = 5.0 mA. See note 1. VIHC VILC VOHC VOLC See note 2. 0.8V DD See note 2. -- IOH = -1.6 mA. See note 2.VDD - 0.4 IOH = 1.6 mA. See note 2. -- CMOS HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage Schmitt-trigger Rising-edge threshold voltage Falling-edge threshold voltage VIHT VILT VT+ VT- See note 1. See note 1. IOH = -5.0 mA. See note 1. See note 3. See note 3. 0.5V DD 0.2V DD Unit V V A A mA Notes: 1. D0 to D7, A0, CS, RD, WR, VD0 to VD7, VA0 to VA15, VR/W and VCE are TTL-level inputs. 2. SEL1, SEL2 and OSC1 are CMOS-level inputs. YD, XD0 to XD3, XSCL, YECL, LP, WF, YSCL, YDIS and CLO are CMOS-level outputs. 3. RES is a Schmitt-trigger input. The pulsewidth on RES must be at least 200 s. Note that pulses of more than a few seconds will cause DC voltages to be applied to the LCD panel. 4. fOSC = 10 MHz, no load (no display memory), internal character generator, 256 x 200 pixel display. The operating supply current can be reduced by approximately 1 mA by setting both CLO and the display OFF. 52 268-0.4 4.3 4.0 Specifications 4.3 SED1335/1336 Electrical Characteristics VDD = 4.5 to 5.5V, VSS = 0V, Ta = -20 to 75C Parameter Supply voltage Register data retention voltage Input leakage current Output leakage current Operating supply current Quiescent supply current Symbol VDD VOH I LI ILO Iopr IQ Condition VI = VDD. See note 6. VI = VSS. See note 6. See note 4. Sleep mode, VOSC1 = VCS = VRD = VDD min 4.5 2.0 -- -- -- Rating typ 5.0 -- 0.05 0.10 11 max 5.5 6.0 2.0 5.0 15 -- 0.05 20.0 A 1.0 1.0 0.5 -- -- 1.0 10.0 10.0 3.0 MHz MHz M 0.5V DD VSS -- -- VDD 0.2V DD V V 2.4 -- -- V -- -- VSS + 0.4 V Unit V V A A mA Oscillator frequency External clock frequency Oscillator feedback resistance TTL HIGH-level input voltage LOW-level input voltage f OSC f CL Rf HIGH-level output voltage VOHT LOW-level output voltage VOLT IOL = 5.0 mA. See note 1. VIHC VILC VOHC VOLC See note 2. 0.8V DD See note 2. VSS IOH = -2.0 mA. See note 2. VDD - 0.4 IOH = 1.6 mA. See note 2. -- -- -- -- -- VDD 0.2V DD -- VSS + 0.4 V V V V VOLN IOL = 6.0 mA. See note 5. -- -- VSS + 0.4 V 0.5V DD 0.2V DD 0.7V DD 0.3V DD 0.8V DD 0.5V DD V V CMOS HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage Open-drain LOW-level output voltage Schmitt-trigger Rising-edge threshold voltage Falling-edge threshold voltage VIHT VILT VT+ VT- Measured at crystal, 47.5% duty cycle. See note 7. See note 1. See note 1. IOH = -5.0 mA. See note 1. See note 3. See note 3. Notes: 1. D0 to D7, A0, CS, RD, WR, VD0 to VD7, VA0 to VA15, VRD, VWR and VCE are TTL-level inputs. 2. SEL1 and NT/PL are CMOS-level inputs. YD, XD0 to XD3, XSCL, XECL, LP, WF, YSCL, YDIS and CLO are CMOS-level outputs. 3. RES is a Schmitt-trigger input. The pulsewidth on RES must be at least 200 s. Note that pulses of more than a few seconds will cause DC voltages to be applied to the LCD panel. 4. fOSC = 10 MHz, no load (no display memory), internal character generator, 256 x 200 pixel display. The operating supply current can be reduced by approximately 1 mA by setting both CLO and the display OFF. 268-0.4 53 4.0 Specifications 4.4 - 4.4.1 4.4 SED1330 Timing Diagrams 4.4.1 System bus READ/WRITE timing I (8080) tAH8 A0, CS tAW8 tCYC tCC WR, RD tDS8 tDH8 D0~D7 (WRITE) tACC8 tOH8 D0~D7 (READ) Figure 32. System bus READ/WRITE timing I (8080) 4.4.1.1 SED1330F Signal A0, CS WR, RD D0 to D7 Note: tCYC Symbol tAH8 tAW8 tCYC tCC tDS8 tDH8 tACC8 tOH8 Ta = -20 to 75C Parameter Address hold time Address setup time System cycle time Strobe pulsewidth Data setup time Data hold time RD access time Output disable time Rating min 10 30 (1) 220 120 10 -- 10 max -- -- -- -- -- -- 120 50 Unit Condition ns ns ns ns ns ns ns ns CL = 100 pF = 2tC + tCC + tCEA + 75 > tACV + 245: memory control/movement control commands: = 4tC + tCC + 30: all other commands: 54 268-0.4 4.4.2 - 4.4.2.1 4.0 Specifications 4.4 SED1330 Timing Diagrams 4.4.2 System bus READ/WRITE timing II (6800) tCYC6 E tAW6 tEW R/W tAH6 A0, CS tDS6 tDH6 D0~D7 (WRITE) tACC6 tOH6 D0~D7 (READ) Figure 33. System bus READ/WRITE timing II (6800) 4.4.2.1 SED1330F Signal A0, CS R/W D0 to D7 E Symbol t AH6 t AW6 tCYC6 t DS6 tDH6 tACC6 t OH6 t EW Ta = -20 to 75C Parameter Address hold time Address setup time System cycle time Data setup time Data hold time Access time Output disable time Enable pulse width Rating min 10 30 (1) 120 10 -- 10 220 max -- -- -- -- -- 120 50 -- Unit ns ns ns ns ns ns ns ns Condition CL=100pF+1TTL pF Note: (1) tCYC6 = 2tC + tEW + tCEA + 75 > tACV + 245: memory control/movement control commands: = 4tC + tEW + 30: all other commands: 1. 268-0.4 tCYC6 means a cycle of (CS.E) not E alone. 55 4.0 Specifications 4.4.3 - 4.4.3.1 4.4 SED1330 Timing Diagrams 4.4.3 Display memory READ timing tC EXTO tW tCE tW VCE tCYR VA0~VA15 tASC VR/W tAHC tRCS tRCH tCE3 tCEA tOH2 tACY VD0~VD7 Figure 34. Display memory READ timing 4.4.3.1 SED1330F Signal Symbol EXT O0 tC tW tCE tCYR tASC tAHC VCE VA0 to VA15 VR/W VD0 to VD7 tRCS tRCH tACV tCEA tOH2 tCE2 Parameter Clock cycle VCE high level pulse width VCE low level pulse width Read cycle time VCE address setup time (fall) VCE address hold time (fall) VCE read cycle setup time (fall) VCE read cycle hold time (fall) Address access time VCE access time Output data hold time VCE data off time Note: 1. 2. tCYR tACV = 3tC = 3tC -120 3. tCEA = 2tC -120 56 Ta = -20 to 75C Rating min max 100 tc-40 2tc-40 -- -- -- -- -- -- -- -- (2) (3) -- -- (1) tc-45 2tc-40 tc-45 tc/2-35 -- -- 0 0 Unit ns ns ns ns ns ns ns ns ns ns ns ns Condition CL = 100pF +1TTL 268-0.4 4.4.4 - 4.4.4.1 4.0 Specifications 4.4 SED1330 Timing Diagrams 4.4.4 Display memory WRITE timing tC EXTO tW tCE VCE tASC tCA tAHC VA0~VA15 tCYW tAS tWSC tWHC tAH2 VWR tOSC tOH2 tOHC VD0~VD7 Figure 35. Display memory WRITE timing 4.4.4.1 SED1330F Signal Symbol EXT O0 tC tW t CE VCE VA0 to VA15 VR/W VD0 to VD7 tCYW tAHC t ASC t CA tAS t AH2 tWSC t WHC tDSC t DHC tDH2 Ta = -20 to 75C Parameter Clock cycle VCE high level pulse width VCE low level pulse width Write cycle time VCE address hold time (fall) VCE address setup time (fall) VCE address hold time (rise) VR/W address setup time (fall) VR/W address hold time (rise) VCE write setup time (fall) VCE write hold time (fall) VCE data input setup time (fall) VCE data input hold time (fall) VR/W data hold time (rise) Rating min max 100 tc-40 2tc-40 3tc 2tc-40 tc-55 5 0 15 tc-55 tc2-40 twsc-10 2tc-30 10* -- -- -- -- -- -- -- -- -- -- -- -- -- 50 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns Condition CL = 100pF +1TTL * Lines VD0 to VD7 are latched. 268-0.4 57 4.0 Specifications 4.4.5 4.4 SED1330 Timing Diagrams 4.4.5 LCD control timing ROW NO LP 1 frame period YD WF YSCL 1 line period WF YSCL ROW64 ROW1 ROW2 LP XSCL XD0~XD3 XECL tr XSCL tWX tf tCX tDS tDH XD0~XD3 tWL LP tL1 tL2 tS2 XECL tS1 tWXE WF(B) YD tDf YSCL tLD tDHY tWY Figure 36. LCD control timing 58 268-0.4 4.4.5.1 4.0 Specifications 4.4 SED1330 Timing Diagrams 4.4.5.1 SED1330F Ta = -20 to 75C Signal Symbol EXT O0 tC tr tf t CX t WX tDH XSCL XD0 to XD3 LP XECL WF YSCL YD 268-0.4 t DS tLS t WL tL1 tL2 tS1 tS1 t WXE tDF t LD t WY tDHY Parameter Clock cycle VCE high level pulse width VCE low level pulse width Shift clock cycle time XSCL clock pulse width X-data hold time X-data setup time Latch data setup time LP signal pulse width XECL setup time XECL data hold time Enable setup time Enable delay time XECL clock pulse width Time allowance of WF delay LP delay time against YSCL YSCL clock pulse width Y-data hold time Rating min 100 -- -- 4tc t CX2-80 t CX2-100 t CX2-100 t CX2-100 t CX4-80 t CX3-100 t C-30 t C-30 t C-30 t CX3-80 -- t CX4-100 t CX4-80 t CX6-100 max -- 35 35 -- -- -- -- -- -- -- -- -- -- -- 100 -- -- -- Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Condition VDD = 5.0V 10% CL=150F 59 4.0 Specifications 4.4 .6- 4.4.6.1 4.4 SED1330 Timing Diagrams 4.4.6 Oscillator timing VDD tOSP CLO tOSS YDIS Power ON Sleep period tRCL tFCL EXT 0O tWL tWH tCL Figure 37. Oscillator timing 4.4.6.1 SED1330F Signal CLO EXTo0 Ta = -20 to 75C Symbol Parameter tOSP tOSS tRCL tFCL tWH tWL tCL Time to stable CLO output after power ON Time to stable CLO output after sleep OFF External clock rise time External clock fall time External clock high-pulse width External clock low-pulse width External clock cycle Rating min max -- 3 -- 1 -- 15 -- 15 Note 1 Note 2 Note 1 Note 2 100 -- Unit Condition ms ms ns ns ns ns ns RES = H 20 pF 1. (tC - tRCL - tFCL) X 475/1000 < tWH, tWL 2. (tC - tRCL - tFCL) X 525/1000 > tWH, tWL 60 268-0.4 4.4.7 4.0 Specifications 4.4 SED1330 Timing Diagrams 4.4.7 Measurement circuit VDD 2.1 K Measurement Terminal C = 100 pF 24 K IN 916 COMPATABLE VSS * C includes probe capacitance. Figure 38. Measurement circuit 268-0.4 61 4.0 Specifications 4.5 - 4.5.1.1 4.5 SED1335/SED1336 AC Timing Diagrams 4.5.1 8080 family Interface Timing AO, CS tAW8 tAH8 tCYC WR, RD tCC tDH8 tDS8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 39. 8080 family interface timing 4.5.1.1 SED1335F Signal A0, CS WR, RD D0 to D7 Symbol tAH8 tAW8 tCYC tCC tDS8 tDH8 tACC8 tOH8 Ta = -20 to 75C Parameter Address hold time Address setup time System cycle time Strobe pulsewidth Data setup time Data hold time RD access time Output disable time VDD = 4.5 to 5.5V VDD = 2.7 to 4.5V min max min max 10 -- 10 -- 0 -- 0 -- See note See note -- -- 120 -- 150 -- 120 -- 120 -- 5 -- 5 -- -- 50 -- 80 10 50 10 55 Unit Condition ns ns ns ns ns ns ns ns CL = 100 pF Note: For memory control and system control commands: tCYC8 = 2tC + tCC + tCEA + 75 > tACV + 245 For all other commands: tCYC8 = 4tC + tCC + 30 62 268-0.4 4.5.1.2 4.0 Specifications 4.5.1.2 SED1336F Ta = -20 to 75C Signal A0, CS WR, RD D0 to D7 Symbol t AH8 t AW8 tCYC tCC t DS8 tDH8 tACC8 t OH8 Parameter Address hold time Address setup time System cycle time Strobe pulsewidth Data setup time Data hold time RD access time Output disable time VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max 10 -- 10 -- 0 -- 0 -- See note See note -- -- 120 -- 140 -- 120 -- 120 -- 5 -- 5 -- -- 50 -- 70 10 50 10 50 Unit Condition ns ns ns ns ns ns ns ns CL = 100 pF Note: For memory control and system control commands: tCYC8 = 2tC + tCC + tCEA + 75 > tACV + 245 For all other commands: tCYC8 = 4tC + tCC + 30 268-0.4 63 4.0 Specifications 4.5.2 4.5.2 6800 family Interface Timing E tCYC tAW6 tEW R/W tAH6 AO, CS tDH6 tDS6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Note: tCYC6 indicates the interval during which CS is LOW and E is HIGH. Figure 40. 6800 family interface timing 64 268-0.4 4.5.2.1 - 4.5.2.2 4.0 Specifications 4.5.2.1 SED1335F Signal Symbol A0, CS, R/W tCYC6 t AW6 t AH6 t DS6 tDH6 t OH6 tACC6 t EW D0 to D7 E Ta = -20 to 75C Parameter System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time Enable pulsewidth VDD = 4.5 to 5.5V VDD = 2.7 to 4.5V min max min max See note -- See note -- 0 -- 10 -- 0 -- 0 -- 100 -- 120 -- 0 -- 0 -- 10 50 10 75 -- 85 -- 130 120 -- 150 -- Unit Condition ns ns ns ns ns ns ns ns CL = 100 pF Note: For memory control and system control commands: tCYC6 = 2tC + tEW + tCEA + 75 > tACV + 245 For all other commands: tCYC6 = 4tC + tEW + 30 4.5.2.2 SED1336F Signal Symbol A0, CS, R/W tCYC6 t AW6 t AH6 t DS6 tDH6 t OH6 tACC6 t EW D0 to D7 E Ta = -20 to 75C Parameter System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time Enable pulsewidth VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max See note -- See note -- 0 -- 10 -- 0 -- 0 -- 100 -- 120 -- 0 -- 0 -- 10 50 10 70 -- 85 -- 120 120 -- 140 -- Unit Condition ns ns ns ns ns ns ns ns CL = 100 pF Note: For memory control and system control commands: tCYC6 = 2tC + tEW + tCEA + 75 > tACV + 245 For all other commands: tCYC6 = 4tC + tEW + 30 268-0.4 65 4.0 Specifications 4.5.3 - 4.5.3.1 4.5.3 Display Memory Read Timing EXT0 tC tW tCE tW VCE tCYR VA0 to VA15 tASC tAHC tRCH VRD tRCS tCEA tCE3 tOH2 tACV VD0 to VD7 (SED1335F) Figure 41. Display memory read timing 4.5.3.1 SED1335F Ta = -20 to 75C Signal Symbol EXT 0 tC tW VCE tCE tCYR VA0 to VA15 tASC tAHC tRCS VRD tRCH VD0 to VD7 66 tACV tCEA tOH2 tCE3 Parameter Clock period VCE HIGH-level pulsewidth VCE LOW-level pulsewidth VDD = 4.5 to 5.5V VDD = 2.7 to 4.5V min max min max 100 -- 125 -- Unit ns tC - 50 -- tC - 50 -- ns 2tC - 30 -- 2tC - 30 -- ns Read cycle time 3tC -- 3t C -- Address setup time to -- tC - 100 -- tC - 70 falling edge of VCE Address hold time from -- 2tC - 40 -- 2tC - 30 falling edge of VCE Read cycle setup time to tC - 45 -- tC - 60 -- falling edge of VCE Read cycle hold time -- 0.5tC -- 0.5tC from rising edge of VCE Address access time -- 3tC - 100 -- 3tC - 115 VCE access time -- 2tC - 80 -- 2tC - 90 Output data hold time 0 -- 0 -- VCE to data off time 0 -- 0 -- Condition ns ns ns CL = 100 pF ns ns ns ns ns ns 268-0.4 4.5.3.2 4.0 Specifications 4.5.3.2 SED1336F Ta = -20 to 75C Signal Symbol EXT 0 tC tW VCE t CE tCYR VA0 to VA15 t ASC tAHC tRCS VRD t RCH VD0 to VD7 268-0.4 t ACV t CEA t OH2 t CE3 Parameter Clock period VCE HIGH-level pulsewidth VCE LOW-level pulsewidth Read cycle time Address setup time to falling edge of VCE Address hold time from falling edge of VCE Read cycle setup time to falling edge of VCE Read cycle hold time from rising egde of VCE Address access time VCE access time Output data hold time VCE to data off time VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max 100 -- 125 -- Unit Condition ns tC - 50 -- tC - 50 -- ns 2tC - 30 -- 2tC - 30 -- ns 3tC -- 3t C -- ns tC - 70 -- tC - 100 -- ns 2tC - 30 -- 2tC - 40 -- ns tC - 45 -- tC - 55 -- ns 0.5tC -- 0.5tC -- ns -- -- 0 0 3tC - 100 2tC - 80 -- -- -- -- 0 0 3tC - 110 2tC - 85 -- -- ns ns ns ns CL = 100 pF 67 4.0 Specifications 4.5.4 4.5.4 Display Memory Write Timing tC EXTO tW tCE VCE tASC tCA tAHC VA0~VA15 tCYW tAS tWSC tWHC tAH2 VWR tOSC tOH2 tOHC VD0~VD7 Figure 42. Display memory write timing 68 268-0.4 4.5.4.1 4.0 Specifications 4.5.4.1 SED1335F Ta = -20 to 75C Signal Symbol EXT 0 tC tW VCE t CE tCYW tAHC t ASC VA0 to VA15 t CA tAS t AH2 tWSC VWR t WHC tDSC VD0 to VD7 t DHC tDH2 Parameter Clock period VCE HIGH-level pulsewidth VCE LOW-level pulsewidth Write cycle time Address hold time from falling edge of VCE Address setup time to falling edge of VCE Address hold time from rising edge of VCE Address setup time to falling edge of VWR Address hold time from rising edge of VWR VDD = 4.5 to 5.5V VDD = 2.7 to 4.5V min max min max 100 -- 125 -- Unit ns tC - 50 -- tC - 50 -- ns 2tC - 30 -- 2tC - 30 -- ns 3tC -- 3t C -- ns 2tC - 30 -- 2tC - 40 -- ns tC - 70 -- tC - 110 -- ns 0 -- 0 -- ns 0 -- 0 -- ns 10 -- 10 -- ns -- tC - 115 -- ns -- 2tC - 20 -- ns -- tC - 125 -- ns -- 2tC - 30 -- ns 50 5 50 ns Write setup time to falling tC - 80 edge of VCE Write hold time from fall2tC - 20 ing edge of VCE Data input setup time to tC - 85 falling edge of VCE Data input hold time 2tC - 30 from falling edge of VCE Data hold time from 5 rising edge of VWR Condition CL = 100 pF Note: VD0 to VD7 are latching input/outputs. While the bus is high impedance, VD0 to VD7 retain the write data until the data read from the memory is placed on the bus. 268-0.4 69 4.0 Specifications 4.5.4.2 4.5.4.2 SED1336F Ta = -20 to 75C Signal Symbol EXT 0 tC tW VCE tCE tCYW tAHC tASC VA0 to VA15 tCA tAS tAH2 tWSC VWR tWHC tDSC VD0 to VD7 tDHC tDH2 Parameter Clock period VCE HIGH-level pulsewidth VCE LOW-level pulsewidth Write cycle time Address hold time from falling edge of VCE Address setup time to falling edge of VCE Address hold time from rising edge of VCE Address setup time to falling edge of VWR Address hold time from rising edge of VWR VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max 100 -- 125 -- Unit ns tC - 50 -- tC - 50 -- ns 2tC - 30 -- 2tC - 30 -- ns 3tC -- 3t C -- ns 2tC - 30 -- 2tC - 40 -- ns tC - 70 -- tC - 100 -- ns 0 -- 0 -- ns 0 -- 0 -- ns 10 -- 10 -- ns -- tC - 110 -- ns -- 2tC - 20 -- ns -- tC - 120 -- ns -- 2tC - 30 -- ns 50 5 50 ns Write setup time to falling tC - 80 edge of VCE Write hold time from fall2tC - 20 ing edge of VCE Data input setup time to tC - 85 falling edge of VCE Data input hold time 2tC - 30 from falling edge of VCE Data hold time from 5 rising edge of VWR Condition CL = 100 pF Note: VD0 to VD7 are latching input/outputs. While the bus is high impedance, VD0 to VD7 retain the write data until the data read from the memory is placed on the bus. 70 268-0.4 4.5.5 - 4.5.5.2 4.0 Specifications 4.5.5 SLEEP IN Command Timing VCE SLEEP IN write SYSTEM SET write tWRL tWRD WR (command input) YDIS Figure 43. SLEEP IN command timing 4.5.5.1 SED1335F Ta = -20 to 75C Signal Symbol t WRD WR tWRL Parameter VCE falling-edge delay time YDIS falling-edge delay time VDD = 4.5 to 5.5V VDD = 2.7 to 4.5V min max min max Unit See note 1 -- See note 1 -- ns -- See note 2 -- See note 2 ns Condition CL = 100 pF Notes: 1. tWRD = 18tC + tOSS + 40 (tOSS is the time delay from the sleep state until stable operation) 2. tWRL = 36tC x [TC/R] x [L/F] + 70 4.5.5.2 SED1336F Ta = -20 to 75C Signal Symbol t WRD WR tWRL Parameter VCE falling-edge delay time YDIS falling-edge delay time VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max Unit See note 1 -- See note 1 -- ns -- See note 2 -- See note 2 ns Condition CL = 100 pF Notes: 1. tWRD = 18tC + tOSS + 40 (tOSS is the time delay from the sleep state until stable operation) 2. tWRL = 36tC x [TC/R] x [L/F] + 70 268-0.4 71 4.0 Specifications 4.5.6 - 4.5.6.2 4.5.6 External Oscillator Signal Timing tRCL tFCL EXT0 tWL tWH tCL Figure 44. External oscillator signal timing 4.5.6.1 SED1335F Ta = -20 to 75C Signal Symbol tRCL tFCL EXT 0 tWH tWL tC Parameter External clock rise time External clock fall time External clock HIGH-level pulsewidth External clock LOW-level pulsewidth External clock period VDD = 4.5 to 5.5V VDD = 2.7 to 4.5V min max min max -- 15 -- 15 -- 15 -- 15 Unit ns ns See note 1 See note 2 See note 1 See note 2 ns See note 1 See note 2 See note 1 See note 2 ns 100 -- 125 -- Condition ns Notes: 1. (tC - tRCL - tFCL) x 475 < tWH, tWL 1000 2. (tC - tRCL - tFCL) x 525 > tWH, tWL 1000 4.5.6.2 SED1336F Ta = -20 to 75C Signal Symbol tRCL tFCL EXT 0 tWH tWL tC Parameter External clock rise time External clock fall time External clock HIGH-level pulsewidth External clock LOW-level pulsewidth External clock period VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max -- 15 -- 15 -- 15 -- 15 Unit ns ns See note 1 See note 2 See note 1 See note 2 ns See note 1 See note 2 See note 1 See note 2 ns 100 -- 125 -- Condition ns Notes: 72 1. (tC - tRCL - tFCL) x 475 < tWH, tWL 1000 2. (tC - tRCL - tFCL) x 525 > tWH, tWL 1000 268-0.4 4.5.7 4.0 Specifications 4.5.7 LCD Output Timing The following characteristics are for a 1/64 duty cycle. ROW 62 63 64 1 2 3 4 60 61 62 63 64 LP 1 frame period YD WF YSCL WF 1 line period YSCL ROW64 ROW1 ROW2 LP XSCL XD0~XD3 XECL tr tWX tf tCX XSCL tDS tDH XD0~XD3 tWL LP tL2 tL1 tS2 tS1 XECL tWXE tDf WF(B) tLD YD tDHY YSCL tWY Figure 45. LCD output timing 268-0.4 73 4.0 Specifications 4.5.7 4.5.7.1 SED1330F Signal Symbol tr tf XSCL XD0 to XD3 LP XECL WF YSCL YD tCX tWX tDH tDS tLS tWL tL1 tL2 tS1 tS1 tWXE tDF tLD tWY tDHY Ta = -20 to 75C Rating Parameter VCE high level pulse width VCE low level pulse width Shift clock cycle time XSCL clock pulse width X-data hold time X-data setup time Latch data setup time LP signal pulse width XECL setup time XECL data hold time Enable setup time Enable delay time XECL clock pulse width Time allowance of WF delay LP delay time against YSCL YSCL clock pulse width Y-data hold time min -- -- 4tc-70 2t C-80 2t C-100 2t C-100 2tC-100 4t C-80 3tC-100 tC-30 tC-30 tC-30 3t C-80 -- 4tC-100 4t C-80 6t C-100 max 35 35 -- -- -- -- -- -- -- -- -- -- -- 100 -- -- -- Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Condition VDD = 5.0V 10% CL=150F Notes: 1. The E-1330 reads display memory data from the address of the top left corner of the display screen, then scans horizontally until it reaches the address for the bottom right corner of the display screen. Therefore, each line of X-driver data is sent starting from the left side of the display line. 2. The E-1330 uses nine cycles of o0 as the basic cycle (tc). The XSCL waveform is shown in the following figure. o0 4 tC 5 tC XSCL 74 268-0.4 4.5.7.2 - 4.5.7.3 4.0 Specifications 4.5.7.2 SED1335F Ta = -20 to 75C Signal Symbol tr tf XSCL XD0 to XD3 LP WF YD t CX t WX tDH t DS tLS t WL t LD tDF tDHY VDD = 4.5 to 5.5V min max Rise time -- 30 Fall time -- 30 Shift clock cycle time 4tC -- XSCL clock pulsewidth 2tC - 60 -- X data hold time 2tC - 50 -- X data setup time 2tC - 100 -- Latch data setup time 2tC - 50 -- LP pulsewidth 4tC - 80 -- LP delay time from XSCL 0 -- Permitted WF delay -- 50 Y data hold time 2tC - 20 -- Parameter VDD = 2.7 to 4.5V min max -- 40 -- 40 4t C -- 2tC - 60 -- 2tC - 50 -- 2tC - 105 -- 2tC - 50 -- 4tC - 120 -- 0 -- -- 50 2tC - 20 -- Unit ns ns ns ns ns ns ns ns ns ns ns Condition CL = 100 pF 4.5.7.3 SED1336F Ta = -20 to 75C Signal Symbol tr tf XSCL XD0 to XD3 LP WF YD t CX t WX tDH t DS tLS t WL t LD tDF tDHY VDD = 4.5 to 5.5V VDD = 3.0 to 4.5V min max min max Rise time -- 30 -- 35 Fall time -- 30 -- 35 Shift clock cycle time 4tC -- 4t C -- XSCL clock pulsewidth 2tC - 60 -- 2tC - 60 -- X data hold time 2tC - 50 -- 2tC - 50 -- X data setup time 2tC - 100 -- 2tC - 100 -- Latch data setup time 2tC - 50 -- 2tC - 50 -- LP pulsewidth 4tC - 80 -- 4tC - 100 -- LP delay time from XSCL 0 -- 0 -- Permitted WF delay -- 50 -- 50 Y data hold time 2tC - 20 -- 2tC - 20 -- Parameter Unit Condition ns ns ns ns ns ns ns ns ns ns ns CL = 100 pF Note: The SED1335F/1336F reads display memory data from the address of the top left corner of the display screen, then scans horizontally until it reaches the address for the bottom right corner of the display screen. Therefore, each line of X-driver data is sent starting from the left side of the display line. 268-0.4 75 THIS PAGE INTENTIONALLY BLANK 76 268-0.4 5.0 Display Control Functions 268-0.4 77 THIS PAGE INTENTIONALLY BLANK 78 268-0.4 5.0 - 5.1 5.0 Display Control Functions 5.0 Display Control Functions 5.1 Character Configuration The origin of each character bitmap is in the top left corner as shown in Figure 38. Adjacent bits in each byte are horizontally adjacent in the corresponding character image. Although the size of the bitmap is fixed by the character generator, the actual displayed size of the character field can be varied in both dimensions. If the area outside the character bitmap contains only zeros, the displayed character size can easily be increased by increasing FX and FY, as the zeros ensure that the extra space between displayed characters is blank. The displayed character width can be set to any value up to 16 even if each horizontal row of the bitmap is two bytes wide. Character starting point FX D7 Character height FY Space Character width Space to D0 R0 0 1 1 1 0 0 0 0 R1 1 0 0 0 1 0 0 0 R2 1 0 0 0 1 0 0 0 R3 1 0 0 0 1 0 0 0 R4 1 1 1 1 1 0 0 0 R5 1 0 0 0 1 0 0 0 R6 1 0 0 0 1 0 0 0 R7 0 0 0 0 0 0 0 0 R8 0 0 0 0 0 0 0 0 R9 0 0 0 0 0 0 0 0 R10 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 R12 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 R14 0 0 0 0 0 0 0 0 R15 0 0 0 0 0 0 0 0 Space data Space data Figure 46. Example of character display ([FX] 8) and generator bitmap 268-0.4 79 5.0 Display Control Functions 5.1 Horizontal non-display area FX Character Height FY 16 dots Space Vertical non-display area 8 dots Character width 8 dots Space Note: The SED1330F/1335F/1336F does not automatically insert spaces between characters. If the displayed character size is 8 pixels or less and the space between character origins is nine pixels or more, the bitmap must use two bytes per row, even though the character image requires only one. Figure 47. Character width greater than one byte wide ([FX] = 9) 80 268-0.4 5.2 - 5.2.2 5.0 Display Control Functions 5.2 Screen Configuration 5.2.1 Screen Configuration The basic screen configuration of the SED1330F/ 1335F/1336F is as a single text screen or as overlapping text and graphics screens. The graphics screen uses eight times as much display memory as the text screen. Figure 40 shows the relationship between the virtual screens and the physical screen. A/P C/R 0000H Character memory area 0800H 07FFH Display memory window Graphics memory area 47FFH (0,YM) (XW,YM) (XM,YM) Y (0,0) X (XM,0) Figure 48. Virtual and physical screen relationship 5.2.2 Display Address Scanning The SED1330F/1335F/1336F scans the display memory in the same way as a raster scan CRT screen. Each row is scanned from left to right until the address range equals C/R. Rows are scanned from top to bottom. In graphics mode, at the start of each line, the address counter is set to the address at the start of the previous line plus the address pitch, AP. 268-0.4 In text mode, the address counter is set to the same start address, and the same character data is read, for each row in the character bitmap. However, a new row of the character generator output is used each time. Once all the rows in the character bitmap have been displayed, the address counter is set to the start address plus AP and the next line of text is displayed. 81 5.0 Display Control Functions 1 * * * 8 9 * * * 16 17 * * * 24 * * * * 5.2.2 SAD SAD + 1 SAD + 2 SAD + C/R SAD + AP SAD + AP +1 SAD + AP +2 SAD + AP + C/R SAD + 2AP C/R W/S = 0, FX = 8, FY = 8 Note: One byte of display memory corresponds to one character. Figure 49. Character position parameters 1 SAD SAD +1 SAD + 2 SAD + C/R 2 SAD + AP SAD + AP +1 SAD + AP +2 SAD + AP + C/R 3 SAD + 2AP Line 1 SAD SAD +1 SAD + 2 AP * * * * * * * * SAD + C/R Line 2 SAD + AP SAD + AP + 1 AP SAD + AP + C/R SAD + 2AP Line 3 C/R W/S = 0, FX = 8 Note: One bit of display memory corresponds to one pixel. Figure 50. Character parameters vs. memory 82 268-0.4 5.2.2 5.0 Display Control Functions 1 SAD1 SAD1 + 1 SAD1 + 2 SAD1 + C/R SAD1 + AP SAD1 + AP +1 SAD1 + AP +2 SAD1 + AP + C/R SAD3 + 2 SAD3 + C/R SAD3 + AP +2 SAD3 + AP + C/R * * * 8 9 * * * 16 17 SAD1 + 2AP * * * 24 25 * * * (L/F)/2 = +1 SAD3 + 1 * * * +8 +9 SAD3 + AP SAD3 + AP +1 * * * + 16 + 17 SAD3 + 2AP * * * + 24 + 25 * * * * (L/F) C/R W/S = 1, FX = 8, FY = 8 Note: In two-panel drive, the SED1330F/1335F/1336F reads line 1 and line + 1 as one cycle. The upper and lower panels are thus read alternately, one line at a time. Figure 51. Two-panel display address indexing 268-0.4 83 5.0 Display Control Functions 5.2.3 5.2.3 Display Scan Timing Figure 44 shows the basic timing of the SED1330F/ 1335F/1336F. One display memory read cycle takes nine periods of the system clock, 0 (f OSC). This cycle repeats (C/R + 1) times per display line. When reading, the display memory pauses at the end of each line for (TC/R - C/R) display memory read cycles, though the LCD drive signals are still generated. TC/R may be set to any value within the constraints imposed by C/R, fOSC, fFR, and the size of the LCD panel, and it may be used to fine tune the frame frequency. The microprocessor may also use this pause to access the display memory data. 0 T0 T1 Display read cycle interval T2 VCE Character read interval Graphics generator read interval Graphics read interval VA Figure 52. Display memory basic read cycle Display period TC/R Divider frequency period C/R Frame period Line 1 O R 2 O R 3 O R * * * * * (L/F) O R LP Note: The divider adjustment interval (R) applies to both the upper and lower screens even if W/S = 1. In this case, LP is active only at the end of the lower screen's display interval. Figure 53. Relationship between TC/R and C/R 84 268-0.4 5.3 - 5.3.3 5.0 Display Control Functions 5.3 Cursor Control 5.3.1 Cursor Register Function The SED1330F/1335F/1336F cursor address register functions as both the displayed cursor position address register and the display memory access address register. When accessing display memory outside the actual screen memory, the address register must be saved before accessing the memory and restored after memory access is complete. the cursor layer moved within the display memory if it is necessary to display the cursor on a layer other than the present cursor layer. Although the cursor is normally displayed for character data, the SED1330F/1335F/1336F may also display a dummy cursor for graphical characters. This is only possible if the graphics screen is displayed, the text screen is turned off and the microprocessor generates the cursor control address. Cursor display address register Cursor register D=1 Address pointer FC1 = 0 Figure 54. Cursor addressing Cursor ON FC0 = 1 Note that the cursor may disappear from the display if the cursor address remains outside the displayed screen memory for more than a few hundred milliseconds. FP1 = 0 5.3.2 Cursor Movement FP3 = 0 On each memory access, the cursor address register changes by the amount previously specified with CSRDIR, automatically moving the cursor to the desired location. FP2 = 1 FP0 = 0 Block screen 1 (character screen) OFF Block screen 2 (graphics screen) ON Figure 55. Cursor display layers 5.3.3 Cursor Display Layers Although the SED1330F/1335F/1336F can display up to three layers, the cursor is displayed in only one of these layers: Two-layer configuration: First layer (L1) Three-layer configuration: Third layer (L3) The cursor will not be displayed if it is moved outside the memory for its layer. Layers may be swapped or 268-0.4 Consider the example of displaying Chinese characters on a graphics screen. To write the display data, the cursor address is set to the second screen block, but the cursor is not displayed. To display the cursor, the cursor address is set to an address within the blank text screen block. Since the automatic cursor increment is in address units, not character units, the controlling microprocessor must set the cursor address register when moving the cursor over the graphical characters. 85 5.0 Display Control Functions 8 dots 8 dots 5.3.3 8 dots 8 dots Block cursor 18 dots Auto shift Auto shift Auto shift Cursor address preset Figure 56. Cursor movement If no text screen is displayed, only a bar cursor can be displayed at the cursor address. If the first layer is a mixed text and graphics screen and the cursor shape is set to a block cursor, the 86 SED1330F/1335F/1336F automatically decides which cursor shape to display. On the text screen it displays a block cursor, and on the graphics screen, a bar cursor. 268-0.4 5.4 5.0 Display Control Functions 5.4 Memory to Display Relationship The SED1330F/1335F/1336F supports virtual screens that are larger than the physical size of the LCD panel address range, C/R. A layer of the SED1330F/1335F/1336F can be considered as a window in the larger virtual screen held in display memory. This window can be divided into two blocks, with each block able to display a different portion of the virtual screen. This enables, for example, one block to dynamically scroll through a data area while the other acts as a status message display area. See Figure 49 and 50. AP C/R SAD1 W/S = 0 SAD3 Character page 1 SAD1 Character page 3 SAD3 Display page 1 W/S = 1 Display page 1 Display page 3 SAD2 Layer 1 SAD4 Character page 2 SAD2 Layer 1 Character page 2 SAD4 Display page 2 Display page 2 Display page 4 C/R Layer 2 Layer 2 CG RAM SAD1 C/R Character page 1 SAD1 Display page 1 SAD3 Display page 3 C/R SAD3 Character page 3 Layer 1 SAD2 C/R SAD2 Display page 2 Graphics page 2 Layer 2 SAD3 C/R Graphics page 3 C/R SAD3 SAD2 SAD1 Display page 3 SAD2 Graphics page 2 Display page 2 Display page 1 C/R SAD1 Layer 1 Graphics page 1 Layer 2 Layer 3 Figure 57. Display layers of memory 268-0.4 87 5.0 Display Control Functions 5.4 AP 0000H SAD1 FX CRY FY CSRA CRX Display window L/F Virtual display memory limit CRX FX = Horizontal character field 16 dots FY = Vertical character field 16 dots CRX = Horizontal cursor size 16 dots CRY = Vertical cursor size 16 dots C/R = Characters per row 240 bytes L/F = Lines per frame 256 bytes AP = Address pitch 64 Kbytes FFFFH Figure 58. Display window and memory 88 268-0.4 268-0.4 Back layer Character code SAG SAD2 SAD1 F000 4A00 4800 4440 2800 2000 SL2 0800 0300 0400 SL1 0000 D7 Character generator ROM Not used Character generator RAM Page 2 Page 1 Page 2 Page 1 to D0 to 01110000 10001000 10001000 10001000 11111000 10001000 10001000 00000000 D0 1FFF 0080 02FF 0000 #4800 1 2 3 4 5 6 #4807 D0 Example of character A 70 88 88 88 F8 88 88 00 HEX D7 Y X C B A (Code) D7 (MSB) D7 ABC Magnified image (LSB)(MSB) D0 D7 Display XY (LSB) D0 5.4 5.0 Display Control Functions Figure 59. Memory map and magnified characters 89 5.0 Display Control Functions 5.5 - 5.5.1 5.5 Scrolling 5.5.1 On-page Scrolling The controlling microprocessor can set the SED1330F/ 1335F/1336F scrolling modes by overwriting the scroll address registers SAD1 to SAD4, and by directly setting the scrolling mode and scrolling rate. The normal method of scrolling within a page is to move the whole display up one line and erase the bottom line. Since the SED1330F/1335F/1336F does not automatically erase the bottom line, it must be erased with blanking data when changing the scroll address register. Display memory AP C/R Before scrolling ABC WXYZ SAD1 789 ABC WXYZ 789 SAD3 After scrolling WXYZ 789 Blank SAD1 WXYZ 789 Blank Figure 60. On-page scrolling 90 268-0.4 5.5.2 5.0 Display Control Functions 5.5.2 Inter-page Scrolling Scrolling between pages and page switching can be performed only if the display memory capacity is greater than one screen. Display memory AP C/R Before scrolling After scrolling ABC SAD1 WXYZ 789 WXYZ 789 ABC WXYZ SAD1 789 ABC WXYZ 789 Figure 61. Inter-page scrolling 268-0.4 91 5.0 Display Control Functions 5.5.3 5.5.3 Horizontal Scrolling The display can be scrolled horizontally in onecharacter units, regardless of the display memory capacity. Display memory Display Before scrolling ABC 123 XYZ SAD1 ABC 123 XYZ AP C/R After scrolling BC 23 XYZ1 SAD1 ABC 123 XYZ Figure 62. Horizontal wraparound scrolling Refer to Section 9.4 for application notes. 92 268-0.4 5.5.4 - 5.5.5 5.0 Display Control Functions 5.5.4 Bidirectional Scrolling Bidirectional scrolling can be performed only if the display memory is larger than the physical screen both horizontally and vertically. Although scrolling is normally done in single-character units, the HDOT SCR command can be used to scroll horizontally in pixel units. Single-pixel scrolling both horizontally and vertically can be performed by using the SCROLL and HDOT SCR commands. See Section 9.4 Display memory Before scrolling BC EFG TUV AP 12 A BC EFG TUV C/R After scrolling 12 34 567 89 ABC E FG TUV FG TUV 1234 56 1234 56 7 89 Figure 63. Bidirectional scrolling 5.5.5 Scroll Units Table 21. Scroll units Mode Vertical Text Characters Graphics Pixels Horizontal Pixels or characters Pixels Note that in a divided screen, each block cannot be independently scrolled horizontally in pixel units. 268-0.4 93 THIS PAGE INTENTIONALLY BLANK 94 268-0.4 6.0 Character Generator 268-0.4 95 THIS PAGE INTENTIONALLY BLANK 96 268-0.4 6.0 - 6.1.3 6.0 Character Generator 6.0 Character Generator 6.1 CG Characteristics 6.1.1 Internal Character Generator The internal character generator is recommended for minimum system configurations containing a SEDSED1330F/1335F/1336F, display RAM, LCD panel, single-chip microprocessor and power supply. Since the internal character generator uses a CMOS mask ROM, it is also recommended for low-power applications. * 5 x 7-pixel font (See Section 10) * 160 JIS standard characters * Can be mixed with character generator RAM (maximum of 64 CG RAM characters) * Can be automatically spaced out up to 8 x 16 pixels 6.1.2 External Character Generator ROM The external CG ROM can be used when fonts other than those in the internal ROM are needed. Data is stored in the external ROM in the same format used in the internal ROM. (See Section 6.3.) * Up to 8 x 8-pixel characters (M2 = 0) or 8 x 16pixel characters (M2 = 1) * Up to 256 characters (192 if used together with the internal ROM) 268-0.4 * Mapped into the display memory address space at F000H to F7FFH (M2 = 0) or F000H to FFFFH (M2 = 1) * Characters can be up to 8 x 16-pixels; however, excess bits must be set to zero. 6.1.3 Character Generator RAM The user can freely use the character generator RAM for storing graphics characters. The character generator RAM can be mapped by the microprocessor anywhere in display memory, allowing effective use of unused address space. * Up to 8 x 8-pixel characters (M2 = 0) or 8 x 16 characters (M2 = 1) * Up to 256 characters if mapped at F000H to FFFFH (64 if used together with character generator ROM) * Can be mapped anywhere in display memory address space if used with the character generator ROM * Mapped into the display memory address space at F000H to F7FFH if not used with the character generator ROM (more than 64 characters are in the CG RAM). Set SAG0 to F000H and M1 to zero when defining characters number 193 upwards. 97 6.0 Character Generator 6.2 6.2 CG Memory Allocation Since the SED1335F/1336F uses 8-bit character codes, it can handle no more than 256 characters at a time. However, if a wider range of characters is required, character generator memory can be bankswitched using the CGRAM ADR command. Built-in CG ROM (160 characters, 5 x 7 pixels max.) M0 = 1 CG RAM CG RAM n CG RAM 2 SAG CG RAM 1 (64 characters max, 8 x 16 pixels max) Basic CG space (256 characters, 8 x 16 pixels max.) 256 characters max. M1 = 0 CG RAM CG ROM M0 = 1 256 characters max. M1 = 0 Built-in CG ROM (160 characters, 5 x 7 pixels max.) CG ROM CG RAM n CG RAM 2 CG RAM ADR CG RAM 1 (64 characters max, 8 x 16 pixels max) Note that there can be no more than 64 characters per bank. Figure 64. Internal and external character mapping 98 268-0.4 6.2 - 6.3 6.0 Character Generator Table 22. Character mapping Item Parameter Remarks Internal/external character generator selection 1 to 8 pixels M0 M2 = 0 Character field height M2 = 1 Graphics mode (8 bits x 1 line) 9 to 16 pixels Greater than 16 pixels Internal CG ROM/RAM select External CG ROM/RAM select CG RAM bit 6 correction M1 Specified with CG RAM ADR Can be moved anywhere in the command display memory address space Other than the area of Figure 58 CG RAM data storage address External CG ROM address Determined by the character code Automatic 192 characters or less More than 192 characters Set SAG to F000H and overly SAG and the CG ROM table. 6.3 Setting the Character Generator Address The CG RAM addresses in the VRAM address space are not mapped directly from the address in the SAG register. The data to be displayed is at a CG RAM address calculated from SAG + character code + ROW select address. This mapping is shown in Tables 23 and 24. Table 23. Character fonts, number of lines 8 (M2 = 0, M1 = 0) SAG Character code +ROW select address CG RAM address A15 A14 A13 A12 A11 A10 0 0 0 0 0 0 0 0 0 0 D7 0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0 0 R2 0 R1 0 R0 VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0 Table 24. Character fonts, 9 number of lines 16 (M2 = 1, M1 = 0) SAG Character code +ROW select address CG RAM address 268-0.4 0 0 0 0 D7 D6 A9 D5 A8 D4 A7 D3 A6 D2 A5 D1 A4 D0 A3 0 A2 0 A1 0 A0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 R2 R1 R0 A15 A14 A13 A12 A11 A10 VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0 99 6.0 Character Generator Row R3 R2 R1 R0 Row 0 0 0 0 0 Row 1 0 0 0 1 Row 2 0 0 1 0 6.3 - 6.3.2 As the character code table in Figure 58 shows, codes 80H to 9FH and E0H to FFH are allocated to the CG RAM and can be used as desired. 80H is thus the first code for CG RAM. As characters cannot be used if only using graphics mode, there is no need to set the CG RAM data. Line 1 Line 2 Row 7 0 1 1 1 Row 8 1 0 0 0 Row 14 1 1 1 0 Row 15 1 1 1 1 Note: Lines = 1: lines in the character bitmap 8 Lines = 2: lines in the character bitmap 9 Figure 65. Row select address 6.3.1 M1 = 1 The SED1335F/1336F automatically converts all bits set in bit 6 of character code for CG RAM 2 to zero. Because of this, the CG RAM data areas become contiguous in display memory. Table 25. Character data example CGRAM ADR P1 P2 5CH 00H 40H Reverse the CG RAM address calculation to calculate SAG CSRDIR 4CH Set cursor shift direction to right CSRW P1 P2 MWRITE P P2 P3 P4 P5 P6 P7 P8 P8 P16 46H 00H 48H 42H 70H 88H 88H 88H F8H 88H 88H 00H 00H 00H CG RAM start address is 4800H Write ROW 0 data Write ROW 1 data Write ROW 2 data Write ROW 3 data Write ROW 4 data Write ROW 5 data Write ROW 6 data Write ROW 7 data Write ROW 8 data Write ROW 15 data When writing data to CG RAM: * Calculate the address as for M1 = 0. * Change bit 6 of the character code from "1" to "0". 6.3.2 CG RAM Addressing Example * Define a pattern for the "A" in Figure 38. * The CG RAM table start address is 4800H. * The character code for the defined pattern is 80H (the first character code in the CG RAM area). 100 268-0.4 6.4 6.0 Character Generator 6.4 Character Codes The following figure shows the character codes and the codes allocated to CG RAM. All codes can be used by the CG RAM if not using the internal ROM. Upper 4 bits Lower 4 bits 0 1 2 0 3 4 5 6 7 0 @ P ' p 1 ! 1 A Q a q 2 " 2 B R b r 3 # 3 C S c s 4 $ 4 D T d t 5 % 5 E U e u 6 & 6 F V f v 7 ' 7 G W g w 8 ( 8 H X h x 9 ) 9 I Y i y A * : J Z j z B + ; K [ k { C , < L l | D . + M ] m } E - \> N ^ n F / ? _ o O 8 8 A B C D E F Figure 66. On-chip character codes 268-0.4 101 THIS PAGE INTENTIONALLY BLANK 102 268-0.4 7.0 TV Mode (SED1336F only) 268-0.4 103 THIS PAGE INTENTIONALLY BLANK 104 268-0.4 7.0 - 7.1 7.0 TV Mode (SED1336F only) 7.0 TV Mode (SED1336F only) When used with an external video mixer circuit, the SED1336F can show the same display on a television as on the LCD panel. In addition, the changeover from LCD-only to TV-and-LCD display is instantaneous with the changing of the T/L register using the System Set instruction. The TV and LCD display register parameters which are determined by hardware constraints are shown in Table 26. Table 26. Register parameters System TC/R (Hex) C/R (Hex) L/F (Hex) Clock Cycles per Horizontal Line NTSC PAL 2A 2A 1F 1F C7 C7 388 388 LCD 2A 1F C7 388 Oscillator Frequency, fO (MHz) 6.1050 6.0625 6.0625 or 6.1050 T/L 1 1 0 7.1 Sync Generator Circuit Timing The NTSC and PAL vertical sync signal waveforms are shown in Figure 59 and 60, respectively. The 21H Color field I vertical blanking interval 1.5 0.1s Pre-blanking interval 2 Start of field I 3H 3 4 H H Horizontal sync interval Display interval 21H TI 3H 1 H vertical sync timing parameters and VSD output states are shown in Table 27. Interval before equalizing pulses 5 3H 6 7 8 11H 9 10 19 20 H Equalizing pulse interval Vertical Sync pulse interval Vertical serration pulse interval 0.5H Interval after equalizing pulses Reference subcarrier phase color field I Postblanking interval Display interval 9-line vertical interval Figure 67. NTSC vertical sync waveform 268-0.4 105 7.0 TV Mode (SED1336 only) 7.1 Field blanking (25H + a) (a = 11-line blanking interval) 42H 2.5H 311 Display period Pre-blanking interval 2.5H 312 Interval before equalizing pulses 313 314 2.5H 315 Vertical sync pulse interval 316 317 17.5H 318 319 45H 320 335 Reference subcarrier phase color field I Interval after equalizing pulses Postblanking interval Display interval Figure 68. PAL vertical sync waveform Table 27. Vertical sync timing characteristics Interval Interval Reference Vertical Postbefore after Subcarrier Sync Pulse blanking Equalizing Equalizing Phase Color Interval Interval Pulse Pulse Field I Display Interval Equalizing Pulse Interval Vertical Serration Pulse Interval Parameter Preblanking Interval NTSC system timing 21H 3H 3H 3H 11H 21H 200H 15CK 27CK PAL system timing 42H 2.5H 2.5H 2.5H 17.5H 45H 200H 15CK 27CK VSD output level High impedance LOW LOW LOW LOW High impedance LOW or high impedance -- -- Notes: 1. The NTSC system uses 262 lines per screen, and the PAL system, 312. 2. H = Horizontal line period CK = Oscillator period 106 268-0.4 7.1 7.0 TV Mode (SED1336 only) The horizontal sync signal waveforms are shown in Figure 61, and the timing parameters and VSD output SNC High impedance VSD High impedance Display interval Preblanking interval states, in Table 28. Note that SNC and VSD are both high-impedance when in LCD mode. High impedance Low or high impedance Front porch Horizontal sync pulse Back porch Postblanking interval Display interval Figure 69. Horizontal sync waveforms Table 28. Horizontal sync characteristics Parameter NTSC system timing PAL system timing VSD output level 268-0.4 Pre-blanking Front Porch Interval Horizontal Sync Pulse Back Porch Post-blanking Interval Display Interval 29CK 10CK 29CK 28CK 36CK 256CK 29CK 10CK 29CK 34CK 30CK 256CK High impedance LOW LOW LOW High impedance LOW or High impedance 107 THIS PAGE INTENTIONALLY BLANK 108 268-0.4 8.0 Description of Circuit Blocks 268-0.4 109 THIS PAGE INTENTIONALLY BLANK 110 268-0.4 8.0 - 8.1.2.3 8.0 Description of Circuit Blocks 8.0 Description of Circuit Blocks 8.1 Microprocessor Interface 8.1.1 System Bus Interface 8.1.2 Microprocessor Synchronization SEL1, SEL2 (SED1330F and SED1335F only), A0, RD, WR and CS are used as control signals for the microprocessor data bus. A0 is normally connected to the lowest bit of the system address bus. SEL1 and SEL2 change the operation of the RD and WR pins to enable interfacing to either an 8080 or 6800 family bus, and should have either a pull-up or a pull-down resistor. The SED1330F/1335F/1336F interface operates at full bus speed, completing the execution of each command within the cycle time, tCYC. The controlling micro-processor's performance is thus not hampered by polling or handshaking when accessing the SED1330F/1335F/1336F. With microprocessors using an 8080 family interface, the SED1330F/1335F/1336F is normally mapped into the I/O address space. Display flicker may occur if there is more than one consecutive access that cannot be ignored within a frame. The microprocessor can minimize this either by performing these accesses intermittently, or by continuously checking the status flag (D6) and waiting for it to become HIGH. 8.1.1.1 8080 series Table 29. 8080 series interface signals A0 RD WR Function 0 0 1 Status flag read Display data and cursor address 1 0 1 read 0 1 0 Display data and parameter write 1 1 0 Command write 8.1.2.1 Display Status Indication Output (For SED1336 only) When CS, A0 and RD are LOW, D6 functions as the display status indication output. It is HIGH during the TV-mode vertical retrace period or the LCD-mode horizontal retrace period, and LOW, during the period the controller is writing to the display. By monitoring D6 and writing to the data memory only during retrace periods, the display can be updated without causing screen flicker. 8.1.1.2 6800 series Table 30. 6800 series interface signals A0 RD WR Function 0 1 1 Status flag read Display data and cursor address 1 1 1 read 0 0 1 Display data and parameter write 1 0 1 Command write 8.1.2.2 Internal Register Access The SYSTEM SET and SLEEP IN commands can be used to perform input/output to the SED1330F/1335F/ 1336F independently of the system clock frequency. These are the only commands that can be used while the SED1330F/1335F/1336F is in sleep mode. 8.1.2.3 Display Memory Access The SED1330F/1335F/1336F supports a form of pipelined processing, in which the microprocessor 268-0.4 111 8.0 Description of Circuit Blocks 8.1.2.3 synchronizes its processing to the SED1330F/1335F/ 1336F's timing. When writing, the microprocessor first issues the MWRITE command. It then repeatedly writes display data to the SED1336F using the system bus timing. This ensures that the microprocessor is not slowed down even if the display memory access times are slower than the system bus access times. See Figure 70. When reading, the microprocessor first issues the MREAD command, which causes the SED1330F/ 1335F/1336F to load the first read data into its output buffer. The microprocessor then reads data from the SED1330F/1335F/1336F using the system bus timing. With each read, the SED1330F/1335F/1336F reads the next data item from the display memory ready for the next read access. See Figure 71. tCYC WR Microprocessor Command write Data write Data write D0 to D7 WR/W Display memory VD0 to VD7 Figure 70. Display memory write cycle WR tCYC Command write Microprocessor RD Data read Data read D0 to D7 WR/W Display memory VD0 to VD7 Figure 71. Display memory read cycle Note: A possible problem with the display memory read cycle is that the system bus access time, tACC, does not depend on the display memory access time, tACV. The microprocessor may only make repeated reads if the read loop time exceeds the SED1330F/ 1335F/1336F cycle time, tCYC. If it does not, NOP instructions may be inserted in the program loop. tACC, tACV and tCYC limits are given in Section 4.3. 112 268-0.4 8.1.3 - 8.1.3.1 8.0 Description of Circuit Blocks 8.1.3 Interface Examples 8.1.3.1 Z80(R) to SED1330F/1335F/1336F Interface IORQ A0 A1 to A15 Z80(R) A0 Decoder CS SED1335F/ D0 to D7 D0 to D7 RD RD SEL 1 WR WR SEL 2 1336F RES RESET RESET Note: Z80(R) is a registered trademark of Zilog Corporation. Figure 72. Z80(R) to SED1330F/1335F/1336F* interface Note: *For SED1336F: SEL 2 is open.. 268-0.4 113 8.0 Description of Circuit Blocks 8.1.3.2 8.1.3.2 6802 to SED1330F/1335F/1336F Interface VMA A0 A1 to A15 A0 Decoder CS SED1335F/ 6802 D0 to D7 D0 to D7 E RD SEL 1 R/W WR SEL 2 RESET 1336F VDD RES RESET Figure 73. 6802 to SED1330F/1335F/1336F interface Note: *For SED1336F: SEL 2 is open.. 114 268-0.4 8.2 - 8.2.2 8.0 Description of Circuit Blocks 8.2 Display Memory Interface 8.2.1 Static RAM The figure below shows the interface between an 8K x 8 static RAM and the SED1330F/1335F/1336F. Note that bus buffers are required if the bus is heavily loaded. VA0 to VA12 A0 to A12 HC138 VA13 to VA15 VCE A to C Y CE1 VDD CE2 6264 SRAM SED1335F/ 1336F OE VR/W I/O1 to I/O8 R/W I/O1 to I/O8 Figure 74. Static RAM interface 8.2.2 Supply Current during Display Memory Access The 24 address and data lines of the SED1330F/ 1335F/1336F cycle at one-third of the oscillator frequency, fOSC. The charge and discharge current on these pins, IVOP, is given by the equation below. When IVOP exceeds I OPR, it can be estimated by: IVOP C V f where C is the capacitance of the display memory bus, V is the operating voltage, and f is the operating frequency. 268-0.4 If VOPR = 5.0V, f = 1.0 MHz, and the display memory bus capacitance is 1.0 pF per line: IVOP 120 A / MHz x pF To reduce current flow during display memory accesses, it is important to use low-power memory, and to minimize both the number of devices and the parasitic capacitance. 115 8.0 Description of Circuit Blocks 8.3 - 8.4 8.3 Oscillator Circuit 8.4 Status Flag The SED1330F/1335F/1336F incorporates an oscillator circuit. A stable oscillator can be constructed simply by connecting an AT-cut crystal and two capacitors to OSC1 and OSC2, as shown in the figure below. If the oscillator frequency is increased, CD and CG should be decreased proportionally. The SED1330F/1335F/1336F has a single bit status flag. D6: X line standby D7 Note that the circuit board lines to OSC1 and OSC2 must be as short as possible to prevent wiring capacitance from changing the oscillator frequency or increasing the power consumption. OSC2 CD = 3 to 20 pF CG CD D6 X X X X X X X: Don't care Figure 76. Status flag The D6 status flag is LOW (0) for the TC/R - C/R cycles at the end of each line where the SED1330F/1335F/ 1336F is not reading the display memory. The microprocessor may use this period to update display memory without affecting the display; however, it is recommended that the display be turned off when refreshing the whole display. SED1335F/1336F OSC1 X D0 CG = 2 to 18 pF Load impedance = 700 (max) Figure 75. Crystal oscillator LP tTC/R tm tC/R XSCL Figure 77. C/R to TC/R time difference 116 268-0.4 8.4 - 8.5 8.0 Description of Circuit Blocks 8.5 Reset The SED1330F requires a reset pulse at least 1 ms long after power-on in order to re-initialize its internal state. The SED1335F/1336F requires a minimum reset pulse of 200s. Read Status Flag No During reset, the LCD drive signals XD, LP and FR are halted. D6 = 1? For maximum reliability, it is not recommended to apply a DC voltage to the LCD panel while the SED1330F/1335F/1336F is reset. Turn off the LCD power supplies for at least one frame period after the start of the reset pulse. Yes Data Input No The SED1330F/1335F/1336F cannot receive commands while it is reset. Commands to initialize the internal registers should be issued soon after a reset. Data Input ? Yes A delay of 3 ms (maximum) is required following the rising edges of both RES and VDD to allow for system stabilization. Figure 78. Flowchart for busy flag checking VDD 200s reset pulse RES 0.7 VDD 0.3 VDD Figure 79. Reset timing 268-0.4 117 THIS PAGE INTENTIONALLY BLANK 118 268-0.4 9.0 Application Notes 268-0.4 119 THIS PAGE INTENTIONALLY BLANK 120 268-0.4 9.0 - 9.1.1 9.0 Application Notes 9.0 Application Notes 9.1 Initialization Parameters The parameters for the initialization commands must be determined first. Square brackets around a parameter name indicate the number represented by the parameter, rather than the value written to the parameter register. For example, [FX] = FX + 1. 9.1.1 * TC/R TC/R must satisfy the condition [TC/R] [C/R] + 4. * fOSC and fFR Once TC/R has been set, the frame frequency, fFR, and lines per frame [L/F] will also have been set. The lower limit on the oscillator frequency fOSC is given by: SYSTEM SET Instruction and Parameters fOSC ([TC/R] x 9 + 1) x [L/F] x fFR * FX The horizontal character field size is determined from the horizontal display size in pixels [VD] and the number of characters per line [VC]. [VD] / [VC] [FX] VD: # of X-directional dots VC: # of X-directional characters * If no standard crystal close to the calculated value of fOSC exists, a higher frequency crystal can be used and the value of TC/R revised using the above equation. * Symptoms of an incorrect TC/R setting are listed below. If any of these appears, check the value of TC/R and modify it if necessary. * Vertical scanning halts and a high-contrast horizontal line appears. * All pixels are on or off. * The LP output signal is absent or corrupted. * The display is unstable. * C/R C/R can be determined from VC and FX. [C/R] = RND([FX] / 8) x [VC] where RND(x) denotes x rounded up to the next highest integer. [C/R] is the number of bytes per line, not the number of characters. Table 31. Epson LCD unit example parameters (SED1335F only) Resolution (X x Y) [FX] [FY] [C/R] TC/R fOSC (MHz) See Note 2 256 x 64 [FX] = 6 pixels: 256 / 6 = 42 remainder 4 = 4 blank pixels 8 or 16, depending on the screen [C/R] = 42 = 2AH bytes: C/R = 29H. When using HDOT SCR, [C/R] = 43 bytes 2DH 1.85 512 x 64 [FX] = 6 pixels: 512 / 6 = 85 remainder 2 = 2 blank pixels 8 or 16, depending on the screen [C/R] = 85 = 55H bytes: C/R = 54H. When using HDOT SCR, [C/R] = 86 bytes 58H 3.59 256 x 128 [FX] = 8 pixels: 256 / 8 = 32 remainder 0 = no blank pixels 8 or 16, depending on the screen [C/R] = 32 = 20H bytes: C/R = 19H. When using HDOT SCR, [C/R] = 33 bytes 22H 2.90 512 x 128 [FX] = 10 pixels: 512 / 10 = 51 remainder 2 = 2 blank pixels 8 or 16, depending on the screen [C/R] = 102 = 66H bytes: C/R = 65H. When using HDOT SCR, [C/R] = 103 bytes 69H 8.55 Notes: 1. The remainder pixels on the right-hand side of the display are automatically blanked by the SED1335F. There is no need to zero the display memory corresponding to these pixels. 2. Assuming a frame frequency of 60 Hz. 268-0.4 121 9.0 Application Notes 9.1.2 9.1.2 Initialization Example The initialization example shown in Figure 80 is for a SED1330F/1335F/1336F with an 8-bit microproces- sor interface bus display unit (512 x 128 pixels). Start Clear first memory layer Supply on Clear second memory layer SYSTEM SET CSRW SCROLL CSR FORM HDOT SCR DISP ON OVLAY Output display data DISP OFF Note: Set the cursor address to the start of each screen's layer memory, and use MWRITE to fill the memory with space characters, 20H (text screen only) or 00H (graphics screen only). Determining which memory to clear is explained in section 9.1.3. Figure 80. Initialization procedure 122 268-0.4 9.1.2 9.0 Application Notes Table 32. Initialization procedure No. 1 2 3 Command Power-up Supply SYSTEM SET C = 40H P1 = 38H P2 = 87H P3 = 07H P4 = 3FH P5 = 49H 4 P6 = 7FH P7 = 80H P8 = 00H SCROLL C = 44H P1 = 00H P2 = 00H P3 = 40H P4 = 00H P5 = 10H P6 = 40H P7 = 00H P8 = 04H Operation Wait for at least 3 ms after reset with VDD 4.5V initialization. M0: Internal CG ROM M1: CG RAM is 32 characters maximum M2: 8 lines per character W/S: Two-panel drive IV: No top-line compensation FX: Horizontal character size = 8 pixels WF: Two-frame AC drive FY: Vertical character size = 8 pixels C/R: 64 display addresses per line TC/R: Total address range per line = 90 fOSC = 6.0 MHz, fFR = 70 Hz L/F: 128 display lines AP: Virtual screen horizontal size is 128 addresses First screen block start address Set to 0000H Display lines in first screen block = 64 Second screen block start address Set to 1000H Display lines in second screen block = 64 Third screen block start address Set to 0400H (continued) 268-0.4 123 9.0 Application Notes 9.1.2 Table 32. Initialization procedure (continued) No. Command P9 = 00H P10 = 30H Operation Fourth screen block start address Set to 3000H Display memory (SAD1) 0000H (SAD3) 0400H 1st display memory page 2nd display memory page 0800H (SAD2) 1000H 3rd display memory page (SAD4) 3000H 4th display memory page 5000H 5 6 7 8 HDOT SCR C = 5AH P1 = 00H OVLAY C = 5BH P1 = 01H DISP ON/OFF C = 58H P1 = 56H Clear data in first layer Set horizontal pixel shift to zero MX 1, MX 0: Inverse video superposition DM 1: First screen block is text mode DM 2: Third screen block is text mode D: Display OFF FC1, FC0: Flash cursor at 2 Hz FP1, FP0: First screen block ON FP3, FP2: Second and fourth screen blocks ON FP5, FP4: Third screen block ON Fill first screen layer memory with 20H (space character) (continued) 124 268-0.4 9.1.2 9.0 Application Notes Table 32. Initialization procedure (continued) No. 9 Command Clear data in second layer Operation Fill second screen layer memory with 00H (blank data) Display Character code in every position 1st layer Blank code in every position 2nd layer 10 11 12 CSRW C = 46H P1 = 00H P2 = 00H CSR FORM C = 5DH P1 = 04H P2 = 86H DISP ON/OFF C = 59H Set cursor to start of first screen block CRX: Horizontal cursor size = 5 pixels CRY: Vertical cursor size = 7 pixels CM: Block cursor Display ON Display 13 CSR DIR C = 4CH Set cursor shift direction to right (continued) 268-0.4 125 9.0 Application Notes 9.1.2 Table 32. Initialization procedure (continued) No. 14 Command MWRITE C = 42H P1 = 20H P2 = 45H P3 = 50H P4 = 53H P5 = 4FH P6 = 4EH Operation `' `E' `P' `S' `O' `N' EPSON 15 16 17 18 19 CSRW C = 46H P1 = 00H P2 = 10H CSR DIR C = 4FH MWRITE C = 42H P1 = FFH P9 = FFH CSRW C = 46H P1 = 01H P2 = 10H MWRITE C = 42H Set cursor to start of second screen block Set cursor shift direction to down Fill in a square to the left of the `E' EPSON Set cursor address to 1001H (continued) 126 268-0.4 9.1.2 9.0 Application Notes Table 32. Initialization procedure (continued) No. 20 Command P1 = FFH P9 = FFH CSRW Operation Fill in the second screen block in the second column of line 1 Repeat operations 18 and 19 to fill in the background under `EPSON' Inverse display 29 MWRITE EPSON 30 31 32 268-0.4 CSRW C = 46H P1 = 00H P2 = 01H CSR DIR C = 4CH MWRITE C = 42H P1 = 44H P2 = 6FH P3 = 74H P4 = 20H P5 = 4DH P6 = 61H P7 = 74H P8 = 72H P9 = 69H P10 = 78H P11 = 20H P12 = 4CH P13 = 43H P14 = 44H Set cursor to line three of the first screen block Set cursor shift direction to right `D' `o' `t' `' `M' `a' `t' `r' `i' `x' `' `L' `C' `D' Inverse display EPSON Dot matrix LCD 127 9.0 Application Notes 9.1.3 9.1.3 Display Mode Setting Example 1: Combining Text and Graphics * Conditions * 320 x 200 pixels, single-panel drive (1/ 200 duty cycle) * First layer: text display * Second layer: graphics display * 8 x 8-pixel character font * CG RAM not required * Display memory allocation * First layer (text): 320/8 = 40 characters per line, 200/8 = 25 lines. Required memory size = 40 x 25 = 1000 bytes. * Second layer (graphics): 320/8 = 40 characters per line, 200/1 = 200 lines. Required memory size = 40 x 200 = 8000 bytes. 03E8H 2nd graphics layer (8000 bytes) 0000H 1st character layer (1000 bytes) 2327H 03E7H Figure 81. Character over graphics layers * Register setup procedure SYSTEM SET 128 TC/R calculation SCROLL C= 44H fOSC = 6 MHz P1 = 00H fFR = 70 Hz P2 = 00H P3 = C8H P4 = E8H P5 = 03H C7H P6 = C8H P7 = 28H P7 = XH P8 = 00H P8 = XH P9 = XH P10 = XH C= 40H P1 = 30H P2 = 87H P3 = 07H P4 = 27H P5 = 2FH P6 = (1/6) x 9 x [TC/R] x 200 = 1/70 [TC/R] = 48, so TC/R = 2FH 268-0.4 9.1.3 - 9.1.4 9.0 Application Notes CSR FORM OVLAY C= 5DH C= 5BH P1 = 04H P1 = 00H P2 = 86H DISP ON/OFF HDOT SCR C= 59H C= 5AH P1 = 16H P1 = 00H X = Don't care 9.1.4 Display Mode Setting Example 2: Combining Graphics and Graphics * Conditions * 320 x 200 pixels, single-panel drive (1/ 200 duty cycle) * First layer: graphics display * Second layer: graphics display * Display memory allocation * First layer (graphics): 320/8 = 40 characters per line, 200/1 = 200 lines. Required memory size = 40 x 200 = 8000 bytes. * Second layer (graphics): 320/8 = 40 characters per line, 200/1 = 200 lines. Required memory size = 8000 bytes. 1F40H 2nd graphics layer (8000 bytes) 0000H 1st graphics layer (8000 bytes) 3E7FH 1F3FH Figure 82. Two-layer graphics 268-0.4 129 9.0 Application Notes * Register setup procedure SYSTEM SET TC/R calculation 9.1.4 -9.1.5 CSR FORM C= 5DH P1 = 07H P2 = 87H C= 40H P1 = 30H fOSC = 6 MHz P2 = 87H fFR = 70 Hz P3 = 07H P4 = 27H P5 = 2FH P6 = C7H P7 = 28H OVLAY P8 = 00H C= 5BH P1 = 0CH HDOT SCR (1/6) x 9 x [TC/R] x 200 = 1/70 [TC/R] = 48, so TC/R = 2FH C= 5AH P1 = 00H SCROLL C= 44H DISP ON/OFF P1 = 00H C= 59H P2 = 00H P1 = 16H P3 = C8H P4 = 40H P5 = 1FH P6 = C8H P7 = XH P8 = XH P9 = XH P10 = XH X = Don't care 9.1.5 Display Mode Setting Example 3: Combining Three Graphics Layers * Conditions * 320 x 200 pixels, single-panel drive (1/ 200 duty cycle) * First layer: graphics display * Second layer: graphics display * Third layer: graphics display 130 * Display memory allocation * All layers (graphics): 320/8 = 40 characters per line, 200/1 = 200 lines. Required memory size = 40 x 200 = 8000 bytes. 268-0.4 9.1.5 9.0 Application Notes 3E80H 3rd graphics layer (8000 bytes) 1F40H 2nd graphics layer (8000 bytes) 0000H 1st graphics layer (8000 bytes) 5DBFH 3E7FH 1F3FH Figure 83. Three-layer graphics * Register setup procedure SYSTEM SET TC/R calculation SCROLL C= 44H fOSC = 6 MHz P1 = 00H fFR = 70 Hz P2 = 00H P3 = C8H P4 = 40H P5 = 1FH C7H P6 = C8H P7 = 28H P7 = 80H P8 = 00H P8 = 3EH P9 = XH P10 = XH C= 40H P1 = 30H P2 = 87H P3 = 07H P4 = 27H P5 = 2FH P6 = 268-0.4 (1/6) x 9 x [TC/R] x 200 = 1/70 [TC/R] = 48, so TC/R = 2FH 131 9.0 Application Notes 9.1.5 - 9.2 CSR FORM OVLAY C= 5DH C= 5BH P1 = 07H P1 = 1CH P2 = 87H DISP ON/OFF HDOT SCR C= 59H C= 5AH P1 = 16H P1 = 00H X = Don't care 9.2 System Overview Figure 84 shows the SED1330F/1335F/1336F in a typical system. The microprocessor issues instructions to the 1330F/SED1335F/1336F, and the SED1330F/1335F/1336F drives the LCD panel and may have up to 64Kbytes of display memory. Since all of the LCD control circuits are integrated onto the SED1330F/1335F/1336F, few external components are required to construct a complete medium-resolution liquid crystal display. SED1335F/1336F Microprocessor Character generator External character generator memory Display memory address bus Display memory Display address control Display memory data bus LCD unit Driver control Main memory Data bus Address bus Control bus Driver bus TV control* X driver Composite signal X driver X driver LCD panel Y driver TV * SED1336F only Figure 84. System block diagram 132 268-0.4 9.3 - 9.3.1 9.0 Application Notes 9.3 System Interconnection 9.3.1 SED1330F/1335F 10MHz crystal HC138 OSC1 OSC2 A0 A1 to A7 A0 Decoder CS IORQ Microprocessor D0 to D7 D0 to D7 RD WR RES SED1335F A B C Y7 Y6 to Y0 CS7 CS6 to CS0 VA12 A0 to A12 WE A0 to A12 WE A0 to A11 SRM2064 CS1 (RAM1) CS2 SRM2064 CS1 (RAM2) CS2 OE 2732 (CGROM) D0 to D7 OE D0 to D7 OE D0 to D7 CE VD0 to VD7 XECL XSCL LP WF YDIS YD YSCL RESET RD WR RES XD0 to XD3 VA13 to VA15 VCE VR/W VA0 to VA12 LAT DI INH FR YSCL SED1630F V3 V4 VREG SED1600F FR EI E0 SED1600F FR EI E0 SED1600F FR EI E1 E0 LP XSCL ECL DO to D3 V2 LP XSCL ECL DO to D3 V1 LP XSCL ECL DO to D3 POFF Power supply converter LCD V5 LCD UNIT Notes: 1. The recommended common drivers are the SED1743, SED1635. 2. The recommended segment drivers are the SED1742 and SED1606. Figure 85. System interconnection diagram 268-0.4 133 9.0 Application Notes 9.3.2 9.3.2 SED1336F 10MHz crystal HC138 OSC1 OSC2 A0 A1 to A7 A0 Decoder CS IORQ Microprocessor D0 to D7 D0 to D7 RD WR RES SED1336F RD WR RES XD0 to XD3 A B C Y7 Y6 to Y0 CS7 CS6 to CS0 VA12 A0 to A12 WE A0 to A12 WE A0 to A11 SRM2064 CS1 (RAM1) CS2 SRM2064 CS1 (RAM2) CS2 OE 2732 (CGROM) D0 to D7 OE D0 to D7 OE D0 to D7 CE VD0 to VD7 XSCL LP WF YDIS YD RESET VA13 to VA15 VCE VR/W VA0 to VA12 DI INH FR YSCL SED1600F FR EI E1 E0 LP XSCL ECL DO to D3 SED1600F FR EI E0 DO to D3 V3 V4 VREG SED1600F FR EI E0 LP XSCL V2 LP XSCL V1 DO to D3 SED1630F POFF Power supply converter LCD V5 LCD UNIT Notes: 1. The recommended common drivers are the SED1743, SED1635. 2. The recommended segment drivers are the SED1742 and SED1606. Figure 86. System interconnection diagram The SED1330F/1335F/1336F's layered screens and flexible scrolling facilities support a range of display functions and reduces the load on the controlling microprocessor when displaying underlining, inverse display, text overlaid on graphics or simple animation. * Character code table * Contains character codes for text display * Each character requires 8 bits * Table mapping can be changed by using the scroll start function These facilities are supported by the SED1330F/ 1335F/1336F's ability to divide display memory into up to four different areas. 134 268-0.4 9.3.2 - 9.4 * Graphics data table * Contains graphics bitmaps * Word length is 8 bits * Table mapping can be changed * CG RAM table * Character generator memory can be modified by the external microprocessor * Character sizes up to 8 x 16 pixels (16 bytes per character) * Maximum of 64 characters * Table mapping can be changed * CG ROM table * Used when the internal character generator is not adequate * Can be used in conjunction with the internal character generator and external character generator RAM * Character sizes up to 8 x 16-pixels (16 bytes per character) * Maximum of 256 characters * Fixed mapping at F000H to FFFFH 268-0.4 9.0 Application Notes 9.4 Smooth Horizontal Scrolling Figure 87 illustrates smooth display scrolling to the left. When scrolling left, the screen is effectively moving to the right, over the larger virtual screen. Instead of changing the display start address SAD and shifting the display by eight pixels, smooth scrolling is achieved by repeatedly changing the pixel-shift parameter of the HDOT SCR command. When the display has been scrolled seven pixels, the HDOT SCR pixel-shift parameter is reset to zero and SAD incremented by one. Repeating this operation at a suitable rate gives the appearance of smooth scrolling. To scroll the display to the right, the reverse procedure is followed. When the edge of the virtual screen is reached, the microprocessor must take appropriate steps so that the display is not corrupted. The scroll must be stopped or the display modified. Note that the HDOT SCR command cannot be used to scroll individual layers. 135 9.0 Application Notes HDOT SCR parameter 9.4 SAD SAD + 1 P1 = 00H SAD + 2 Magnified AP P1 = 01H SAD = SAD P1 = 02H Display C/R P1 = 03H Virtual screen P1 = 07H P1 = 00H SAD = SAD + 1 Not visible Visible Note: The response time of LCD panels changes considerably at low temperatures. Smooth scrolling under these conditions may make the display difficult to read. Figure 87. HDOT SCR example 136 268-0.4 9.5 - 9.5.2.1 9.0 Application Notes 9.5 Layered Display Attributes SED1330F/1335F/1336F incorporates a number of functions for enhanced displays using monochrome LCD panels. It allows the display of inverse characters, half-intensity menu pads and flashing of selected screen areas. These functions are controlled by the OVLAY and DISP ON/OFF commands. Attribute MX1 MX0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 Half-tone Ruled line Combined layer display 1st layer display 2ndt layer display 1 Reverse Local flashing A number of means can be used to achieve these effects, depending on the display configuration. These are listed below. Note, however, that not all of these can be used in the one layer at the same time. IV EPSON IV EPSON ME Yes, No ME Yes, No BL Error BL RL LINE RL LINE Error LINE LINE Figure 88. Layer synthesis 9.5.1 Inverse Display 9.5.2 Half-tone Display The first layer is text, the second layer is graphics. The FP parameter can be used to generate halfintensity display by flashing the display at 17 Hz. Note that this mode of operation may cause flicker problems with certain LCD panels. 1. CSRW, CSDIR, MWRITE Write 1s into the graphics screen at the area to be inverted. 2. OVLAY: MX0 = 1, MX1 = 0 Set the combination of the two Exclusive-OR. layers to 3. DISP ON/OFF: FP0 = FP1 = 1, FP1 = FP3 = 0. Turn on layers 1 and 2. 9.5.2.1 Menu Pad Display Turn flashing off for the first layer, on at 17 Hz for the second layer, and combine the screens using the OR function. 1. OVLAY: P1 = 00H 2. DISP ON/OFF: P1 = 34H 268-0.4 137 9.0 Application Notes 9.5.2.1 - 9.5.3.2 SAD1 SAD2 Half-tone AB AB + 1st layer 2nd layer Combined layer display Figure 89. Half-tone character and graphics 9.5.2.2 Graph Display 9.5.3 Flashing Areas To present two overlaid graphs on the screen, configure the display as for the menu bar display and put one graph on each screen layer. The difference in contrast between the half- and full-intensity displays will make it easy to distinguish between the two graphs and help create an attractive display. 9.5.3.1 Small Area 1. OVLAY: P1 = 00H 2. DISP ON/OFF: P1 = 34H To flash selected characters, the MPU can alternately write the characters as character codes and blank characters at intervals of 0.5 to 1.0 seconds. 9.5.3.2 Large Area Divide both layer 1 and layer 2 into two screen blocks each, layer 2 being divided into the area to be flashed and the remainder of the screen. Flash the layer 2 screen block at 2 Hz for the area to be flashed and combine the layers using the OR function. ABC ABC XYZ XYZ Figure 90. Localized flashing 138 S-MOS Systems, Inc. * 2460 North First Street * San Jose, CA 95131 * Tel: (408) 922-0200 * Fax: (408) 922-0238 268-0.4 9.6 - 9.6.2 9.0 Application Notes 9.6 16 x 16-dot Graphic Display 9.6.1 Command Usage 9.6.2 Kanji Character Display This example shows how to display 16 x 16-pixel characters. The command sequence is as follows: The program for writing large characters operates as follows: CSRW Set the cursor address. CSRDIR Set the cursor auto-increment direction. MWRITE Write to the display memory. 1. The microprocessor reads the character data from its ROM. 2. The microprocessor sets the display address and writes to the VRAM. The flowchart is shown in Figure 91. A0 = 0 A0 = 1 O8 O7 O6 O5 O4 O3 O2 O1 O8 O7 O6 O5 O4 O3 O2 O1 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH EH FH (1) (3) (5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27) (29) (31) (2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24) (26) (28) (30) (32) 1st column 2nd column CG ROM output (n) shows the CG ROM data readout order (Kanji ROM pattern) Scan address A1 to A4 (6) (4) (2) (19) (17) (15) (13) (11) (9) (7) (5) (3) (1) Data held in the microprocessor memory 2nd column memory area (4) (2) 1st column memory area (3) (1) Data written into the SED1330 display memory Figure 91. Graphics address indexing 268-0.4 139 9.0 Application Notes 9.6 - 9.6.2 320 dots Direction of cursor movement (2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24) (26) (28) (30) (32) (1) (3) (5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27) (29) (31) 240 dots Figure 92. Graphics bit map Start Enable cursor downwards movement Set column 1 cursor address Using an external character generator ROM, and 8 x 16-pixel font can be used, allowing a 16 x 16-pixel character to be displayed in two segments. The external CG ROM EPROM data format is described in Section 5.1. This will allow the display of up to 128, 16 x 16-pixel characters. If CG RAM is also used, 96 fixed characters and 32 bank-switchable characters can also be supported. Write data Set column 2 cursor address Write data End Figure 93. 16 x 16-dot display flowchart 140 268-0.4 10.0 Internal Character Generator Font 268-0.4 141 THIS PAGE INTENTIONALLY BLANK 142 268-0.4 10.0 10.0 Internal Character Generator Font 10.0 Internal Character Generator Font 0 1 2 3 4 Character code bits 0 to 3 5 6 7 8 9 A B C D E F 2 3 Character code bits 4 to 7 4 5 6 7 A B C D 1 Figure 94. On-chip character set Note: The shaded positions indicate characters that have the whole 6 x 8 bitmap blackened. 268-0.4 143 THIS PAGE INTENTIONALLY BLANK 144 268-0.4 11.0 Glossary of Terms 268-0.4 145 THIS PAGE INTENTIONALLY BLANK 146 268-0.4 11.0 11.0 Glossary of Terms 11.0 Glossary of Terms A Address AP Address pitch parameter C Character display mode CD Cursor direction of movement parameter CG Character generator CGRAM ADR Character generator memory address CM Cursor display shape parameter C/R Characters per row parameter CRX Horizontal cursor size parameter CRY Vertical cursor size parameter CSR DIR Cursor direction of movement instruction CSR FORM Cursor size, position and type instruction CSRR Read cursor address register instruction CSRW Write cursor address register instruction DM Display mode parameter FC Flashing cursor parameter fFR Frame frequency fOSC Oscillator frequency FP Screen flashing parameter FX Horizontal character size parameter FY Vertical character size parameter G Graphics display mode GLC Graphic line control unit HDOT SCR Horizontal scrolling by pixels instruction IV Screen origin compensation for inverse display L/F Lines per frame instruction 268-0.4 147 11.0 Glossary of Terms 11.0 MREAD Display memory read instruction MWRITE Display memory write instruction MX Screen composition mode OV Graphics layer select parameter OVLAY Screen layer mode instruction P Parameter R Row RAM Random access memory ROM Read only memory SAD Display scrolling start address parameter SL Display scrolling length parameter TC/R Length, including horizontal blanking, of one screen line VRAM Display memory WF Display drive waveform parameter W/S Windows per screen parameter S-MOS assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice from S-MOS. September 1995 148 (c) Copyright 1995 S-MOS Systems, Inc. Printed in U.S.A. 268-0.4 268-0.4