10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer HMC554ACHIPS Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM Conversion loss of up to 8.5 dB (typical) LO to RF Isolation: 38 dB (typical) Input IP3 of up to 20 dBm (typical) RoHS compliant, 7-pad, bare die CHIP HMC554ACHIPS LO RF GND GND Microwave and very small aperture terminal (VSAT) radios Test equipment Military electronic warfare (EW), electronic countermeasure (ECM), and command, control, communications and intelligence (C3I) GND IF GND 22421-001 APPLICATIONS Figure 1. GENERAL DESCRIPTION The HMC554ACHIPS is a general-purpose, double-balanced mixer that can be used as an upconverter or a downconverter between 10 GHz and 20 GHz. This mixer is fabricated in a gallium arsenide (GaAs), metal semiconductor field effect transistor (MESFET) process and requires no external Rev. 0 components or matching circuitry. The HMC554ACHIPS optimized balun structures provide high local oscillator (LO) to RF isolation and LO to intermediate frequency (IF) isolation, 38 dB and 52 dB, respectively. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 (c)2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC554ACHIPS Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Isolation and Return Loss ......................................................... 19 Applications ....................................................................................... 1 IF Bandwidth--Downconverter ............................................... 21 Functional Block Diagram .............................................................. 1 Spurious and Harmonics Performance ................................... 23 General Description ......................................................................... 1 Theory of Operation ...................................................................... 24 Revision History ............................................................................... 2 Applications Information .............................................................. 25 Specifications..................................................................................... 3 Typical Application Circuit ....................................................... 25 Absolute Maximum Ratings............................................................ 4 Mounting and Bonding Techniques ........................................ 26 ESD Caution .................................................................................. 4 Handling Precautions ................................................................ 26 Pin Configuration and Function Descriptions ............................. 5 Mounting ..................................................................................... 26 Interface Schematics..................................................................... 5 Wire Bonding.............................................................................. 26 Typical Performance Characteristics ............................................. 6 Assembly Diagram ..................................................................... 27 Downconverter Performance, IF = 100 MHz ........................... 6 Outline Dimensions ....................................................................... 28 Downconverter Performance, IF = 3000 MHz .......................... 10 Ordering Guide .......................................................................... 28 Upconverter Performance, IF = 100 MHz .............................. 13 Upconverter Performance, IF = 3000 MHz ............................ 16 REVISION HISTORY 10/2019--Revision 0: Initial Version Rev. 0 | Page 2 of 28 Data Sheet HMC554ACHIPS SPECIFICATIONS TA = 25C, IF = 100 MHz, and LO = 13 dBm for upper sideband. All measurements were performed as a downconverter, unless otherwise noted, on the evaluation printed circuit board (PCB). Table 1. Parameter FREQUENCY RF Pad IF Pad LO Pad LO AMPLITUDE 10 GHz to 20 GHz PERFORMANCE Downconverter Conversion Loss Single Sideband Noise Figure Input Third-Order Intercept (IP3) Input 1 dB Compression Point (P1dB) Input Second-Order Intercept (IP2) Upconverter Conversion Loss Input IP3 Input P1dB Isolation RF to IF LO to RF LO to IF 12 GHz to 16 GHz PERFORMANCE Downconverter Conversion Loss Single Sideband Noise Figure Input IP3 Input P1dB Input IP2 Upconverter Conversion Loss Input IP3 Input P1dB Isolation RF to IF LO to RF LO to IF Test Conditions/Comments Min 10 DC 10 9 Measurement taken with external LO amplifier 1 MHz separation between inputs 17 1 MHz separation between inputs Unit 13 20 6 20 15 GHz GHz GHz dBm 10 dB dB dBm dBm dBm 8.5 8.5 20 12 57 dB dBm dBm 28 30 32 40 38 52 dB dB dB 18 8 8 20 11 57 1 MHz separation between inputs 1 MHz separation between inputs 38 33 45 Rev. 0 | Page 3 of 28 Max 7.5 19 8.5 1 MHz separation between inputs Measurement taken with external LO amplifier 1 MHz separation between inputs Typ 9 dB dB dBm dBm dBm 7 18.5 9 dB dBm dBm 43 38 62 dB dB dB HMC554ACHIPS Data Sheet ABSOLUTE MAXIMUM RATINGS Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Table 2. Parameter RF Input Power LO Input Power IF Input Power IF Source/Sink Current Reflow Temperature Junction Temperature Continuous Power Dissipation (PDISS) (TA = 85C, Derate 3.7 mW/C Above 85C) Operating Temperature Range Storage Temperature Range Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM) Field Induced Charged Device Model (FICDM) Rating 25 dBm 26 dBm 25 dBm 3 mA 260 C 175C 333 mW ESD CAUTION -40C to +85C -65C to +150C 250 V, Class 1A 1250 V, Class IV Rev. 0 | Page 4 of 28 Data Sheet HMC554ACHIPS PIN CONFIGURATION AND FUNCTION DESCRIPTIONS LO 2 3 RF 4 GND HMC554ACHIPS GND 1 7 6 5 GND IF GND 22421-002 TOP VIEW (Not to Scale) Figure 2. Pad Configuration Table 3. Pad Function Descriptions Pad No. 1, 4, 5, 7 2 3 6 Mnemonic GND LO RF IF Die Bottom GND Description Ground. These pads must be connected to RF and dc ground. LO Port. This pad is ac-coupled and matched to 50 . RF Port. This pad is ac-coupled and matched to 50 . IF Port. This pad is dc-coupled. For applications not requiring operation to dc, dc block this port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, this pad must not source or sink more than 3 mA of current because die malfunction and possible die failure may result. Ground. The die bottom must be attached directly to the ground plane eutectically or with conductive epoxy. INTERFACE SCHEMATICS GND 22421-005 22421-003 IF Figure 5. IF Interface Schematic Figure 3. GND Interface Schematic RF 22421-004 22421-006 LO Figure 6. RF Interface Schematic Figure 4. LO Interface Schematic Rev. 0 | Page 5 of 28 HMC554ACHIPS Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER PERFORMANCE, IF = 100 MHz Upper Sideband (Low-Side LO) 0 0 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm -10 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 10 25 INPUT IP3 (dBm) 15 10 14 15 16 17 18 19 20 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 20 15 10 12 13 14 15 16 17 18 19 20 0 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 8. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 22421-011 11 22421-008 10 RF FREQUENCY (GHz) Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm TA = -40C TA = +25C TA = +85C 15 NOISE FIGURE (dB) 15 10 5 10 5 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-009 NOISE FIGURE (dB) 13 5 5 0 12 Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 20 11 RF FREQUENCY (GHz) TA = -40C TA = +25C TA = +85C 25 INPUT IP3 (dBm) -15 -20 30 0 -10 10 11 12 13 14 15 16 RF FREQUENCY (GHz) Figure 9. Noise Figure vs. RF Frequency at Various Temperatures, LO = 13 dBm, Measurement Taken with External LO Amplifier 17 18 19 20 22421-012 -20 -5 22421-010 CONVERSION GAIN (dB) -5 22421-007 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C Figure 12. Noise Figure vs. RF Frequency at Various LO Power Levels, TA = 25C, Measurement Taken with External LO Amplifier Rev. 0 | Page 6 of 28 Data Sheet HMC554ACHIPS 20 20 TA = -40C TA = +25C TA = +85C 10 12 13 14 15 16 17 18 19 20 0 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 13. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 15. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C 80 80 TA = -40C TA = +25C TA = +85C 70 70 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 60 50 40 30 50 40 30 20 20 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-014 10 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 16. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Figure 14. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm Rev. 0 | Page 7 of 28 22421-016 INPUT IP2 (dBm) 60 INPUT IP2 (dBm) 10 22421-015 11 22421-013 10 RF FREQUENCY (GHz) 0 11 10 5 5 0 = 9dBm = 11dBm = 13dBm = 15dBm 15 INPUT P1dB (dBm) INPUT P1dB (dBm) 15 LO LO LO LO HMC554ACHIPS Data Sheet Lower Sideband (High-Side LO) 0 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm CONVERSION GAIN (dB) -5 -10 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) -15 10 30 25 INPUT IP3 (dBm) 20 15 10 14 15 16 17 18 19 20 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 20 15 10 5 11 12 13 14 15 16 17 18 19 20 0 22421-018 10 RF FREQUENCY (GHz) 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 18. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 21. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 TA = -40C TA = +25C TA = +85C LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 15 NOISE FIGURE (dB) 15 10 10 5 5 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-019 NOISE FIGURE (dB) 13 22421-021 5 0 12 Figure 20. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C TA = -40C TA = +25C TA = +85C 25 11 RF FREQUENCY (GHz) 30 INPUT IP3 (dBm) -10 -20 Figure 17. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 -5 10 13 14 15 16 RF FREQUENCY (GHz) 17 18 19 20 22421-022 -20 22421-017 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C 22421-020 0 Figure 22. Noise Figure vs. RF Frequency at Various LO Power Levels, TA = 25C, Measurement Taken with External LO Amplifier Figure 19. Noise Figure vs. RF Frequency at Various Temperatures, LO = 13 dBm, Measurement Taken with External LO Amplifier Rev. 0 | Page 8 of 28 Data Sheet HMC554ACHIPS 80 80 TA = -40C TA = +25C TA = +85C 70 70 40 30 11 12 50 40 30 20 20 10 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 23. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 24. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 9 of 28 22421-024 INPUT IP2 (dBm) 50 0 = 9dBm = 11dBm = 13dBm = 15dBm 60 22421-023 INPUT IP2 (dBm) 60 LO LO LO LO HMC554ACHIPS Data Sheet DOWNCONVERTER PERFORMANCE, IF = 3000 MHz Upper Sideband (Low-Side LO) 0 0 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 20 20 INPUT IP3 (dBm) 25 0 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 15 16 17 18 19 20 10 0 LO LO LO LO 10 11 = 9dBm = 11dBm = 13dBm = 15dBm 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 26. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 29. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 TA = -40C TA = +25C TA = +85C 15 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm INPUT P1dB (dBm) 15 10 5 10 5 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-027 0 14 15 5 TA = -40C TA = +25C TA = +85C 10 13 Figure 28. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 25 10 10 RF FREQUENCY (GHz) 30 5 INPUT P1dB (dBm) -15 30 15 12 -10 -20 22421-026 INPUT IP3 (dBm) Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 11 -5 Figure 27. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 30. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 10 of 28 22421-030 -20 = 9dBm = 11dBm = 13dBm = 15dBm 22421-029 -10 LO LO LO LO 22421-028 CONVERSION GAIN (dB) -5 22421-025 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C Data Sheet HMC554ACHIPS 80 80 TA = -40C TA = +25C TA = +85C 70 70 40 30 11 12 50 40 30 20 20 10 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 31. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 32. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 11 of 28 22421-032 INPUT IP2 (dBm) 50 0 = 9dBm = 11dBm = 13dBm = 15dBm 60 22421-031 INPUT IP2 (dBm) 60 LO LO LO LO HMC554ACHIPS Data Sheet Lower Sideband (High-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 30 25 20 15 10 11 12 13 14 15 16 17 18 19 20 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 20 15 10 5 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-034 10 10 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 34. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 37. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 80 80 TA = -40C TA = +25C TA = +85C 70 13 22421-037 5 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm 70 60 INPUT IP2 (dBm) 60 50 40 30 50 40 30 20 10 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-035 20 0 10 Figure 36. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C INPUT IP3 (dBm) INPUT IP3 (dBm) -15 RF FREQUENCY (GHz) TA = -40C TA = +25C TA = +85C 25 INPUT IP2 (dBm) -10 -20 30 0 -5 Figure 35. Input IP2 vs. RF Frequency at Various LO Power Levels, LO = 13 dBm 0 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 38. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 12 of 28 22421-038 -20 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm 22421-036 TA = -40C TA = +25C TA = +85C 22421-033 CONVERSION GAIN (dB) 0 Data Sheet HMC554ACHIPS UPCONVERTER PERFORMANCE, IF = 100 MHz Upper Sideband (Low-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 39. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 13 14 15 16 17 25 INPUT IP3 (dBm) 10 18 19 20 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 18 19 20 15 10 5 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-040 10 10 11 12 13 14 15 16 17 20 RF FREQUENCY (GHz) Figure 40. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 22421-043 INPUT IP3 (dBm) 10 Figure 42. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 5 Figure 43. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 TA = -40C TA = +25C TA = +85C LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm 15 INPUT P1dB (dBm) 15 10 5 10 5 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-041 INPUT P1dB (dBm) 12 -15 30 15 0 11 -10 RF FREQUENCY (GHz) TA = -40C TA = +25C TA = +85C 20 0 = 9dBm = 11dBm = 13dBm = 15dBm -5 -20 30 25 LO LO LO LO Figure 41. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 44. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 13 of 28 22421-044 -20 22421-039 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C 22421-042 0 Data Sheet 80 70 70 60 60 INPUT IP2 (dBm) 80 50 40 30 TA = -40C TA = +25C TA = +85C = 9dBm = 11dBm = 13dBm = 15dBm 50 40 30 10 11 12 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 45. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 46. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 14 of 28 22421-046 10 0 LO LO LO LO 20 20 22421-045 INPUT IP2 (dBm) HMC554ACHIPS Data Sheet HMC554ACHIPS Lower Sideband (High-Side LO) 0 0 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm -10 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 12 13 14 15 16 17 10 19 20 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm 25 15 18 Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C INPUT IP3 (dBm) 20 15 10 5 5 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-048 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-051 INPUT IP3 (dBm) 11 30 20 Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C Figure 48. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 80 80 TA = -40C TA = +25C TA = +85C 70 70 60 INPUT IP2 (dBm) 60 50 40 30 50 40 30 20 10 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-049 20 0 10 RF FREQUENCY (GHz) TA = -40C TA = +25C TA = +85C 25 INPUT IP2 (dBm) -15 -20 30 0 -10 0 10 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 52. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Figure 49. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm Rev. 0 | Page 15 of 28 22421-052 -20 -5 22421-050 CONVERSION GAIN (dB) -5 22421-047 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C HMC554ACHIPS Data Sheet UPCONVERTER PERFORMANCE, IF = 3000 MHz Upper Sideband (Low-Side LO) 0 0 LO LO LO LO -10 -15 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 53. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 30 25 20 INPUT IP3 (dBm) 15 10 11 12 13 14 15 16 17 18 19 20 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 20 15 10 5 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-054 10 10 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 54. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 22421-057 INPUT IP3 (dBm) 10 Figure 56. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 5 Figure 57. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 TA = -40C TA = +25C TA = +85C LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm 15 INPUT P1dB (dBm) 15 10 5 10 5 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-055 INPUT P1dB (dBm) -15 RF FREQUENCY (GHz) TA = -40C TA = +25C TA = +85C 25 0 -10 -20 30 0 -5 Figure 55. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 11 12 13 14 15 16 RF FREQUENCY (GHz) 17 18 19 20 22421-058 -20 = 9dBm = 11dBm = 13dBm = 15dBm 22421-056 CONVERSION GAIN (dB) -5 22421-053 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C Figure 58. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 16 of 28 Data Sheet HMC554ACHIPS 80 80 TA = -40C TA = +25C TA = +85C 70 50 40 30 50 40 30 20 20 10 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 59. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 60. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 17 of 28 22421-060 INPUT IP2 (dBm) 60 22421-059 INPUT IP2 (dBm) 60 0 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm 70 HMC554ACHIPS Data Sheet Lower Sideband (High-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 61. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 30 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 16 17 18 19 20 10 LO LO LO LO 10 11 = 9dBm = 11dBm = 13dBm = 15dBm 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 62. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 65. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 80 80 TA = -40C TA = +25C TA = +85C 70 15 15 0 22421-062 12 14 20 5 11 13 Figure 64. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C INPUT IP3 (dBm) INPUT IP3 (dBm) 10 LO LO LO LO 70 60 = 9dBm = 11dBm = 13dBm = 15dBm INPUT IP2 (dBm) 60 50 40 30 50 40 30 20 10 10 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 22421-063 20 0 10 RF FREQUENCY (GHz) 5 INPUT IP2 (dBm) -15 25 15 10 12 -10 30 20 0 11 -5 -20 TA = -40C TA = +25C TA = +85C 25 = 9dBm = 11dBm = 13dBm = 15dBm 22421-065 10 LO LO LO LO Figure 63. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 10 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) Figure 66. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 18 of 28 22421-066 -20 22421-061 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C 22421-064 0 Data Sheet HMC554ACHIPS ISOLATION AND RETURN LOSS 60 60 TA = -40C TA = +25C TA = +85C 50 LO TO RF ISOLATION (dB) 40 30 20 12 13 14 15 16 17 18 19 20 Figure 67. LO to RF Isolation vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 80 LO TO IF ISOLATION (dB) 13 14 15 16 17 18 19 20 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 11 12 60 40 20 20 11 12 13 14 15 16 17 18 19 20 RF FREQUENCY (GHz) 0 22421-068 10 Figure 68. LO to IF Isolation vs. RF Frequency at Various Temperatures, LO = 13 dBm 10 13 14 15 16 17 60 TA = -40C TA = +25C TA = +85C RF TO IF ISOLATION (dB) 50 40 30 20 19 20 Figure 71. LO to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25C 60 50 18 RF FREQUENCY (GHz) 22421-071 LO TO IF ISOLATION (dB) 40 12 Figure 70. LO to RF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25C TA = -40C TA = +25C TA = +85C 60 11 RF FREQUENCY (GHz) 80 RF TO IF ISOLATION (dB) 10 100 100 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 18 19 40 30 20 10 10 10 11 12 13 14 15 16 RF FREQUENCY (GHz) 17 18 19 20 0 22421-069 0 20 22421-070 11 22421-067 10 RF FREQUENCY (GHz) 0 30 10 10 0 40 Figure 69. RF to IF Isolation vs. RF Frequency at Various Temperatures, LO = 13 dBm 10 11 12 13 14 15 16 RF FREQUENCY (GHz) 17 20 22421-072 LO TO RF ISOLATION (dB) 50 LO = 9dBm LO = 11dBm LO = 13dBm LO = 15dBm Figure 72. RF to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 19 of 28 Data Sheet 0 0 -5 -5 IF RETURN LOSS (dB) -10 -15 -20 -25 10 11 12 13 14 15 16 17 18 19 20 LO FREQUENCY (GHz) Figure 73. LO Return Loss vs. LO Frequency at LO = 13 dBm, TA = 25C -5 RF RETURN LOSS (dB) -10 -15 -20 -30 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 18 19 -15 -20 12 13 14 15 16 RF FREQUENCY (GHz) 17 20 22421-074 -25 11 1 2 3 4 5 6 Figure 75. IF Return Loss vs. IF Frequency at Various LO Power Levels, TA = 25C, LO = 15 GHz -10 10 0 IF FREQUENCY (GHz) 0 -30 = 9dBm = 11dBm = 13dBm = 15dBm -25 22421-073 -30 LO LO LO LO 22421-075 LO RETURN LOSS (dB) HMC554ACHIPS Figure 74. RF Return Loss vs. RF Frequency at Various LO Power Levels, TA = 25C, LO = 15 GHz Rev. 0 | Page 20 of 28 Data Sheet HMC554ACHIPS IF BANDWIDTH--DOWNCONVERTER Upper Sideband, LO Frequency = 12 GHz 0 CONVERSION GAIN (dB) -5 -10 -15 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 IF FREQUENCY (GHz) Figure 76. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 13 dBm -15 30 25 INPUT IP3 (dBm) 15 10 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Figure 78. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25C 5 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 20 15 10 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 IF FREQUENCY (GHz) 22421-077 INPUT IP3 (dBm) -10 IF FREQUENCY (GHz) TA = -40C TA = +25C TA = +85C 20 0 0.5 -5 -20 0.5 30 25 = 9dBm = 11dBm = 13dBm = 15dBm Figure 77. Input IP3 vs. IF Frequency at Various Temperatures, LO = 13 dBm 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 IF FREQUENCY (GHz) Figure 79. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 21 of 28 22421-079 -20 LO LO LO LO 22421-078 TA = -40C TA = +25C TA = +85C 22421-076 CONVERSION GAIN (dB) 0 HMC554ACHIPS Data Sheet Lower Sideband, LO Frequency = 19 GHz 0 LO LO LO LO CONVERSION GAIN (dB) -5 -10 -15 -20 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 IF FREQUENCY (GHz) Figure 80. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 13 dBm 30 TA = -40C TA = +25C TA = +85C 25 INPUT IP3 (dBm) 15 10 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 LO LO LO LO = 9dBm = 11dBm = 13dBm = 15dBm 20 15 10 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 IF FREQUENCY (GHz) Figure 81. Input IP3 vs. IF Frequency at Various Temperatures, LO = 13 dBm 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 IF FREQUENCY (GHz) Figure 83. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 22 of 28 22421-083 5 22421-081 INPUT IP3 (dBm) -15 Figure 82. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25C 20 0 -10 IF FREQUENCY (GHz) 30 25 = 9dBm = 11dBm = 13dBm = 15dBm -5 -20 0.5 22421-080 CONVERSION GAIN (dB) TA = -40C TA = +25C TA = +85C 22421-082 0 Data Sheet HMC554ACHIPS SPURIOUS AND HARMONICS PERFORMANCE Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable. LO Harmonics M x N Spurious Outputs Downconverter, Upper Sideband Spur values are (M x RF) - (N x LO). RF = 15.1 GHz at -10 dBm, and LO = 15 GHz at +13 dBm. LO = 13 dBm, all values in dBc are below the input LO level and are measured at the RF port. Table 4. LO Harmonics at RF LO Frequency (GHz) 12 13 15 16 18 19 21 N x LO Spur at RF Port 2 3 4 36 68 48 44 53 N/A 43 48 N/A 50 47 N/A 55 N/A N/A 45 N/A N/A 41 N/A N/A 1 34 35 32 32 30 32 33 M x RF 0 N/A 33 72 60 N/A N/A 0 1 2 3 4 5 5 N/A N/A 62 71 78 >90 Spur values are (M x IF) + (N x LO). IF = 100 MHz at -10 dBm, and LO = 15 GHz at +13 dBm. Table 5. LO Harmonics at IF 1 55 58 50 46 31 37 45 4 N/A 52 73 83 >90 81 Upconverter, Upper Sideband -5 -4 0 >90 >90 N x LO 1 2 89 77 83 77 -3 79 52 67 53 -2 -1 87 33 67 0 65 30 50 12 0 N/A 14 20 24 +1 33 0 30 11 +2 85 55 66 48 +3 78 52 67 50 +4 >90 86 79 64 +5 >90 87 76 63 LO = 13 dBm, all values in dBc are below the input LO level and are measured at the IF port. LO Frequency (GHz) 12 13 15 16 18 19 21 1 24 0 81 73 62 N/A N x LO 2 3 36 23 54 57 60 81 83 72 71 81 61 74 N x LO Spur at IF Port 2 3 4 64 57 76 61 55 N/A 63 51 N/A 67 50 N/A 62 N/A N/A 58 N/A N/A 56 N/A N/A M x IF Rev. 0 | Page 23 of 28 3 67 68 HMC554ACHIPS Data Sheet THEORY OF OPERATION The HMC554ACHIPS is a general-purpose, double balanced mixer that can be used as an upconverter or a downconverter from 10 GHz to 20 GHz. When used as an upconverter, the mixer upconverts IF between dc and 6 GHz to RF between 10 GHz and 20 GHz. When used as a downconverter, the HMC554ACHIPS downconverts RF between 10 GHz and 20 GHz to IF between dc and 6 GHz. Rev. 0 | Page 24 of 28 Data Sheet HMC554ACHIPS APPLICATIONS INFORMATION TYPICAL APPLICATION CIRCUIT HMC554ACHIPS LO RF LO RF GND GND GND IF GND DIE BOTTOM IF Figure 84. Typical Application Circuit Rev. 0 | Page 25 of 28 22421-090 Figure 84 shows the typical application circuit for the HMC554ACHIPS. The HMC554ACHIPS is a passive device that does not require any external components. The IF pad is internally dc-coupled, and the RF and LO pads are internally ac-coupled. When IF operation to dc is not required, it is recommended to use an external series capacitor of a value chosen to pass the necessary IF frequency range. When IF operation to dc is required, do not exceed the IF source and sink current rating specified in the Absolute Maximum Ratings section. HMC554ACHIPS Data Sheet MOUNTING AND BONDING TECHNIQUES Attach the die directly to the ground plane eutectically or with conductive epoxy. To bring RF to and from the chip, 50 microstrip transmission lines on 0.127 mm (0.005") thick, alumina thin film substrates are recommended (see Figure 85). If using 0.254 mm (0.010") thick, alumina thin film substrates, raise the die 0.150 mm (0.006") so that the surface of the die is coplanar with the surface of the substrate. A way to accomplish this is to attach the 0.102 mm (0.004") thick die to a 0.150 mm (0.006") thick molybdenum heat spreader (moly tab) which is then attached to the ground plane (see Figure 86). Place microstrip substrates as close to the die as possible to minimize bond wire length. Typical die to substrate spacing is 0.076 mm (0.003"). Cleanliness Handle the chips in a clean environment. Do not attempt to clean the chips using liquid cleaning systems. Static Sensitivity Follow ESD precautions to protect against ESD strikes. Transients Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pickup. General Handling Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and must not be touched with a vacuum collet, tweezers, or fingers. 0.102mm (0.004") THICK GaAs MMIC WIRE BOND 0.076mm (0.003") MOUNTING The chip is back metallized and can be die mounted either with gold (Au)/tin (Sn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat. RF GROUND PLANE Eutectic Die Attach 22421-091 0.127mm (0.005") THICK ALUMINA THIN FILM SUBSTRATE An 80/20 gold and tin preform is recommended with a work surface temperature of 255C and a tool temperature of 265C. When hot 90/10 nitrogen (N)/hydrogen (H) gas is applied, the tool tip temperature must be 290C. Do not expose the chip to a temperature greater than 320C for more than 20 seconds. No more than 3 seconds of scrubbing is required for attachment. Figure 85. Bonding RF Pads to 0.127 mm Substrate 0.102mm (0.004") THICK GaAs MMIC WIRE BOND 0.076mm (0.003") Epoxy Die Attach Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip when the chip is placed into position. Cure epoxy per the schedule of the manufacturer. 0.150mm (0.006") THICK MOLY TAB 0.254mm (0.010") THICK ALUMINA THIN FILM SUBSTRATE 22421-092 RF GROUND PLANE WIRE BONDING Figure 86. Bonding RF Pads to 0.254 mm Substrate HANDLING PRECAUTIONS Follow the precautions in the Storage section, the Cleanliness section, the Static Sensitivity section, the Transients section, and the General Handling section to avoid permanent damage to the HMC554ACHIPS. Storage All bare dice are placed in either waffle-based or gel-based, ESD protective containers and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag is open, store all dies in a dry nitrogen environment. Ball or wedge bond with 0.025 mm (0.00098") diameter, pure gold wire is recommended. Thermosonic wire bonding with a nominal stage temperature of 150C, and either a ball bonding force of 40 grams to 50 grams or a wedge bonding force of 18 grams to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wire bonds. Wire bonds must start on the chip and terminate on the package or substrate. All bonds must be as short as possible at <0.31 mm (0.01220"). Rev. 0 | Page 26 of 28 Data Sheet HMC554ACHIPS ASSEMBLY DIAGRAM The assembly diagram of the HMC554ACHIPS is shown in Figure 87. 50 TRANSMISSION LINE 0.003mm NOMINAL GAP 22421-093 0.025mm GOLD WIRE Figure 87. Evaluation PCB Top Layer Rev. 0 | Page 27 of 28 HMC554ACHIPS Data Sheet OUTLINE DIMENSIONS 1.004 0.148 0.161 0.088 x 0.220 0.102 (Pads 2 and 3) 0.099 2 3 0.580 0.210 0.210 0.080 x 0.100 1 4 0.098 0.185 7 6 5 0.080 TOP VIEW SIDE VIEW (CIRCUIT SIDE) 09-19-2019-A 0.088 x 0.100 (Pads 1, 4, 5 and 7) *AIR BRIDGE AREA 0.084 0.194 0.160 0.160 0.322 *This die utilizes fragile air bridges. Any pickup tools used must not contact this area. Figure 88. 7-Pad Bare Die [CHIP] (C-7-11) Dimensions shown in millimeters ORDERING GUIDE Model1 HMC554A HMC554A-SX 1 Temperature Range -40C to +85C -40C to +85C Package Description 7-Pad Bare Die [CHIP] 7-Pad Bare Die [CHIP] The HMC554A and HMC554A-SX are RoHS compliant parts. (c)2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D22421-0-10/19(0) Rev. 0 | Page 28 of 28 Package Option C-7-11 C-7-11