MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Features
Aptina Confidential and Proprietary
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 1©2008 Aptina Imaging Corporation All rights reserved.
1/3-Inch Wide-VGA CMOS Digital Image Sensor
MT9V034 Data Sheet
For the latest data sheet revision, refer to Aptina’s Web site: www.aptina.com
Features
Array format: Wide-VGA, active 752H x 480V
(360,960 pixels)
Global shutter photodiode pixels; simultaneous
integration and readout
Monochrome or color: NIR enhanced performance
for use with non-visible NIR illumination
Readout modes: progressive or interlaced
Shutter efficiency: >99%
Simple two-wire serial interface
Real-time exposure context switching - dual register
set
Register lock capability
Window size: User programmable to any smaller
format (QVGA, CIF, QCIF). Data rate can be
maintained independent of window size
Binning: 2 x 2 and 4 x 4 of the full resolution
ADC: On-chip, 10-bit column-parallel (option to
operate in 12-bit to 10-bit companding mode)
Automatic controls: Auto exposure control (AEC)
and auto gain control (AGC); variable regional and
variable weight AEC/AGC
Support for four unique serial control register IDs to
control multiple imagers on the same bus
Data output formats:
Single sensor mode:
10-bit parallel/stand-alone
8-bit or 10-bit serial LVDS
Stereo sensor mode:
Interspersed 8-bit serial LVDS
High dynamic range (HDR) mode
Applications
•Security
High dynamic range imaging
Unattended surveillance
Stereo vision
•Video as input
•Machine vision
•Automation
Table 1: Key Performance Parameters
Ordering Information
Parameter Value
Optical format 1/3-inch
Active imager size 4.51mm(H) x 2.88mm(V)
5.35mm diagonal
Active pixels 752H x 480V
Pixel size 6.0 x 6.0μm
Color filter array Monochrome or color RGB Bayer
pattern
Shutter type Global shutter
Maximum data rate
master clock
27 Mp/s
27 MHz
Full resolution 752 x 480
Frame rate 60 fps (at full resolution)
ADC resolution 10-bit column-parallel
Responsivity 4.8 V/lux-sec (550nm)
Dynamic range >55dB linear;
>110dB in HDR mode
Supply voltage 3.3V +0.3V (all supplies)
Power consumption <160mW at maximum data rate
(LVDS disabled); 120μW standby
power at 3.3V
Operating temperature –30°C to +70°C ambient
Packaging 48-pin CLCC
Table 2: Available Part Numbers
Part Number Number
of Pins Description
MT9V034C12STM 48-pin CLCC (monochrome)
MT9V034C12STC 48-pin CLCC (color)
MT9V034C12STMD ES 48-pin Monochrome demo kit
MT9V034C12STMH ES 48-pin Monochrome head board
MT9V034C12STCD ES 48-pin Color demo kit
MT9V034C12STCH ES 48-pin Color head board
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 2©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Table of Contents
Aptina Confidential and Proprietary
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Pixel Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Pixel Array Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Color Device Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Pixel Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Interlaced Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Automatic Black Level Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Other Limiting Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Output Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Output Data Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Serial Bus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
No-Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Bus Idle State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Data Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Two-Wire Serial Interface Sample Read and Write Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
16-Bit Write Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
16-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
8-Bit Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
8-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Register Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Lock All Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Lock Only Read Mode Registers (R0x0D and R0x0E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Real-Time Context Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Shadowed Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Simultaneous Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Sequential Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Snapshot Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
On-Chip Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
ADC Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
V_Step Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Chip Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Window Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Blanking Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Pixel Integration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Total Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 3©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Table of Contents
Aptina Confidential and Proprietary
Changes to Integration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Exposure Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
High Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
ADC Companding Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Gain Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Changes to Gain Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Analog Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Digital Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Black Level Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Row-wise Noise Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Automatic Gain Control and Automatic Exposure Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Pixel Clock Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Hard Reset of Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Soft Reset of Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
STANDBY Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Monitor Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Read Mode Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Column Flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Row Flip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Pixel Binning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Row Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Column Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Interlaced Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
LINE_VALID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
LVDS Serial (Stand-Alone/Stereo) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
LVDS Output Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
LVDS Enable and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
LVDS Data Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Propagation Delays for PIXCLK and Data Out Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Propagation Delays for FRAME_VALID and LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Two-Wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Minimum Master Clock Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Appendix A Power-On Reset and Standby Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 4©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
List of Figures
Aptina Confidential and Proprietary
List of Figures
Figure 1: Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 2: 48-Pin CLCC Package Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 3: Typical Configuration (Connection)—Parallel Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 4: Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 5: Pixel Color Pattern Detail (Top Right Corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 6: Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 7: Timing Example of Pixel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 8: Row Timing and FRAME_VALID/LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 9: Timing Diagram Showing a Write to R0x09 with the Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 10: Timing Diagram Showing a Read from R0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 11: Timing Diagram Showing a Bytewise Write to R0x09 with the Value 0x0284 . . . . . . . . . . . . . . . . . . . .18
Figure 12: Timing Diagram Showing a Bytewise Read from R0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . .18
Figure 13: Simultaneous Master Mode Synchronization Waveforms #1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 14: Simultaneous Master Mode Synchronization Waveforms #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 15: Sequential Master Mode Synchronization Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 16: Snapshot Mode Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 17: Snapshot Mode Frame Synchronization Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 18: Slave Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 19: Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 20: Latency When Changing Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 21: Sequence of Control Voltages at the HDR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 22: Sequence of Voltages in a Piecewise Linear Pixel Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 23: 12- to 10-Bit Companding Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 24: Latency of Analog Gain Change When AGC Is Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 25: Tiled Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 26: Black Level Calibration Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 27: Controllable and Observable AEC/AGC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 28: Readout of Six Pixels in Normal and Column Flip Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 29: Readout of Six Rows in Normal and Row Flip Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 30: Readout of 8 Pixels in Normal and Row Bin Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Figure 31: Readout of 8 Pixels in Normal and Column Bin Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Figure 32: Spatial Illustration of Interlaced Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Figure 33: Different LINE_VALID Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Figure 34: Serial Output Format for a 6x2 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Figure 35: LVDS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Figure 36: Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Figure 37: Propagation Delays for FRAME_VALID and LINE_VALID Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Figure 38: Two-wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Figure 39: Serial Host Interface Start Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 40: Serial Host Interface Stop Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 41: Serial Host Interface Data Timing for Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 42: Serial Host Interface Data Timing for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Figure 43: Acknowledge Signal Timing After an 8-Bit WRITE to the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Figure 44: Acknowledge Signal Timing After an 8-Bit READ from the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Figure 45: Typical Quantum Efficiency – Color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Figure 46: Typical Quantum Efficiency – Monochrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Figure 47: 48-Pin CLCC Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Figure 48: Power-up, Reset, Clock and Standby Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 5©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
List of Tables
Aptina Confidential and Proprietary
List of Tables
Table 1: Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 2: Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 3: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 4: Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 5: Frame Time—Long Integration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 6: Slave Address Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 7: Real-Time Context-Switchable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 8: Default Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 9: Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 10: LVDS Packet Format in Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 11: LVDS Packet Format in Stereoscopy Mode (Stereoscopy Mode Bit Asserted) . . . . . . . . . . . . . . . . . . .70
Table 12: Reserved Words in the Pixel Data Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 13: SER_DATAOUT_* state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 14: SHFT_CLK_* state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 15: LVDS AC Timing Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 16: DC Electrical Characteristics Over Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 17: DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 18: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table 19: AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table 20: Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 6©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
General Description
Aptina Confidential and Proprietary
General Description
The MT9V034 is a 1/3-inch wide-VGA format CMOS active-pixel digital image sensor
with global shutter and high dynamic range (HDR) operation. The sensor has specifi-
cally been designed to support the demanding interior and exterior surveillance
imaging needs, which makes this part ideal for a wide variety of imaging applications in
real-world environments.
This wide-VGA CMOS image sensor features Aptinas breakthrough low-noise CMOS
imaging technology that achieves CCD image quality (based on signal-to-noise ratio and
low-light sensitivity) while maintaining the inherent size, cost, and integration advan-
tages of CMOS.
The active imaging pixel array is 752H x 480V. It incorporates sophisticated camera func-
tions on-chip—such as binning 2 x 2 and 4 x 4, to improve sensitivity when operating in
smaller resolutions—as well as windowing, column and row mirroring. It is program-
mable through a simple two-wire serial interface.
The MT9V034 can be operated in its default mode or be programmed for frame size,
exposure, gain setting, and other parameters. The default mode outputs a
wide-VGA-size image at 60 frames per second (fps).
An on-chip analog-to-digital converter (ADC) provides 10 bits per pixel. A 12-bit resolu-
tion companded for 10 bits for small signals can be alternatively enabled, allowing more
accurate digitization for darker areas in the image.
In addition to a traditional, parallel logic output the MT9V034 also features a serial low-
voltage differential signaling (LVDS) output. The sensor can be operated in a stereo-
camera, and the sensor, designated as a stereo-master, is able to merge the data from
itself and the stereo-slave sensor into one serial LVDS stream.
The sensor is designed to operate in a wide temperature range (–30°C to +70°C).
Figure 1: Block Diagram
Parallel
Video
Data Out
Serial
Register
I/O
Control Register
ADCs
Active-Pixel
Sensor (APS)
Array
752H x 480V Timing and Control
Digital Processing
Analog Processing
Serial Video
LVDS Out
Slave Video LVDS In
(for stereo applications only)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 7©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
General Description
Aptina Confidential and Proprietary
Figure 2: 48-Pin CLCC Package Pinout Diagram
123456 44 43
19 20 21 22 23 24 25 26 27 28 29 30
7
8
9
10
11
12
13
14
15
16
17
18
42
41
40
39
38
37
36
35
34
33
32
31
LVDSGND
BYPASS_CLKIN_N
BYPASS_CLKIN_P
SER_DATAIN_N
SER_DATAIN_P
LVDSGND
DGND
VDD
DOUT5
DOUT6
DOUT7
DOUT8
DOUT3
DOUT4
VAAPIX
VAA
AGND
NC
NC
VAA
AGND
STANDBY
RESET_BAR
S_CTRL_ADR1
DOUT9
LINE_VALID
FRAME_VALID
STLN_OUT
EXPOSURE
SDATA
SCLK
STFRM_OUT
LED_OUT
OE
RSVD
S_CTRL_ADR0
VDDLVDS
SER_DATAOUT_N
SER_DATAOUT_P
SHFT_CLKOUT_P
SHFT_CLKOUT_
N
VDD
DGND
SYSCLK
PIXCLK
DOUT0
DOUT1
DOUT2
48 47 46 45
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 8©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Pin Descriptions
Aptina Confidential and Proprietary
Pin Descriptions
Table 3: Pin Descriptions
48-Pin CLCC
Numbers Symbol Type Description Note
29 RSVD Input Connect to DGND.1
10 SER_DATAIN_N Input Serial data in for stereoscopy (differential negative). Tie to 1KΩ pull-
up (to 3.3V) in non-stereoscopy mode.
11 SER_DATAIN_P Input Serial data in for stereoscopy (differential positive). Tie to DGND in
non-stereoscopy mode.
8 BYPASS_CLKIN_N Input Input bypass shift-CLK (differential negative). Tie to 1KΩ pull-up (to
3.3V) in non-stereoscopy mode.
9 BYPASS_CLKIN_P Input Input bypass shift-CLK (differential positive). Tie to DGND in non-
stereoscopy mode.
23 EXPOSURE Input Rising edge starts exposure in snapshot and slave modes.
25 SCLK Input Two-wire serial interface clock. Connect to VDD with 1.5K resistor
even when no other two-wire serial interface peripheral is attached.
28 OE Input DOUT enable pad, active HIGH. 2
30 S_CTRL_ADR0 Input Two-wire serial interface slave address select (see Table 6 on
page 16).
31 S_CTRL_ADR1 Input Two-wire serial interface slave address select (see Table 6 on
page 16).
32 RESET_BAR Input Asynchronous reset. All registers assume defaults.
33 STANDBY Input Shut down sensor operation for power saving.
47 SYSCLK Input Master clock (26.6 MHz; 13 MHz – 27 MHz).
24 SDATA I/O Two-wire serial interface data. Connect to VDD with 1.5K resistor
even when no other two-wire serial interface peripheral is attached.
22 STLN_OUT I/O Output in master modestart line sync to drive slave chip in-phase;
input in slave mode.
26 STFRM_OUT I/O Output in master modestart frame sync to drive a slave chip in-
phase; input in slave mode.
20 LINE_VALID Output Asserted when DOUT data is valid.
21 FRAME_VALID Output Asserted when DOUT data is valid.
15 DOUT5 Output Parallel pixel data output 5.
16 DOUT6 Output Parallel pixel data output 6.
17 DOUT7 Output Parallel pixel data output 7.
18 DOUT8 Output Parallel pixel data output 8.
19 DOUT9 Output Parallel pixel data output 9.
27 LED_OUT Output LED strobe output.
41 DOUT4 Output Parallel pixel data output 4.
42 DOUT3 Output Parallel pixel data output 3.
43 DOUT2 Output Parallel pixel data output 2.
44 DOUT1 Output Parallel pixel data output 1.
45 DOUT0 Output Parallel pixel data output 0.
46 PIXCLK Output Pixel clock out. DOUT is valid on rising edge of this clock.
2 SHFT_CLKOUT_N Output Output shift CLK (differential negative).
3 SHFT_CLKOUT_P Output Output shift CLK (differential positive).
4 SER_DATAOUT_N Output Serial data out (differential negative).
5 SER_DATAOUT_P Output Serial data out (differential positive).
1, 14 VDD Supply Digital power 3.3V.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 9©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Pin Descriptions
Aptina Confidential and Proprietary
Notes: 1. Pin 29, (RSVD) must be tied to GND.
2. Output enable (OE) tri-states signals DOUT0–DOUT9, LINE_VALID, FRAME_VALID, and PIXCLK.
3. No connect. These pins must be left floating for proper operation.
Figure 3: Typical Configuration (Connection)Parallel Output Mode
Note: LVDS signals are to be left floating.
35, 39 VAA Supply Analog power 3.3V.
40 VAAPIX Supply Pixel power 3.3V.
6V
DDLVDS Supply Dedicated power for LVDS pads.
7, 12 LVDSGND Ground Dedicated GND for LVDS pads.
13, 48 DGND Ground Digital GND.
34, 38 AGND Ground Analog GND.
36, 37 NC NC No connect. 3
Table 3: Pin Descriptions (continued)
48-Pin CLCC
Numbers Symbol Type Description Note
SYSCLK
LINE_VALID
FRAME_VALID
PIXCLK
DOUT(9:0)
STANDBY
EXPOSURE
RSVD
S_CTRL_ADR0
S_CTRL_ADR1
LVDSGND
LED_OUT
SDATA
SCLK
RESET_BAR
OE
VDDLVDS
AGN
D
DGND
VDD VAA VAAPIX
Master clock
0.1
μ
F
To controller
STANDBY from
controller or
digital GND
Two-wire
serial interface
VDD VAA VAAPIX
To LED output
10K
Ω
1.5K
Ω
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 10 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Pixel Data Format
Aptina Confidential and Proprietary
Pixel Data Format
Pixel Array Structure
The MT9V034 pixel array is configured as 809 columns by 499 rows, shown in Figure 4.
The dark pixels are optically black and are used internally to monitor black level. Of the
left 52 columns, 36 are dark pixels used for row noise correction. Of the top 14 rows of
pixels, two of the dark rows are used for black level correction. Also, three black rows
from the top black rows can be read out by setting the Show Dark Rows bit in the Read
Mode register; setting Show Dark Columns will display the 36 dark columns. There are
753 columns by 481 rows of optically active pixels. While the sensor's format is 752 x 480,
one additional active column and active row are included for use when horizontal or
vertical mirrored readout is enabled, to allow readout to start on the same pixel. This one
pixel adjustment is always performed, for monochrome or color versions. The active
area is surrounded with optically transparent dummy pixels to improve image unifor-
mity within the active area. Neither dummy pixels nor barrier pixels can be read out.
Figure 4: Pixel Array Description
(0, 0)
3 barrier + 38 (1 + 36 addressed + 1) dark
+ 9 barrier + 2 light dummy 2 barrier + 2 light dummy
2 barrier + 2 light dummy
active pixel
light dummy pixel
dark pixel
barrier pixel
4.92 x 3.05 mm
2
Pixel Array
809 x 499 (753 x 481 active)
6.0μm pixel
2 barrier + 8 (2 + 4 addressed + 2) dark + 2 barrier + 2 light dummy
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 11 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Color Device Limitations
Aptina Confidential and Proprietary
Figure 5: Pixel Color Pattern Detail (Top Right Corner)
Color Device Limitations
The color version of the MT9V034 does not support or offers reduced performance for
the following functionalities.
Pixel Binning
Pixel binning is done on immediate neighbor pixels only, no facility is provided to skip
pixels according to a Bayer pattern. Therefore, the result of binning combines pixels of
different colors. See “Pixel Binning” on page 64 for additional information.
Interlaced Readout
Interlaced readout yields one field consisting only of red and green pixels and another
consisting only of blue and green pixels. This is due to the Bayer pattern of the CFA.
Automatic Black Level Calibration
When the color bit is set (R0x0F[1]=1), the sensor uses black level correction values from
one green plane, which are applied to all colors. To use the calibration value based on all
dark pixels' offset values, the color bit should be cleared.
Other Limiting Factors
Black level correction and row-wise noise correction are applied uniformly to each color.
The row-wise noise correction algorithm does not work well in color sensors. Automatic
exposure and gain control calculations are made based on all three colors, not just the
green channel. High dynamic range does operate in color; however, Aptina strongly
recommends limiting use to linear operation where good color fidelity is required.
Active Pix
el (0,
0)
Array Pixel (4,14)
Row Readout Direction
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
Column Readout Direction
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 12 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Output Data Format
Aptina Confidential and Proprietary
Output Data Format
The MT9V034 image data can be read out in a progressive scan or interlaced scan mode.
Valid image data is surrounded by horizontal and vertical blanking, as shown in Figure 6.
The amount of horizontal and vertical blanking is programmable through R0x05 and
R0x06, respectively (R0xCD and R0xCE for context B). LV is HIGH during the shaded
region of the figure. See “Output Data Timing” on page 13 for the description of FV
timing.
Figure 6: Spatial Illustration of Image Readout
P
0,0
P
0,1
P
0,2
.....................................P
0,n-1
P
0,n
P
1,0
P
1,1
P
1,2
.....................................P
1,n-1
P
1,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
P
m-1,0
P
m-1,1
.....................................P
m-1,n-1
P
m-1,n
P
m,0
P
m,1
.....................................P
m,n-1
P
m,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
VALID IMAGE HORIZONTAL
BLANKING
VERTICAL BLANKING VERTICAL/HORIZONTAL
BLANKING
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 13 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Output Data Format
Aptina Confidential and Proprietary
Output Data Timing
The data output of the MT9V034 is synchronized with the PIXCLK output. When
LINE_VALID (LV) is HIGH, one 10-bit pixel datum is output every PIXCLK period.
Figure 7: Timing Example of Pixel Data
The PIXCLK is a nominally inverted version of the master clock (SYSCLK). This allows
PIXCLK to be used as a clock to latch the data. However, when column bin 2 is enabled,
the PIXCLK is HIGH for one complete master clock master period and then LOW for one
complete master clock period; when column bin 4 is enabled, the PIXCLK is HIGH for
two complete master clock periods and then LOW for two complete master clock
periods. It is continuously enabled, even during the blanking period. Setting R0x72
bit[4] = 1 causes the MT9V034 to invert the polarity of the PIXCLK.
The parameters P1, A, Q, and P2 in Figure 8 are defined in Table 4.
Figure 8: Row Timing and FRAME_VALID/LINE_VALID Signals
Table 4: Frame Time
Parameter Name Equation Default Timing at 26.66 MHz
A Active data time Context A: R0x04
Context B: R0xCC
752 pixel clocks
= 752 master
= 28.20μs
P1 Frame start blanking Context A: R0x05 - 23
Context B: R0xCD - 23
71 pixel clocks
= 71master
= 2.66μs
P2 Frame end blanking 23 (fixed) 23 pixel clocks
= 23 master
= 0.86μs
Q Horizontal blanking Context A: R0x05
Context B: R0xCD
94 pixel clocks
= 94 master
= 3.52μs
LINE_VALID
PIXCLK
DOUT(9:0) P0
(9:0) P1
(9:0) P2
(9:0) P3
(9:0) P4
(9:0) Pn-1
(9:0) Pn
(9:0)
Valid Image DataBlanking Blanking
...
...
...
...
P1 A Q A Q A P2
Number of master clocks
FRAME_VALID
LINE_VALID
...
...
...
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 14 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Output Data Format
Aptina Confidential and Proprietary
Sensor timing is shown above in terms of pixel clock and master clock cycles (refer to
Figure 7 on page 13). The recommended master clock frequency is 26.66 MHz. The
vertical blanking and the total frame time equations assume that the integration time
(Coarse Shutter Width plus Fine Shutter Width) is less than the number of active rows
plus the blanking rows minus the overhead rows:
Window Height + Vertical Blanking – 2 (EQ 1)
If this is not the case, the number of integration rows must be used instead to determine
the frame time, as shown in Table 5. In this example it is assumed that the Coarse Shutter
Width Control is programmed with 523 rows, and the Fine Shutter Width Total is zero.
For Simultaneous mode, if the exposure time registers (Coarse Shutter Width Total plus
Fine Shutter Width Total) exceed the total readout time, then the vertical blanking time
is internally extended automatically to adjust for the additional integration time
required. This extended value is not written back to the vertical blanking registers. The
Vertical Blank register can be used to adjust frame-to-frame readout time. This register
does not affect the exposure time but it may extend the readout time.
Notes: 1. The MT9V034 uses column parallel analog-digital converters, thus short row timing is not possible. The
minimum total row time is 690 columns (horizontal width + horizontal blanking). The minimum hori-
zontal blanking is 61. When the window width is set below 627, horizontal blanking must be increased.
A+Q Row time Context A: R0x04 + R0x05
Context B: R0xCC + R0xCD
846 pixel clocks
= 846 master
= 31.72ms
V Vertical blanking Context A: (R0x06) x (A + Q) + 4
Context B: (R0xCE) x (A + Q) + 4
38,074 pixel clocks
= 38,074 master
= 1.43ms
Nrows x (A + Q) Frame valid time Context A: (R0x03) × (A + Q)
Context B: (R0xCB) x (A + Q)
406,080 pixel clocks
= 406,080 master
= 15.23ms
F Total frame time V + (Nrows x (A + Q)) 444,154 pixel clocks
= 444,154 master
= 16.66ms
Table 5: Frame Time—Long Integration Time
Parameter Name Equation
(Number of Master Clock Cycles) Default Timing
at 26.66 MHz
V’
Vertical blanking (long
integration time)
Context A: (R0x0B + 2 - R0x03) × (A + Q) + R0xD5 + 4
Context B: (R0xD2 + 2 - R0xCB) x (A + Q) + R0xD8 + 4
38,074 pixel clocks
= 38,074 master
= 1.43ms
F
Total frame time (long
integration time)
Context A: (R0x0B + 2) × (A + Q) + R0xD5 + 4
Context B: (R0xD2 + 2) x (A + Q) + R0xD8 + 4
444,154 pixel clocks
= 444,154 master
= 16.66ms
Table 4: Frame Time (continued)
Parameter Name Equation Default Timing at 26.66 MHz
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 15 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Serial Bus Description
Aptina Confidential and Proprietary
Serial Bus Description
Registers are written to and read from the MT9V034 through the two-wire serial inter-
face bus. The MT9V034 is a serial interface slave with four possible IDs (0x90, 0x98, 0xB0
and 0xB8) determined by the S_CTRL_ADR0 and S_CTRL_ADR1 input pins. Data is
transferred into the MT9V034 and out through the serial data (SDATA) line. The SDATA
line is pulled up to VDD off-chip by a 1.5KΩ resistor. Either the slave or master device can
pull the SDATA line down—the serial interface protocol determines which device is
allowed to pull the SDATA line down at any given time. The registers are 16-bit wide, and
can be accessed through 16- or 8-bit two-wire serial interface sequences.
Protocol
The two-wire serial interface defines several different transmission codes, as shown in
the following sequence:
1. a start bit
2. the slave device 8-bit address
3. a(n) (no) acknowledge bit
4. an 8-bit message
5. a stop bit
Start Bit
The start bit is defined as a HIGH-to-LOW transition of the data line while the clock line
is HIGH.
Slave Address
The 8-bit address of a two-wire serial interface device consists of 7 bits of address and
1 bit of direction. A “0” in the LSB of the address indicates write mode, and a “1” indi-
cates read mode. As indicated above, the MT9V034 allows four possible slave addresses
determined by the two input pins, S_CTRL_ADR0 and S_CTRL_ADR1.
Acknowledge Bit
The master generates the acknowledge clock pulse. The transmitter (which is the master
when writing, or the slave when reading) releases the data line, and the receiver indi-
cates an acknowledge bit by pulling the data line LOW during the acknowledge clock
pulse.
No-Acknowledge Bit
The no-acknowledge bit is generated when the data line is not pulled down by the
receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate
a read sequence.
Stop Bit
The stop bit is defined as a LOW-to-HIGH transition of the data line while the clock line
is HIGH.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 16 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Serial Bus Description
Aptina Confidential and Proprietary
Sequence
A typical READ or WRITE sequence begins by the master sending a start bit. After the
start bit, the master sends the slave devices 8-bit address. The last bit of the address
determines if the request is a read or a write, where a “0” indicates a WRITE and a “1”
indicates a READ. The slave device acknowledges its address by sending an acknowledge
bit back to the master.
If the request was a WRITE, the master then transfers the 8-bit register address to which
a WRITE should take place. The slave sends an acknowledge bit to indicate that the
register address has been received. The master then transfers the data 8 bits at a time,
with the slave sending an acknowledge bit after each 8 bits. The MT9V034 uses 16-bit
data for its internal registers, thus requiring two 8-bit transfers to write to one register.
After 16 bits are transferred, the register address is automatically incremented, so that
the next 16 bits are written to the next register address. The master stops writing by
sending a start or stop bit.
A typical READ sequence is executed as follows. First the master sends the write mode
slave address and 8-bit register address, just as in the write request. The master then
sends a start bit and the read mode slave address. The master then clocks out the register
data 8 bits at a time. The master sends an acknowledge bit after each 8-bit transfer. The
register address is automatically incremented after every 16 bits is transferred. The data
transfer is stopped when the master sends a no-acknowledge bit. The MT9V034 allows
for 8-bit data transfers through the two-wire serial interface by writing (or reading) the
most significant 8 bits to the register and then writing (or reading) the least significant 8
bits to Byte-Wise Address register (0x0F0).
Bus Idle State
The bus is idle when both the data and clock lines are HIGH. Control of the bus is initi-
ated with a start bit, and the bus is released with a stop bit. Only the master can generate
the start and stop bits.
Data Bit Transfer
One data bit is transferred during each clock pulse. The two-wire serial interface clock
pulse is provided by the master. The data must be stable during the HIGH period of the
serial clock—it can only change when the two-wire serial interface clock is LOW. Data is
transferred 8 bits at a time, followed by an acknowledge bit.
Table 6: Slave Address Modes
{S_CTRL_ADR1, S_CTRL_ADR0} Slave Address Write/Read Mode
00 0x90 Write
0x91 Read
01 0x98 Write
0x99 Read
10 0xB0 Write
0xB1 Read
11 0xB8 Write
0xB9 Read
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 17 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Two-Wire Serial Interface Sample Read and Write Sequences
Aptina Confidential and Proprietary
Two-Wire Serial Interface Sample Read and Write Sequences
16-Bit Write Sequence
A typical write sequence for writing 16 bits to a register is shown in Figure 9. A start bit
given by the master, followed by the write address, starts the sequence. The image sensor
then gives an acknowledge bit and expects the register address to come first, followed by
the 16-bit data. After each 8-bit the image sensor gives an acknowledge bit. All 16 bits
must be written before the register is updated. After 16 bits are transferred, the register
address is automatically incremented, so that the next 16 bits are written to the next
register. The master stops writing by sending a start or stop bit.
Figure 9: Timing Diagram Showing a Write to R0x09 with the Value 0x0284
16-Bit Read Sequence
A typical read sequence is shown in Figure 10. First the master has to write the register
address, as in a write sequence. Then a start bit and the read address specifies that a read
is about to happen from the register. The master then clocks out the register data 8 bits
at a time. The master sends an acknowledge bit after each 8-bit transfer. The register
address is auto-incremented after every 16 bits is transferred. The data transfer is
stopped when the master sends a no-acknowledge bit.
Figure 10: Timing Diagram Showing a Read from R0x09; Returned Value 0x0284
SCLK
S
DATA
START ACK
0xB8 ADDR
ACK ACK ACK
STOP
R0x09 1000 0100
0000 0010
SCLK
SDATA
START ACK
0xB8 ADDR 0xB9 ADDR 0000 0010R0x09
ACK ACK ACK
STOP
1000 0100
NACK
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 18 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Two-Wire Serial Interface Sample Read and Write Sequences
Aptina Confidential and Proprietary
8-Bit Write Sequence
To be able to write 1 byte at a time to the register a special register address is added. The
8-bit write is done by first writing the upper 8 bits to the desired register and then writing
the lower 8 bits to the Bytewise Address register (R0xF0). The register is not updated until
all 16 bits have been written. It is not possible to just update half of a register. In
Figure 11 on page 18, a typical sequence for 8-bit writing is shown. The second byte is
written to the Bytewise register (R0xF0).
Figure 11: Timing Diagram Showing a Bytewise Write to R0x09 with the Value 0x0284
8-Bit Read Sequence
To read one byte at a time the same special register address is used for the lower byte.
The upper 8 bits are read from the desired register. By following this with a read from the
Bytewise Address register (R0xF0) the lower 8 bits are accessed (Figure 12). The master
sets the no-acknowledge bits shown.
Figure 12: Timing Diagram Showing a Bytewise Read from R0x09; Returned Value 0x0284
STOP
R0xF0
ACKSTART
0xB8 ADDR
ACK
SDATA
SCLK
ACKACKACKACK
R0x090xB8 ADDR 0000 0010 1000 0100
START
START
0xB9 ADDR
S
DATA
SCLK
STOP
NACK
ACKACKACK
R0x09
START
0xB8 ADDR 0000 0010
START
0xB9 ADDR
S
DATA
SCLK
NACKACKACKACK
R0xF0
START
0xB8 ADDR 1000 0100
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 19 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Two-Wire Serial Interface Sample Read and Write Sequences
Aptina Confidential and Proprietary
Register Lock
Included in the MT9V034 is a register lock (R0xFE) feature that can be used as a solution
to reduce the probability of an inadvertent noise-triggered two-wire serial interface
write to the sensor. All registers, or only the Read Mode registers–R0x0D and R0x0E, can
be locked. It is important to prevent an inadvertent two-wire serial interface write to the
Read Mode registers in automotive applications since this register controls the image
orientation and any unintended flip to an image can cause serious results.
At power-up, the register lock defaults to a value of 0xBEEF, which implies that all
registers are unlocked and any two-wire serial interface writes to the register gets
committed.
Lock All Registers
If a unique pattern (0xDEAD) to R0xFE is programmed, any subsequent two-wire serial
interface writes to registers (except R0xFE) are NOT committed. Alternatively, if the user
writes a 0xBEEF to the register lock register, all registers are unlocked and any
subsequent two-wire serial interface writes to the register are committed.
Lock Only Read Mode Registers (R0x0D and R0x0E)
If a unique pattern (0xDEAF) to R0xFE is programmed, any subsequent two-wire serial
interface writes to R0x0D or R0x0E are NOT committed. Alternatively, if the user writes a
0xBEEF to register lock register, registers R0x0D and R0x0E are unlocked and any
subsequent two-wire serial interface writes to these registers are committed.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 20 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Two-Wire Serial Interface Sample Read and Write Sequences
Aptina Confidential and Proprietary
Real-Time Context Switching
In the MT9V034, the user may switch between two full register sets (listed in Table 7) by
writing to a context switch change bit in register 0x07. This context switch will change all
registers (no shadowing) at the frame start time and have the new values apply to the
immediate next exposure and readout time.
.
Table 7: Real-Time Context-Switchable Registers
Register Name Register Number (Hex) For Context A Register Number (Hex) for Context B
Column Start 0x01 0xC9
Row Start 0x02 0xCA
Window Height 0x03 0xCB
Window Width 0x04 0xCC
Horizontal Blanking 0x05 0xCD
Vertical Blanking 0x06 0xCE
Coarse Shutter Width 1 0x08 0xCF
Coarse Shutter Width 2 0x09 0xD0
Coarse Shutter Width Control 0x0A 0xD1
Coarse Shutter Width Total 0x0B 0xD2
Fine Shutter Width 1 0xD3 0xD6
Fine Shutter Width 2 0xD4 0xD7
Fine Shutter Width Total 0xD5 0xD8
Read Mode 0x0D [5:0] 0x0E [5:0]
High Dynamic Range enable 0x0F [0] 0x0F [8]
ADC Resolution Control 0x1C [1:0] 0x1C [9:8]
V1 Control – V4 Control 0x31 – 0x34 0x39 –0x3C
Analog Gain Control 0x35 0x36
Row Noise Correction Control 1 0x70 [1:0] 0x70 [9:8]
Tiled Digital Gain 0x80 [3:0] – 0x98 [3:0] 0x80 [11:8] – 0x98 [11:8]
AEC/AGC Enable 0xAF [1:0] 0xAF [9:8]
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 21 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
Registers
Caution Writing and changing the value of a reserved register (word or bit) puts the device in an
unknown state and may damage the device.
Table 8: Default Register Descriptions
1 = always 1; 0 = always 0; d = programmable; ? = read only
Register Number
(Hex) Description Data Format
(Binary) Default Value
(Hex)
0x00 Chip Version 0001 0011 0010 0100 (LSB) Iter. 1: 0x1324
0x01 Column Start 0000 00dd dddd dddd 0x0001
0x02 Row Start Context A 0000 000d dddd dddd 0x0004
0x03 Window Height Context A 0000 000d dddd dddd 0x01E0
0x04 Window Width Context A 0000 00dd dddd dddd 0x02F0
0x05 Horizontal Blanking Context A 0000 00dd dddd dddd 0x005E
0x06 Vertical Blanking Context A 0ddd dddd dddd dddd 0x002D
0x07 Chip Control10000 dddd dddd dddd 0x0388
0x08 Coarse Shutter Width 1 Context A 0ddd dddd dddd dddd 0x01BB
0x09 Coarse Shutter Width 2 Context A 0ddd dddd dddd dddd 0x01D9
0x0A Shutter Width Ctrl Context A 0000 00dd dddd dddd 0x0164
0x0B Coarse Total Shutter Width Context A 0ddd dddd dddd dddd 0x01E0
0x0C Reset 0000 0000 0000 00dd 0x0000
0x0D Read Mode Context A 0000 0011 dddd dddd 0x0300
0x0E Read Mode Context B 0000 0000 00dd dddd 0x0000
0x0F Sensor Type, HDR Enable 0000 000d 0000 00dd 0x0100
0x10 Reserved 0x0040
0x11 Reserved 0x8042
0x12 Reserved 0x0022
0x13 Reserved 0x2D32
0x14 Reserved 0x0E02
0x15 Reserved 0x0E32
0x16 Reserved 0x2802
0x17 Reserved 0x3E38
0x18 Reserved 0x3E38
0x19 Reserved 0x2802
0x1A Reserved 0x0428
0x1B LED_OUT Ctrl 0000 0000 0000 00dd 0x0000
0x1C Companding 0000 00dd 0000 00dd 0x0302
0x1D Reserved 0x0040
0x1E Reserved 0x0000
0x1F Reserved 0x0000
0x20 Reserved – 0x01C1
0x21 Reserved 0x0020
0x22 Reserved 0x0020
0x23 Reserved 0x0010
0x24 Reserved 0x0010
0x25 Reserved 0x0020
0x26 Reserved 0x0004
0x27 Reserved 0x000C
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 22 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0x28 Reserved 0x0010
0x29 Reserved 0x0010
0x2A Reserved 0x0020
0x2B Reserved 0x0004
0x2C VREF_ADC Control 0000 0000 0000 0ddd 0x0000
0x2D Reserved 0x0004
0x2E Reserved 0x0007
0x2F Reserved 0x0004
0x30 Reserved 0x0003
0x31 V1 Context A 0000 0000 000d dddd 0x0027
0x32 V2 Context A 0000 0000 000d dddd 0x001A
0x33 V3 Context A 0000 0000 000d dddd 0x0005
0x34 V4 Context A 0000 0000 000d dddd 0x0003
0x35 Analog Gain Context A 0000 0000 0ddd dddd 0x0010
0x36 Analog Gain Context B 0000 0000 0ddd dddd 0x0010
0x37 Reserved 0x0000
0x38 Reserved 0x0000
0x39 V1 Control Context B 0000 0000 00dd dddd 0x27
0x3A V2 Control Context B 0000 0000 00dd dddd 0x26
0x3B V3 Control Context B 0000 0000 00dd dddd 0x5
0x3C V4 Control Context B 0000 0000 00dd dddd 0x3
0x40 Reserved 0000 0000 ???? ???? RO
0x42 Frame Dark Average 0000 0000 ???? ???? RO
0x46 Dark Avg Thresholds dddd dddd dddd dddd 0x231D
0x47 BL Calib Control 0000 0000 ddd0 000d 0x0080
0x48 Black Level Calibration Value 0000 0000 dddd dddd 0x0000
0x4C BL Calib Step Size 0000 0000 000d dddd 0x0002
0x60 Reserved 0000 0000 0000 0000 0x0000
0x61 – 0x66 Unused 0x0000
0x67 Reserved 0x0000
0x68 Reserved RO
0x69 Reserved RO
0x6A Reserved RO
0x6B Reserved RO
0x6C Reserved 0x0000
0x70 Row Noise Corr Control 0000 00dd 0000 00dd 0x0000
0x71 Row Noise Constant 0000 00dd dddd dddd 0x002A
0x72 Pixclk, FV, LV Ctrl 0000 0000 000d dddd 0x0000
0x73 – 0x7E Unused 0x0000
0x7F Digital Test Pattern 0ddd ddd dddd dddd 0x0000
0x80 Tile Weight/Gain X0_Y0 0000 dddd dddd dddd 0x04F4
0x81 Tile Weight/Gain X1_Y0 0000 dddd dddd dddd 0x04F4
0x82 Tile Weight/Gain X2_Y0 0000 dddd dddd dddd 0x04F4
0x83 Tile Weight/Gain X3_Y0 0000 dddd dddd dddd 0x04F4
0x84 Tile Weight/Gain X4_Y0 0000 dddd dddd dddd 0x04F4
Table 8: Default Register Descriptions (continued)
1 = always 1; 0 = always 0; d = programmable; ? = read only
Register Number
(Hex) Description Data Format
(Binary) Default Value
(Hex)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 23 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0x85 Tile Weight/Gain X0_Y1 0000 dddd dddd dddd 0x04F4
0x86 Tile Weight/Gain X1_Y1 0000 dddd dddd dddd 0x04F4
0x87 Tile Weight/Gain X2_Y1 0000 dddd dddd dddd 0x04F4
0x88 Tile Weight/Gain X3_Y1 0000 dddd dddd dddd 0x04F4
0x89 Tile Weight/Gain X4_Y1 0000 dddd dddd dddd 0x04F4
0x8A Tile Weight/Gain X0_Y2 0000 dddd dddd dddd 0x04F4
0x8B Tile Weight/Gain X1_Y2 0000 dddd dddd dddd 0x04F4
0x8C Tile Weight/Gain X2_Y2 0000 dddd dddd dddd 0x04F4
0x8D Tile Weight/Gain X3_Y2 0000 dddd dddd dddd 0x04F4
0x8E Tile Weight/Gain X4_Y2 0000 dddd dddd dddd 0x04F4
0x8F Tile Weight/Gain X0_Y3 0000 dddd dddd dddd 0x04F4
0x90 Tile Weight/Gain X1_Y3 0000 dddd dddd dddd 0x04F4
0x91 Tile Weight/Gain X2_Y3 0000 dddd dddd dddd 0x04F4
0x92 Tile Weight/Gain X3_Y3 0000 dddd dddd dddd 0x04F4
0x93 Tile Weight/Gain X4_Y3 0000 dddd dddd dddd 0x04F4
0x94 Tile Weight/Gain X0_Y4 0000 dddd dddd dddd 0x04F4
0x95 Tile Weight/Gain X1_Y4 0000 dddd dddd dddd 0x04F4
0x96 Tile Weight/Gain X2_Y4 0000 dddddddd dddd 0x04F4
0x97 Tile Weight/Gain X3_Y4 0000 dddd dddd dddd 0x04F4
0x98 Tile Weight/Gain X4_Y4 0000 dddd dddd dddd 0x04F4
0x99 Tile Coord. X 0/5 0000 00dd dddd dddd 0x0000
0x9A Tile Coord. X 1/5 0000 00dd dddd dddd 0x0096
0x9B Tile Coord. X 2/5 0000 00dd dddd dddd 0x012C
0x9C Tile Coord. X 3/5 0000 00dd dddd dddd 0x01C2
0x9D Tile Coord. X 4/5 0000 00dd dddd dddd 0x0258
0x9E Tile Coord. X 5/5 0000 00dd dddd dddd 0x02F0
0x9F Tile Coord. Y 0/5 0000 000d dddd dddd 0x0000
0xA0 Tile Coord. Y 1/5 0000 000d dddd dddd 0x0060
0xA1 Tile Coord. Y 2/5 0000 000d dddd dddd 0x00C0
0xA2 Tile Coord. Y 3/5 0000 000d dddd dddd 0x0120
0xA3 Tile Coord. Y 4/5 0000 000d dddd dddd 0x0180
0xA4 Tile Coord. Y 5/5 0000 000d dddd dddd 0x01E0
0XA5 AEC/AGC Desired Bin 0000 0000 00dd dddd 0x003A
0xA6 AEC Update Frequency 0000 0000 0000 dddd 0x0002
0xA7 Unused 0000 0000 0000 0000 0x0000
0xA8 AEC LPF 0000 0000 0000 00dd 0x0000
0xA9 AGC Update Frequency 0000 0000 0000 dddd 0x0002
0xAA AGC LPF 0000 0000 0000 00dd 0x0002
0xAB Max Analog Gain 0000 0000 0ddd dddd 0x0040
0xAC AEC MInimum Exposure dddd dddd dddd dddd 0x0001
0xAD AEC Maximum Exposure dddd dddd dddd dddd 0x01E0
0xAE Bin Difference Threshold 0000 0000 dddd dddd 0x0014
0xAF AEC/AGC Enable A/B 0000 00dd 0000 00dd 0x0003
0xB0 AEC/AGC Pix Count dddd dddd dddd dddd 0xABE0
0xB1 LVDS Master Ctrl 0000 0000 0000 dddd 0x0002
Table 8: Default Register Descriptions (continued)
1 = always 1; 0 = always 0; d = programmable; ? = read only
Register Number
(Hex) Description Data Format
(Binary) Default Value
(Hex)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 24 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
Note: The MT9V034 requires R0x07[9] to be set to “0” for normal operation. The power-on default value sets
this bit to “1.”
0xB2 LVDS Shift Clk Ctrl 0000 0000 000d 0ddd 0x0010
0xB3 LVDS Data Ctrl 0000 0000 000d 0ddd 0x0010
0xB4 Data Stream Latency 0000 0000 0000 00dd 0x0000
0xB5 LVDS Internal Sync 0000 0000 0000 000d 0x0000
0xB6 LVDS Payload Control 0000 0000 0000 000d 0x0000
0xB7 Stereoscop. Error Ctrl 0000 0000 0000 0ddd 0x0000
0xB8 Stereoscop. Error Flag 0000 0000 0000 000? RO
0xB9 LVDS Data Output ???? ???? ???? ???? RO
0xBA AGC Gain Output 0000 0000 0??? ???? RO
0XBB AEC Gain Output ???? ???? ???? ???? RO
0xBC AGC/AEC Current Bin 0000 0000 00?? ???? RO
0xBD – 0xBE Reserved 0000 0000 0000 0000 0x0000
0xBF Interlace Field Blank 0000 000d dddd dddd 0x0016
0xC0 Mon Mode Capture Ctrl 0000 0000 dddd dddd 0x000A
0xC1 Reserved 0000 00?? ???? ???? RO
0xC2 Anti-eclipse Controls 00dd d000 d100 0000 0x0840
0xC3 Reserved 0000 000? ???? ???? 0x007F
0xC4 Reserved 0000 0000 ???? ???? 0x007F
0xC5 Reserved 0000 0000 ???? ???? 0x007F
0xC6 NTSV FV and LV Control 0000 0000 0000 00dd 0x0
0xC7 NTSC Horiz Blank Ctrl dddd dddd dddd dddd 0x4416
0xC8 NTSC Vert Blank Ctrl dddd dddd dddd dddd 0x4421
0xC9 Column Start Context B 0000 00dd dddd dddd 0x001
0xCA Row Start Context B 0000 000d dddd dddd 0x004
0xCB Window Height Context B 0000 000d dddd dddd 0x1E0
0xCC Window Width Context B 0000 00dd dddd dddd 0x2F0
0xCD Horizontal Blanking Context B 0000 00dd dddd dddd 0x5E
0xCE Vertical Blanking Context B 0ddd dddd dddd dddd 0x2D
0xCF Coarse SW1 Context B 0ddd dddd dddd dddd 0x1DE
0xD0 Coarse SW2 Context B 0ddd dddd dddd dddd 0x1DF
0xD1 Shutter Width Ctrl Context B 0000 00dd dddd dddd 0x064
0xD2 Coarse Shutter Width Total Context B 0ddd dddd dddd dddd 0x1E0
0xD3 Fine SW1 Context A 0000 00dd dddd dddd 0x0000
0xD4 Fine SW2 Context A 0000 00dd dddd dddd 0x0000
0xD5 Fine Shutter Width Total Context A 0000 0ddd dddd dddd 0x0000
0xD6 Fine SW1 Context B 0000 0ddd dddd dddd 0x0000
0xD7 Fine SW2 Context B 0000 0ddd dddd dddd 0x0000
0xD8 Fine Shutter Width Total Context B 0000 0ddd dddd dddd 0x0000
0xD9 Monitor Mode 0000 0000 0000 000d 0x0000
0xF0 Bytewise Addr 0000 0000 dddd dddd 0x0000
0xFE Register Lock dddd dddd dddd dddd 0xBEEF
Table 8: Default Register Descriptions (continued)
1 = always 1; 0 = always 0; d = programmable; ? = read only
Register Number
(Hex) Description Data Format
(Binary) Default Value
(Hex)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 25 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
Shadowed Register
Some sensor settings cannot be changed during frame readout. For example, changing
Window Width R0x04 part way through frame readout results in inconsistent LV
behavior. To avoid this, the MT9V034 double-buffers many registers by implementing a
pending” and a “live” version. Two-wire serial interface reads and writes access the
pending register. The live register controls the sensor operation. The value in the
pending register is transferred to a live register at a fixed point in the frame timing, called
frame-start.” Frame-start is defined as the point at which the first dark row is read out.
By default, this occurs four row times before FRAME_VALID (FV) goes HIGH. To deter-
mine which registers or register fields are double-buffered in this way, see the “Shad-
owed” column in Table 9.
Notation used in the register description table:
•Shadowed
N = No. The register value is updated and used immediately.
Y = Yes. The register value is updated at next frame start. Frame start is defined as
when the first dark row is read out. By default this is four rows before FV goes HIGH.
•Read/Write
R = Read-only register/bit.
W = Read/Write register/bit.
Table 9 provides a detailed description of the registers. Bit fields that are not identified in
the table are read only.
Table 9: Register Descriptions
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
0x00/0xFF (0/255) Chip Version
15:0 Chip Version Chip version—read-only 0x1324
(4900)
R
0x01 (1) Column Start Context A
9:0 Column Start The first column to be read out (not counting dark
columns that may be read). To window the image
down, set this register to the starting X value.
Readable/active columns are 1–752.
001
(1)
Y 1–752 W
0x02 (2) Row Start Context A
8:0 Row Start The first row to be read out (not counting any dark rows
that may be read). To window the image down, set this
register to the starting Y value.
Setting a value less than four is not recommended since
the dark rows should be read using R0x0D.
004
(4)
N 4–482 W
0x03 (3) Window Height Context A
8:0 Window Height Number of rows in the image to be read out (not
counting any dark rows or border rows that may be
read).
1E0
(480)
Y 1–480 W
0x04 (4) Window Width Context A
9:0 Window Width Number of columns in image to be read out (not
counting any dark columns or border columns that may
be read).
2F0
(752)
N 1–752 W
0x05 (5) Horizontal Blanking Context A
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 26 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
9:0 Horizontal
Blanking
Number of blank columns in a row.
Minimum horizontal blanking is 61 for normal mode, 71
for column bin 2 mode, and 91 for column bin 4 mode
05E
(94)
Y 61–1023 W
0x06 (6) Vertical Blanking Context A
14:0 Vertical Blank Number of blank rows in a frame. V-Blank value must
meet the following minimums:
Linear Mode:
V-Blank (min) = (SW_total - SW1 + 7)
= SW_total - R0x08 + 7
If manual exposure, then SW_total = R0x0B.
If auto-exposure mode then SW_total = R0xAD.
High Dynamic Range Mode:
If Auto-Knee Point disabled, then above equations
apply. If Auto-Knee Point enabled, then V-Blank (min) =
(t2 + t3 + 7).
Note: Calculate t2 and t3 taking into account Auto-
Exposure setting.
Note: When Sequential Mode is enabled, this register is
ineffective. Vertical blank = exposure + 6 rows.
002D
(45)
N 2–32288 W
0x07 (7) Chip Control
2:0 Scan Mode 0 = Progressive scan.
1 = Not valid.
2 = Two-field Interlaced scan. Even-numbered rows are
read first, and followed by odd-numbered rows.
3 = Single-field Interlaced scan. If start address is even
number, only even-numbered rows are read out; if start
address is odd number, only odd-numbered rows are
read out. Effective image size is decreased by half.
0 Y 0, 2, 3 W
4–3 Sensor Operating
Mode
0 = Slave mode. The user is allowed to initiate exposure
and readout.
1 = Master mode. Sensor generates its own exposure
and readout timing according to simultaneous/
sequential mode control bit.
2 = Invalid mode.
3 = Snapshot mode. The user triggers the start of frame
by providing a pulse at EXPOSURE pin.
1 Y 0,1, 3 W
5 Stereoscopy Mode 0 = Stereoscopy disabled. Sensor is stand-alone and the
PLL generates a 320 MHz (x12) clock. Typical maximum
cable length is 8 meters.
1 = Stereoscopy enabled. The PLL generates a 540 MHz
(x18) clock. Typical maximum cable length is 5 meters.
0Y0,1W
6 Stereoscopic
Master/Slave
mode
0 = Stereoscopic master.
1 = Stereoscopic slave. Stereoscopy mode should be
enabled when using this bit.
0Y0,1W
7 Parallel Output
Enable
0 = Disable parallel output, LV and FV. Dout[9:0],
FRAME_VALID, and LINE_VALID are forced to logic “0” in
sensor digital core. It does not control pads.
1= Enable parallel output.
1Y0,1W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 27 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
8 Simultaneous/
Sequential Mode
0 = Sequential mode. Pixel and column readout take
place only after exposure is complete.
1 = Simultaneous mode. Pixel and column readout take
place in conjunction with exposure.
1Y0,1W
9 Reserved 0 = Normal (recommended) operation.
1 = Reserved function. Do not use.
1(1) Y 0, 1 W
15 Context A/B
Select
0 = Context A registers are used.
1 = Context B registers are used.
0Y0, 1W
0x08 (8) Coarse Shutter Width 1 Context A
14:0 Coarse Shutter
Width 1
The row number in which the first knee occurs. This
may be used when high dynamic range is enabled
(R0x0F[0] = 1) and exposure knee point auto adjust is
disabled (R0x0A[8] = 0). This register is not shadowed,
but any change made does not take effect until the
following new frame.
This register's minimum value is 2, for either linear or
HDR modes.
Note:
t1 = Shutter width 1;
t2 = Shutter width 2 - Shutter width 1;
t3 = total integration - Shutter width 2.
1BB
(443)
N 0–32765 W
0x09 (9) Coarse Shutter Width 2 Context A
14:0 Course Shutter
Width 2
The row number in which the second knee occurs.
This may be used only when high dynamic range is
enabled and exposure knee point auto adjust control bit
is disabled. This register is not shadowed, but any
change made does not take effect until the following
new frame.
Note:
t1 = Shutter width 1;
t2 = Shutter width 2 – Shutter 1;
t3 = Total integration – Shutter width 2.
1D9
(473)
N 0–32765 W
0x0A (10) Shutter Width Control Context A
3:0 T2 Ratio When Exposure Knee Point Auto Adjust is enabled, then
one-half to the power of this value indicates the ratio of
duration time t2, when saturation control gate is
adjusted to level V2, to total coarse integration. This
register is not shadowed, but any change made does
not take effect until the following new frame.
T2 = Total coarse integration × (½)t2_ratio.
4 N 0–15 W
7:4 T3 Ratio When Exposure Knee Point Auto Adjust is enabled, then
one-half to the power of this value indicates the ratio of
duration time t3, when saturation control gate is
adjusted to level V3, to total coarse integration. This
register is not shadowed, but any change made does
not take effect until the following new frame.
t3 = Total integration × (½)t3_ratio.
Note: t3 = Total integration - t2 - t1.
6 N 0–15 W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 28 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
8 Exposure Knee
Point Auto Adjust
Enable
0 = Auto adjust disabled.
1 = Auto adjust enabled.
1N0, 1W
9 Single Knee
Enable
0 = Single knee disabled.
1 = Single knee enabled.
0N0, 1W
0x0B (11) Coarse Shutter Width Total Context A
14:0 Coarse Shutter
Width Total
Total integration time in number of rows. This value is
used only when AEC is disabled only (bit 0 of R0xAF).
This register is not shadowed, but any change made
does not take effect until the following new frame.
1E0
(480)
N 0–32765 W
0x0C (12) Reset
0 Soft Reset Setting this bit will cause the sensor to abandon the
current frame by resetting all digital logic except two-
wire serial interface configuration. This is a self-
resetting register bit and should always read “0.” (This
bit de-asserts internal active LOW reset signal for 15
clock cycles.)
0N0, 1W
1Auto Block Soft
Reset
Setting this bit causes the sensor to reset the automatic
gain and exposure control logic. This is a self-resetting
register bit and should always read “0.” (This bit de-
asserts internal active LOW reset signal for 15 clock
cycles.)
0Y0, 1W
0x0D (13) Read Mode Context A
1:0 Row Bin 0 = Normal operation.
1 = Row bin 2. Two pixel rows are read per row output.
Image size is effectively reduced by a factor of 2
vertically while data rate and pixel clock are not
affected. Resulting frame rate is increased by 2.
2 = Row bin 4. Four pixel rows are read per row output.
Image size is effectively reduced by a factor of 4
vertically while data rate and pixel clock are not
affected. Resulting frame rate is increased by 4.
3 = Not valid.
0 Y 0, 1, 2 W
3:2 Column Bin 0 = Normal operation.
1 = Column bin 2. When set, image size is reduced by a
factor of 2 horizontally. Frame rate is not affected but
data rate and pixel clock are reduced by one-half that of
master clock.
2 = Column bin 4.
When set, image size is reduced by a factor of 4
horizontally.
Frame rate is not affected but data rate and pixel clock
are reduced by one-fourth that of master clock.
3 = Not valid.
0 Y 0, 1, 2 W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 29 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
4 Row Flip Read out rows from bottom to top (upside down). When
set, row readout starts from row (Row Start + Window
Height) and continues down to (Row Start + 1). When
clear, readout starts at Row Start and continues to (Row
Start + Window Height - 1).
This ensures that the starting color is maintained. This
one pixel adjustment is always performed, for
monochrome or color versions.
0Y0, 1W
5 Column Flip Read out columns from right to left (mirrored). When
set, column readout starts from column (Col Start +
Window Width) and continues down to (Col Start + 1).
When clear, readout starts at Col Start and continues to
(Col Start + Window Width - 1).
This ensures that the starting color is maintained. This
one pixel adjustment is always performed, for
monochrome or color versions.
0Y0, 1W
6 Show Dark Rows When set, three dark rows are output before the active
window. Frame valid is thus asserted earlier than
normal. This has no effect on integration time or frame
rate. Whether the dark rows are shown in the image or
not the definition frame start is before the dark rows
are read out.
0Y0, 1W
7Show Dark
Columns
When set, 36 dark columns are output before the active
pixels in a line. Line valid is thus asserted earlier than
normal, and the horizontal blank time is shortened by
36 pixel clocks.
0Y0, 1W
9:8 Reserved Reserved. 3 3
0x0E (14) Read Mode Context B
1:0 Row Bin 0 = Normal Operation
1 = Row bin 2. Two pixel rows are read per row output.
Image size is effectively reduced by a factor of 2
vertically while data rate and pixel clock are not
affected. Resulting frame rate is increased by 2.
2 = Row bin 4. Four pixel rows are read per row output.
Image size is effectively reduced by a factor of 4
vertically w
Resulting frame rate is increased by 4.
3 = Invalid
0 Y 0, 1, 2 W
0x0F (15) Sensor Type Control
0 High Dynamic
Range Context A
0 = Linear operation. If Linear mode is selected, then
Exposure Knee Point Auto Adjust must also be enabled
(R0x0A[8] = 1).
1 = High Dynamic Range. Voltage and shutter width
must be correctly set for saturation control to operate.
0N0, 1W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 30 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
1 Color/Mono
Sensor Control
This bit controls some color-specific logic in Black Level
Correction.
0 = Monochrome
1 = Color
It should generally be left at “0” for all part types, it is
not required to be set for color sensors to operate
properly.
When set, it applies an unequal offset to the color
planes. For most applications on color parts the bit is
best left cleared (monochrome), especially for machine
vision applications where predictable image offsets are
required.
For Black Level Calibration (BLC), when this bit is set, the
sensor uses black level correction values from one green
plane, which are applied to all colors. Since this bit
applies offsets to the color plane, BLC results may be
affected.
0Y0, 1W
8 High Dynamic
Range Context B
0 = Linear operation. If Linear mode is selected, then
Exposure Knee Point Auto Adjust must also be enabled
(R0xD1[8] = 1).
1 = High Dynamic Range. Voltage and shutter width
must be correctly set for saturation control to operate.
1N0, 1W
0x1B (27) LED_OUT Control
0 Disable LED_OUT Disable LED_OUT output.
When cleared, the output pin LED_OUT is pulsed HIGH
when the sensor is undergoing exposure. When
enabled: If enabled (set to 1), and Invert LED_OUT is
disabled, the output pin LED_OUT is held in logic LOW
state. If enabled and Invert LED_OUT is enabled, output
pin LED_OUT is held in a logic HIGH state.
0Y0, 1W
1 Invert LED_OUT Invert polarity of LED_OUT output.
When set, the output pin LED_OUT is pulsed LOW when
the sensor is undergoing exposure.
0Y0, 1W
0x1C (28) ADC Companding Mode
1:0 ADC Mode
Context A
0 = Invalid.
1 = Invalid.
2 = 10-bit linear.
3 = 12-to10-bit companding.
2N2, 3W
9:8 ADC Mode
Context B
0 = Invalid.
1 = Invalid.
2 = 10-bit linear.
3 = 12-to10-bit companding.
3N2,3W
0x2C (44) – 0x3C (60) Analog Controls
Note: These registers are not shadowed, but any change made does not take effect until the following new frame.
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 31 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0x2C (44) VREF_ADC Control
2:0 VREF_ADC Voltage
Level
0 = VREF_ADC = 1.0V.
1 = VREF_ADC = 1.1V.
2 = VREF_ADC = 1.2V.
3 = VREF_ADC = 1.3V.
4 = VREF_ADC = 1.4V.(Note: Effective ADC reference
voltage is 1.0V.)
5 = VREF_ADC = 1.5V.
6 = VREF_ADC = 1.6V.
7 = VREF_ADC = 2.1V.
Range: 1.0–2.1V; Default: 1.4V
Note: This register is not shadowed, but any change
made does not take effect until the following new
frame.
4 N 0–7 W
0x31 (49) V1 Control Context A
5:0 V1 voltage level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: Equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 2.54V
Usage: Vstep1 HDR voltage
27
(39)
N 0–63 W
0x32 (50) V2 Control Context A
5:0 V2 voltage level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 2.23V
Usage: Vstep2 HDR voltage
1A
(26)
N 0–63 W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 32 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0x33 (51) V3 Control Context A
5:0 V3 voltage level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 1.2V
Usage: Vstep3 HDR voltage.
05
(5)
N 0–63 W
0x34 (52) V4 Control Context A
5:0 V4 voltage level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 0.8V
Usage: Vstep HDR parking voltage, also provides anti-
blooming when Vstep is disabled.
03
(3)
N 0–63 W
0x35 (53) Analog Gain Context A
6:0 Global Analog
Gain
Analog gain = bits (6:0) x 0.0625
Range: 16 dec - 64dec for 1X-4X respectively
Column amplifier common gain.
Note: No exception detection is installed, user needs to
be cautious when programming
10
(16)
N 16–64 W
15 Global Analog
Gain Attenuation
When this bit is set, analog gain will be forced to 0.75X. 0 N 0, 1 W
0x36 (54) Analog Gain Context B
6:0 Global Analog
Gain
Analog gain = bits (6:0) x 0.0625
Range: 16 dec -64dec for 1X-4X respectively
Column amplifier common gain.
Note: No exception detection is installed, user needs to
be cautious when programming
10
(16)
N 16–64 W
15 Global Analog
Gain Attenuation
When this bit is set, analog gain will be forced to 0.75X. 1 N 0, 1 W
0x39 (57) V1 Control Context B
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 33 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
5:0 V1 Voltage Level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 2.54V
Usage: Vstep 1 HDR voltage
27
(39)
N 0–63 W
0x3A (58) V2 Control Context B
5:0 V2 Voltage Level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: Equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 2.51V
Usage: Vstep2 HDR voltage
36
(38)
N 0–63 W
0x3B (59) V3 Control Context B
5:0 V3 Voltage Level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: Equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 1.2V
Usage: Vstep3 HDR voltage
05
(5)
N 0–63 W
0x3C (60) V4 Control Context B
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 34 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
5:0 V4 Voltage Level For bits (5:0) = 0 to 5,
V_step = bits (5:0) * 200mV + 0.2V.
Range: 0.2 - 1.2V
For bits (5:0) = 6 to 63
V_step = bits (5:0) * 23.5mV + 1.62V
Range: 1.76-3.1V
Note: Equation and range are determined with the
assumption that VAA = 3.3V. They may vary with actual
VAA voltage.
Default: 0.8V
Usage: Vstep HDR parking voltage, also provides anti-
blooming when Vstep is disabled.
03
(3)
N 0–63 W
0x42 (66) Frame Dark Average
7:0 Frame Dark
Average
The value read is the frame averaged black level, that is,
used in the black level algorithm calculations.
0R
0x46 (70) Dark Average Thresholds
7:0 Lower threshold Lower threshold for targeted black level in ADC LSBs. 1D
(29)
N 0–255 W
15:8 Upper threshold Upper threshold for targeted black level in ADC LSBs. 23
(35)
N 0–255 W
0x47 (71) Black Level Calibration Control
0 Manual Override Manual override of black level correction.
1 = Override automatic black level correction with
programmed values. (R0x48).
0 = Normal operation (default).
0N0, 1W
7:5 Frames to average
over
Two to the power of this value decide how many frames
to average over when the black level algorithm is in the
averaging mode. In this mode the running frame
average is calculated from the following formula:
Running frame ave = Old running frame ave - (old
running frame ave)/2n + (new frame ave)/ 2n.
4 N 0–7 W
0x48 (72) Black Level Calibration Value Context A
7:0 Black Level
Calibration Value
Analog calibration offset: Negative numbers are
represented with two’s complement, which is shown in
the following formula:
Sign = bit 7 (0 is positive, 1 is negative).
If positive offset value: Magnitude = bit 6:0.
If negative offset value: Magnitude = not (bit 6:0) + 1.
During two-wire serial interface read, this register
returns the user-programmed value when manual
override is enabled (R0x47 bit 0); otherwise, this
register returns the result obtained from the calibration
algorithm.
N –127 to 127 RW
0x4C (76) Black Level Calibration Value Step Size
4:0 Step Size of
Calibration Value
This is the size calibration value may change (positively
or negatively) from frame to frame.
Note: 1 calib LSB = ½ ADC LSB, assuming analog gain = 1.
02 N 0–31 W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 35 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0x70 (112) Row Noise Correction Control
0 Enable Noise
Correction
Context A
0 = Normal operation
1 = Enable row noise cancellation algorithm. When this
bit is set, on a per row basis, the dark average will be
subtracted from each pixel in the row, and then a
constant (R 0x71) will be added.
0N0, 1W
1 Use black level
average Context A
0 = Use the average value of the dark columns read out
in each row as dark average.
1 = Use black level frame average from the dark rows in
the row noise correction algorithm for low gains. Note
that this frame average was taken before the last
adjustment of the offset DAC for that frame, so it might
be slightly off.
0N0, 1W
8 Enable noise
correction
Context B
0 = Normal operation
1 = Enable row noise cancellation algorithm. When this
bit is set, on a per row basis, the dark average will be
subtracted from each pixel in the row, and then a
constant (R0x71) will be added.
0N0, 1W
9 Use black level
average Context B
0 = Use the average value of the dark columns read out
in each row as dark average.
1 = Use black level frame average from the dark rows in
the row noise correction algorithm for low gains. Note
that this frame average was taken before the last
adjustment of the offset DAC for that frame, so it might
be slightly off.
0N0, 1W
0x71 (113) Row Noise Constant
9:0 Row noise
constant
Constant used in the row noise cancellation algorithm.
It should be set to the dark level targeted by the black
level algorithm plus the noise expected between the
averaged values of dark columns. At default the
constant is set to 42 LSB.
2A
(42)
Y 0–1023 W
0x72 (114) Pixel Clock, FRAME and LINE VALID Control
0 Invert LINE VALID Invert LINE_VALID. When set, LINE_VALID will be reset
to logic '0' when PDOUT is valid.
0Y0, 1W
1 Invert Frame Valid Invert FRAME_VALID. When set, FRAME_VALID is reset
to logic “0” when the frame is valid.
0Y0, 1W
2 XOR Line Valid 1 = LINE_VALID = “Continuous” LINE_VALID XOR
FRAME_VALID
0 = LINE_VALID is determined by bit 3. Ineffective if
Continuous Line Valid is set.
0Y0, 1W
3 Continuous Line
Valid
1 = “Continuous” LINE_VALID (continue producing
LINE_VALID during vertical blank).
0 = Normal LINE_VALID (default, no LINE_VALID during
vertical blank).
0Y0, 1W
4 Invert Pixel Clock Invert pixel clock. When set, LINE_VALID, FRAME_VALID,
and PDOUT will be set up to the rising edge of pixel clock,
PIXCLK. When clear, they are set up to the falling edge
of PIXCLK.
0Y0, 1W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 36 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0x7F (127) Digital Test Pattern
9:0 Two-wire Serial
Interface Test
Data
The 10-bit test data in this register is used in place of
the data from the sensor. The data is inserted at the
beginning of the digital signal processing. Both test
enable (bit 13) and use two-wire serial interface (bit 10)
must be set.
000 N 0–1023 W
10 Use Two-wire
Serial Interface
Test Data
0 = Use Gray Shade Test Pattern as test data.
1 = Use Two-wire Serial Interface Test Data (bits 9:0) as
test data.
0N0, 1W
12:11 Gray Shade Test
Pattern
0 = None.
1 = Vertical Shades.
2 = Horizontal Shades.
3 = Diagonal Shade.
When bits (12:11) 0, the MT9V034 generates a gray
shaded test pattern to be used as digital test data.
Ineffective when Use Two-wire Serial Interface Test
Data (bit 10) is set.
0 N 0–3 W
13 Test Enable Enable the use of test data/gray-shaded test pattern in
the signal chain.
The data will be inserted instead of data from the
ADCs. When using this mode, disable Row Noise
Correction (R0x70 bit 0 and bit 8). If Row Noise
Correction is enabled, the row-wise correction
algorithm will process the test data values and the
result will not be accurate.
0Y0, 1W
14 Flip Two-Wire
Serial Interface
Test Data
Use only when bit 10 is set.
When set, the Two-Wire Test Data (bits 9:0) will be used
in place of the data from ADC/memory on odd columns,
while complement of the same data will be used on
even columns.
0N0, 1W
0x80 (128) - 0x98 (152) Tiled Digital Gain
3:0 Tile Gain
Context A
Tile Digital Gain = Bits (3:0) * 0.25
See “Digital Gain” on page 58 for additional
information.
4
(4)
Y 1–15 W
7:4 Sample Weight To indicate the weight of individual tile used in the
automatic gain/exposure control algorithm.
See “Automatic Gain Control and Automatic Exposure
Control” on page 61 for additional information.
F
(15)
Y 1–15 W
11:8 Tile Gain Context
B
Tile Digital Gain = Bits (3:0) * 0.25
See “Digital Gain” on page 58 for additional
information.
4
(4)
Y 1–15 W
See “Digital Gain” on page 58, for 0x99 (153) – 0xA4 (164) detailed descriptions.
0x99 (153) Digital Tile Coordinate 1 - X-direction
9:0 X 0/5 The starting x-coordinate of digital tiles X0_*. 000
(0)
N 0–752 W
0x9A (154) Digital Tile Coordinate 2 - X-direction
9:0 X 1/5 The starting x-coordinate of digital tiles X1_*. 096
(150)
N 0–752 W
0x9B (155) Digital Tile Coordinate 3 - X-direction
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 37 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
9:0 X 2/5 The starting x-coordinate of digital tiles X2_*. 12C
(300)
N 0–752 W
0x9C (156) Digital Tile Coordinate 4 - X-direction
9:0 X 3/5 The starting x-coordinate of digital tiles X3_*. 1C2
(450)
N 0–752 W
0x9D (157) Digital Tile Coordinate 5 - X-direction
9:0 X 4/5 The starting x-coordinate of digital tiles X4_*. 258
(600)
N 0–752 W
0x9E (158) Digital Tile Coordinate 6 - X-direction
9:0 X 5/5 The ending x-coordinate of digital tiles X4_*. 2F0
(752)
N 0–752 W
0x9F (159) Digital Tile Coordinate 1 - Y-direction
8:0 Y 0/5 The starting y-coordinate of digital tiles *_Y0. 000
(0)
N 0–480 W
0xA0 (160) Digital Tile Coordinate 2 - Y-direction
8:0 Y 1/5 The starting y-coordinate of digital tiles *_Y1. 060
(96)
N 0–480 W
0xA1 (161) Digital Tile Coordinate 3 - Y-direction
8:0 Y 2/5 The starting y-coordinate of digital tiles *_Y2. 0C0
(192)
N 0–480 W
0xA2 (162) Digital Tile Coordinate 4 - Y-direction
8:0 Y 3/5 The starting y-coordinate of digital tiles *_Y3. 120
(288)
N 0–480 W
0xA3 (163) Digital Tile Coordinate 5 - Y-direction
8:0 Y 4/5 The starting y-coordinate of digital tiles *_Y4. 180
(384)
N 0–480 W
0xA4 (164) Digital Tile Coordinate 6 - Y-direction
8:0 Y 5/5 The ending y-coordinate of digital tiles *_Y4. 1E0
(480)
N 0–480 W
0xA5 (165) AEC/AGC Desired Bin
5:0 Desired Bin User-defined “desired bin” that gives a measure of how
bright the image is intended to be.
3A
(58)
Y 1–64 W
0xA6 (166) AEC Update Frequency
3:0 Exp Skip Frame The number of frames that the AEC must skip before
updating the exposure register (R0xBB).
2 Y 0–15 W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 38 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0xA8 (168) AEC Low Pass Filter
1:0 Exp LPF This value plays in role in determining the increment/
decrement size of exposure value from frame to frame.
If current bin 0 (R0xBC),
When Exp LPF = 0:
Actual new exposure = Calculated new exposure.
When Exp LPF = 1:
if |(Calculated. new exp - current exp) | > (current exp /
4),
Actual new exposure = Calculated new exposure,
otherwise
Actual new exposure = Current exp +/- (calc new
exp/2)
When Exp LPF = 2:
if |(Calculated new exp - current exp) | > (current exp /
4),
Actual new exposure = Calc. new exposure,
otherwise
Actual new exposure = Current exp +/- (calc new
exp/4)
0 Y 0–2 W
0xA9 (169) AGC Output Update Frequency
3:0 Gain Skip Frame The number of frames that the AGC must skip before
updating the gain register (R0xBA).
2 Y 0–15 W
0xAA (170) AGC Low Pass Filter
1:0 Gain LPF This value plays a role in determining the increment/
decrement size of gain value from frame to frame.
If current bin (R0xBC) 0
When Gain LPF = 0:
Actual new gain = Calculated new gain
When Exp LPF = 1:
if |(Calculated new gain - current gain) | > (current gain/
4),
Actual new gain = Calculated new gain, otherwise
Actual new gain = Current gain ± (calculated new gain/
2)
When Exp LPF = 2:
if |(Calculated new gain - current gain) | > (current gain /
4),
Actual new gain = Calculated new gain, otherwise
Actual new gain = Current gain ± (calculated new gain/
4).
2 Y 0–2 W
0xAB (171) Maximum Analog Gain
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 39 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
6:0 Maximum Analog
Gain
This register is used by the automatic gain control (AGC)
as the upper threshold of gain. This ensures the new
calibrated gain value will not exceed that which
MT9V034 supports.
Range: 16 dec -64 dec for 1X-4X respectively
Note: No exception detection is installed, user needs to
be cautious when programming.
40
(64)
N 16–64 W
0xAC (172) Minimum Coarse Shutter Width
15:0 Minimum Coarse
Shutter Width
Total
This register is used by the automatic exposure control
(AEC) as the lower threshold of exposure. This ensures
the new calibrated integration value will not exceed
that which MT9V034 supports.
1 N 1–32765 W
0xAD (173) Maximum Coarse Shutter Width
15:0 Maximum Coarse
Shutter Width
Total
This register is used by the automatic exposure control
(AEC) as the upper threshold of exposure. This ensures
the new calibrated integration value will not exceed
that which MT9V034 supports.
01E0
(480)
N 1–32765 W
0xAE (174) AGC/AEC Bin Difference Threshold
7:0 Bin Difference
Threshold
This register is used by the AEC if exposure reaches the
Minimum Coarse Shutter Width value (R0xAC). Then if
the difference between desired bin (R0xA5) and current
bin (R0xBC) is larger than the threshold, the exposure
will be increased.
14
(20)
Y 0–63 W
0xAF (175) AGC/AEC Enable
0 AEC Enable
Context A
0 = Disable Automatic Exposure Control.
1 = Enable Automatic Exposure Control.
1Y0, 1W
1 AGC Enable
Context A
0 = Disable Automatic Gain Control.
1 = Enable Automatic Gain Control.
1Y0, 1W
8 AEC Enable
Context B
0 = Disable Automatic Exposure Control.
1 = Enable Automatic Exposure Control.
0Y0, 1W
9 AGC Enable
Contest B
0 = Disable Automatic Gain Control.
1 = Enable Control.
0Y0, 1W
0xB0 (176) AGC/AEC Pixel Count
15-0 Pixel Count The number of pixel used for the AEC/AGC histogram. ABE0
(44,000)
Y 0–65535 W
0xB1 (177) LVDS Master Control
0 PLL Bypass 0 = Internal shift-CLK is driven by PLL.
1 = Internal shift-CLK is sourced from the
LVDS_BYPASS_CLK.
0Y0, 1W
1 LVDS Power-down 0 = Normal operation.
1 = Power-down LVDS block.
1Y0, 1W
2 PLL Test Mode 0 = Normal operation.
1 = The PLL output frequency is equal to the system
clock frequency (26.6 MHz).
0Y0, 1W
3 LVDS Test Mode 0 = Normal operation.
1 = The SER_DATAOUT_P drives a square wave in both
stereo and stand-alone modes). In stereo mode, ensure
that SER_DATAIN_P is logic “0.”
0Y0, 1W
0xB2 (178) LVDS Shift Clock Control
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 40 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
2:0 Shift-clk Delay
Element Select
The amount of shift-CLK delay that minimizes inter-
sensor skew.
0 Y 0–7 W
4 LVDS Clock
Output Enable
When set, the LVDS clock (SHFT_CLKOUT) pins are
disabled. Has no effect on SER_DATAOUT pins.
1Y0, 1W
0xB3 (179) LVDS Data Control
2:0 Data Delay
Element Select
The amount of data delay that minimizes inter-sensor
skew.
0 Y 0–7 W
4 LVDS Data Input
Enable
When set, the LVDS Data Receiver (SER_DATAIN) pins
are disabled. If this bit is changed, it is mandatory that a
soft reset (R0x0C) is then issued for proper operation.
1Y0, 1W
0xB4 (180) LVDS Latency
1:0 Stream Latency
Select
The amount of delay so that the two streams are in
sync.
0 Y 0–3 W
0xB5 (181) LVDS Internal Sync
0 LVDS Internal
Sync Enable
When set, the MT9V034 generates sync pattern (data
with all zeros except start bit) on
LVDS_SER_DATA_OUT.
0Y0, 1W
0xB6 (182) LVDS Payload Control
0 Use 10-bit Pixel
Enable
When set, all 10 bits will contain pixel (with embedded
controls) in standalone mode. If clear, payload will be 8
bits of pixel with 2 bits of controls.
0Y0, 1W
0xB7 (183) Stereoscopy Error Control
0 Enable Stereo
Error Detect
Set this bit to enable stereo error detect mechanism. 0 Y 0, 1 W
1Enable Stick
Stereo Error Flag
When set, the stereo error flag remains asserted once
an error is detected unless clear stereo error flag (bit 2)
is set.
0Y0, 1W
2 Clear Stereo Error
Flag
Set this bit to clear the stereoscopy error flag (R0xB8
returns to logic 0).
0Y0, 1W
0xB8 (184) Stereoscopy Error Flag
0 Stereoscopy Error
Flag
Stereoscopy error status flag. It is also directly
connected to the ERROR output pin.
R
0xB9 (185) LVDS Data Output
15:0 Combo Reg This 16-bit value contains both 8-bit pixel values from
both stereoscopic master and slave sensors. It can be
used in diagnosis to determine how well in sync the two
sensors are. Captures the state when master sensor has
issued a reserved byte and slave has not.
Note: This register should be read from the stereoscopic
master sensor only.
R
0xBA (186) AGC Gain Output
6:0 AGC Gain Status register to report the current gain value obtained
from the AGC algorithm.
10 R
0xBB (187) AEC Exposure Output
15:0 AEC Exposure Status register to report the current exposure value
obtained from the AEC algorithm.
00C8
(200)
R
0xBC (188) AGC/AEC Current Bin
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 41 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
5:0 Current Bin Status register to report the current bin of the
histogram.
R
0xBF (191) Field Vertical Blank
8:0 Field Vertical
Blank
The number of blank rows between odd and even fields.
Note: For interlace (both field) mode (R0x07 bits1:0)
only.
Note: When Field Vertical Blank is set to 0, the blank
time between odd and even fields is one master clock
cycle.
016
(22)
Y 1–255 W
0xC0 (192) Monitor Mode Capture Control
7:0 Image Capture
Numb
The number of frames to be captured during the wake-
up period when monitor mode is enabled.
0A
(10)
Y 1–255 W
0xC2 (194) Analog Controls
6 Reserved Reserved. Leave at “1” 1 N 0, 1 W
7 Anti-Eclipse
Enable
Setting this bit turns on anti-eclipse circuitry. 0 N 0, 1 W
13:11 V_rst_lim voltage
Level
V_rst_lim = bits [13:11] * 50mV + 1.90V
Range: 1.90–2.25; Default: 1.95 V
Usage:
For anti-eclipse reference voltage control
1 N 0–7 W
0xC6 (198) NTSC Frame Valid Control
0Extend Frame
Valid
When set, frame valid is extended for half-line in length
at the odd field.
0Y0, 1W
1Replace FV/LV
with Ped/Snyc
When set, frame valid and line valid is replaced by ped
and sync signals respectively.
0Y0, 1W
0xC7 (198) NTSC Horizontal Blank Control
7:0 Front porch width The front porch width in number of master clock cycles.
NTSC standard is 1.5μsec ±0.1μsec
16
(22)
N 0–255 W
15:8 Sync Width The sync pulse width in number of master clock cycle.
NTSC standard is 4.7μsec ±0.1μsec.
44
(68)
N 0–255 W
0xC8 (200) NTSC Vertical Blank Control
7:0 Equalizing Pulse
Width
The pulse width in number of master clock cycles. NTSC
standard is 2.3μsec ±0.1μsec.
21
(33)
N 0–255 W
15:8 Vertical Serration
Width
The pulse width in number of master clock cycles. NTSC
standard is 4.7μsec ±0.1μsec.
44
(68)
N 0–255 W
0xC9 (201) Column Start Context B
9:0 Column Start The first column to be read out (not counting dark
columns that may be read). To window the image
down, set this register to the starting X value.
000
(1)
N 0–752 W
0xCA (202) Row Start Context B
8:0 Row Start The first row to be read out (not counting any dark rows
that may be read). To window the image down, set this
register to the starting Y value. Setting a value less than
four is not recommended since the dark rows should be
read using R0x0D.
004
(4)
N 4–2482 W
0xCB (203) Window Height Context B
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 42 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
8:0 Window Height Number of rows in the image to be read out (not
counting any dark rows or border rows that may be
read).
1E0
(480)
N 1–480 W
0xCC (204) Window Width Context B
9:0 Window Width Number of columns in image to be read out (not
counting any dark columns or border columns that may
be read).
2F0
(752)
N 1–752 W
0xCD(205) Horizontal Blanking Context B
9:0 Horizontal
Blanking
Number of blank columns in a row.
Minimum horizontal blanking is 61 for normal mode, 71
for column bin 2 mode, and 91 for column bin 4 mode
05E
(94)
N 61–71023 W
0xCE(206) Vertical Blanking Context B
14:0 Vertical Blanking Number of blank rows in a frame. V-Blank value must
meet the following minimums:
Linear Mode:
V-Blank (min) = (SW_total - SW1 + 7)
= SW_total - R0x08 + 7
If manual exposure, then SW_total = R0xD2.
If auto-exposure mode then SW_total = R0xAD.
High Dynamic Range Mode:
If Auto-Knee Point disabled, then above equations
apply. If Auto-Knee Point enabled, then
V-Blank (min) = (t2 + t3 + 7).
Note: Calculate t2 and t3 taking into account Auto
Exposure setting.
Note: When Sequential Mode is enabled, this register is
ineffective. Vertical blank = exposure + 6 rows.
002D
(45)
N 2–32288 W
0xCF(207) Coarse Shutter Width 1 Context B
14:0 Coarse Shutter
Width 1
The row number in which the first knee occurs. This
may be used when high dynamic range is enabled
(R0x0F[8] = 1) is enabled & exposure knee point auto
adjust is disabled (R0xD1[8] = 0). This register is not
shadowed, but any change made does not take effect
until the following new frame.
This register minimum value is 2, for either linear or
HDR modes.
Note:
t1 = Shutter width 1;
t2 = Shutter width 2 - Shutter width 1;
t3 = total integration - Shutter width 2
1DE
(478)
N 0–32765 W
0xD0(208) Coarse Shutter Width 2 Context B
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 43 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
14:0 Coarse Shutter
Width 2
The row number in which the second knee occurs. This
may be used only when high dynamic range is enabled
& exposure knee point auto adjust control bit is
disabled. This register is not shadowed, but any change
made does not take effect until the following new
frame.
Note:
t1 = Shutter width 1;
t2 = Shutter width 2 - Shutter width 1;
t3 = total integration - Shutter width 2
1DE
(479)
N 0–32765 W
0xD1(209) Shutter Width Control Context B
3:0 T2 Ratio One-half to the power of this value indicates the ratio of
duration time t2, when saturation control gate is
adjusted to level V2, to total coarse integration when
exposure knee point auto adjust control bit is enabled.
This register is not shadowed, but any change made
does not take effect until the following new frame.
T2 = total coarse integration * (½)t2_ratio
4 N 0–15 W
7:4 T3 Ratio One-half to the power of this value indicates the ratio of
duration time t3, when saturation control gate is
adjusted to level V3, to total coarse integration when
exposure knee point auto adjust control bit is enabled.
This register is not shadowed, but any change made
does not take effect until the following new frame.
T3 = total coarse integration * (½)t3_ratio
Note: t1 = total coarse integration - t2 - t3
6 N 0–15 W
8 Exposure Knee
Point Auto Adjust
Enable
0 = Auto adjust disabled.
1 = Auto adjust enabled.
1N0,1W
9 Single Knee
Enable
1 = Single knee enabled. 0 N 0,1 W
0xD2 (210) Coarse Shutter Width Total Context B
14:0 Coarse Shutter
Width Total
Total integration time in number of rows. This value is
used only when AEC is disabled only (bit 0 of Register
175). This register is not shadowed, but any change
made does not take effect until the following new
frame.
1E0
(480)
N 0–32765 W
0xD3 (211) Fine Shutter Width 1 Context A
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 44 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
10:0 Fine Shutter
Width 1
This register, combined with Coarse Shutter Width 1,
defines the time when the first knee occurs. This may be
used only when high dynamic range is enabled and the
exposure knee point auto-adjust control bit is disabled.
This register is not shadowed, but any change made
does not take effect until the following new frame.
Register units are master clock cycles.
Operational maximum is (row time - 1)
= (Window Width + HBLANK - 1)
Total maximum is HBLANK (R0x05) + 751
= 1023 + 751 = 1774
Notes:
t1 = Shutter width 1
t2 = Shutter width 2 - Shutter width 1
t3 = Total integration - Shutter width 2
0
(0)
N 0–1774 W
0xD4 (212) Fine Shutter Width 2 Context A
10:0 Fine Shutter
Width 2
This register, combined with Coarse Shutter Width 2,
defines the time when the second knee occurs. This may
be used only when high dynamic range is enabled and
the exposure knee point auto-adjust control bit is
disabled. This register is not shadowed, but any change
made does not take effect until the following new
frame. Register units are master clock cycles.
Maximum is HBLANK (R0x05) + 751
= 1023 + 751 = 1774
Notes:
t1 = Shutter width 1
t2 = Shutter width 2 - Shutter width 1
t3 = Total integration - Shutter width 2
0
(0)
N 0–1774 W
0xD5 (213) Fine Shutter Width Total Context A
10:0 Fine Shutter
Width Total
This register, combined with Coarse Shutter
Width Total, defines the total integration time.
This register is not shadowed, but any change
made does not take effect until the following new
frame. Register units are master clock cycles.
Maximum is HBLANK (R0x05) + 751
= 1023 + 751 = 1774
Note:
When Coarse Shutter Width Total is zero, Minimum
Fine Shutter Width = 260
0
(0)
N 0–1774 W
0xD6 (214) Fine Shutter Width 1 Context B
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 45 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
10:0 Fine Shutter
Width 1
This register, combined with Coarse Shutter Width 1,
defines the time when the first knee occurs. This may be
used only when high dynamic range is enabled and the
exposure knee point auto adjust control bit is disabled.
This register is not shadowed, but any change made
does not take effect until the following new frame.
Register units are master clock cycles.
Maximum is HBLANK (R0x05) + 751
= 1023 + 751 = 1774
Notes:
t1 = Shutter width 1
t2 = Shutter width 2 - Shutter width 1
t3 = Total integration - Shutter width 2
0
(0)
N 0–1774 W
0xD7 (215) Fine Shutter Width 2 Context B
10:0 Fine Shutter
Width 2
This register, combined with Coarse Shutter Width 2,
defines the time when the second knee occurs. This may
be used only when high dynamic range is enabled and
the exposure knee point auto adjust control bit is
disabled. This register is not shadowed, but any change
made does not take effect until the following new
frame. Register units are master clock cycles.
Maximum is HBLANK (R0x05) + 751
= 1023 + 751 = 1774
Notes:
t1 = Shutter width 1
t2 = Shutter width 2 - Shutter width 1
t3 = Total integration - Shutter width 2
0
(0)
N 0–1774 W
0xD8 (216) Fine Shutter Width Total Context B
10:0 Fine Shutter
Width Total
This register, combined with Coarse Shutter Width
Total, defines the total integration time. This register is
not shadowed, but any change made does not take
effect until the following new frame. Register units are
in master clock cycles.
Maximum is HBLANK (R0x05) + 751
= 1023 + 751 = 1774
Note:
When Coarse Shutter Width Total is zero,
Minimum Fine Shutter Width = 260
0
(0)
N 0–1774 W
0xD9 (217) Monitor Mode
10:0 Monitor Mode
Enable
Setting this bit puts the sensor into a cycle of sleeping
for approximately five minutes, and waking up to
capture a programmable number of frames (Register
0XC0). Clearing this bit will resume normal operation.
0
(0)
Y 0–1 W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 46 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Registers
Aptina Confidential and Proprietary
0xF0 (240) Bytewise Address
Bytewise Address Special address to perform 8-bit reads and writes to the
sensor. See Two-Wire Interface description for further
details on how to use this functionality.
0xFE (254) Register Lock
15:0 Register Lock Code To lock all registers except R0xFE, program data with
0xDEAD; to unlock access to all registers, program data
with 0xBEEF.
To lock Registers 0x0D and 0x0E only, program data
with 0xDEAF; to unlock, program data with 0xBEEF.
While R0x0D and R0x0E are locked, any subsequent
writes to those registers will be ignored until registers
are unlocked.
BEEF
(48,879)
N 48879
(0xBEEF),
57005
(0xDEAD),
57007
(0xDEAF)
W
Table 9: Register Descriptions (continued)
Bit Bit Name Bit Description Default in
Hex (Dec) Shadowed
Legal
Values
(Dec) Read/
Write
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 47 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Feature Description
Operational Modes
The MT9V034 works in master, snapshot, or slave mode. In master mode the sensor
generates the readout timing. In snapshot mode it accepts an external trigger to start
integration, then generates the readout timing. In slave mode the sensor accepts both
external integration and readout controls. The integration time is programmed through
the two-wire serial interface during master or snapshot modes, or controlled through an
externally generated control signal during slave mode.
Master Mode
There are two possible operation methods for master mode: simultaneous and sequen-
tial. One of these operation modes must be selected through the two-wire serial inter-
face.
Simultaneous Master Mode
In simultaneous master mode, the exposure period occurs during readout. The frame
synchronization waveforms are shown in Figure 13 and Figure 14. The exposure and
readout happen in parallel rather than sequential, making this the fastest mode of oper-
ation.
Figure 13: Simultaneous Master Mode Synchronization Waveforms #1
Figure 14: Simultaneous Master Mode Synchronization Waveforms #2
Readout Time > Exposure Time
LED_OUT
D
OUT
(9:0)
LINE_VALID
FRAME_VALID
Exposure Time
Vertical Blanking
xxx xxx xxx
Exposure Time > Readout Time
LED_OUT
DOUT(9:0)
LINE_VALID
FRAME_VALID
Exposure Time
Vertical Blanking
xxx xxx xxx
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 48 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
When exposure time is greater than the sum of vertical blank and window height, the
number of vertical blank rows is increased automatically to accommodate the exposure
time.
Sequential Master Mode
In sequential master mode the exposure period is followed by readout. The frame
synchronization waveforms for sequential master mode are shown in Figure 15. The
frame rate changes as the integration time changes.
Figure 15: Sequential Master Mode Synchronization Waveforms
Snapshot Mode
In snapshot mode the sensor accepts an input trigger signal which initiates exposure,
and is immediately followed by readout. Figure 16 shows the interface signals used in
snapshot mode. In snapshot mode, the start of the integration period is determined by
the externally applied EXPOSURE pulse that is input to the MT9V034. The integration
time is preprogrammed at R0x0B or R0xD2 through the two-wire serial interface. After
the frame's integration period is complete the readout process commences and the
syncs and data are output. Sensor in snapshot mode can capture a single image or a
sequence of images. The frame rate may only be controlled by changing the period of
the user supplied EXPOSURE pulse train. The frame synchronization waveforms for
snapshot mode are shown in Figure 17.
Figure 16: Snapshot Mode Interface Signals
LED_OUT
D
OUT
(9:0)
LINE_VALID
FRAME_VALID
Exposure Time
xxx xxx xxx
CONTROLLER
EXPOSURE
SYSCLK
PIXCLK
LINE_VALID
FRAME_VALID
DOUT(9:0)
MT9V034
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 49 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 17: Snapshot Mode Frame Synchronization Waveforms
Slave Mode
In slave mode, the exposure and readout are controlled using the EXPOSURE,
STFRM_OUT, and STLN_OUT pins. When the slave mode is enabled, STFRM_OUT and
STLN_OUT become input pins.
The start and end of integration are controlled by EXPOSURE and STFRM_OUT pulses,
respectively. While a STFRM_OUT pulse is used to stop integration, it is also used to
enable the readout process.
After integration is stopped, the user provides STLN_OUT pulses to trigger row readout.
A full row of data is read out with each STLN_OUT pulse. The user must provide enough
time between successive STLN_OUT pulses to allow the complete readout of one row.
It is also important to provide additional STLN_OUT pulses to allow the sensors to read
the vertical blanking rows. It is recommended that the user program the vertical blank
register (R0x06) with a value of 4, and achieve additional vertical blanking between
frames by delaying the application of the STFRM_OUT pulse.
The elapsed time between the rising edge of STLN_OUT and the first valid pixel data is
calculated for context A by [horizontal blanking register (R0x05) + 4] clock cycles. For
context B, the time is (R0xCD + 4) clock cycles.
Figure 18: Slave Mode Operation
LED_OUT
D
OUT
(9:0)
LINE_VALID
FRAME_VALID
Exposure Time
xxx xxx xxx
EXPOSURE
Exposure
(input)
STFRM_OUT
(input)
LED_OUT
(output)
STLN_OUT
(input)
LINE_VALID
(output) Integration Time
Vertical Blanking
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 50 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Signal Path
The MT9V034 signal path consists of a programmable gain, a programmable analog
offset, and a 10-bit ADC. See “Black Level Calibration” on page 59 for the programmable
offset operation description.
Figure 19: Signal Path
On-Chip Biases
ADC Voltage Reference
The ADC voltage reference is programmed through R0x2C, bits 2:0. The ADC reference
ranges from 1.0V to 2.1V. The default value is 1.4V. The increment size of the voltage
reference is 0.1V from 1.0V to 1.6V (R0x2C[2:0] values 0 to 6). At R0x2C[2:0] = 7, the refer-
ence voltage jumps to 2.1V.
It is very important to preserve the correct values of the other bits in R0x2C. The default
register setting is 0x0004. This corresponds to 1.4V—at this setting 1mV input to the ADC
equals approximately 1 LSB.
V_Step Voltage Reference
This voltage is used for pixel high dynamic range operations, programmable from R0x31
through R0x34 for Context A, or R0x39 through R0x3B for context B.
Chip Version
Chip version register R0x00 is read-only.
Window Control
Registers Column Start A/B, Row Start A/B, Window Height A/B (row size), and Window
Width (column size) A/B control the size and starting coordinates of the window.
The values programmed in the window height and width registers are the exact window
height and width out of the sensor. The window start value should never be set below
four.
To read out the dark rows set bit 6 of R0x0D. In addition, bit 7 of R0x0D can be used to
display the dark columns in the image. Note that there are Show Dark settings only for
Context A.
Pixel Output
(reset minus signal)
Offset Correction
Voltage (R0x48 or
result of BLC)
10 (12) bit ADC ADC Data
(9:0)
Gain Selection
(R0x35 or R0x36 or
result of AGC) V
REF
(R0x2C)
C2
C1
Σ
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 51 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Blanking Control
Horizontal Blank and Vertical Blank registers R0x05 and R0x06 (B: 0xCD and R0xCE),
respectively, control the blanking time in a row (horizontal blanking) and between
frames (vertical blanking).
Horizontal blanking is specified in terms of pixel clocks.
Vertical blanking is specified in terms of numbers of rows.
The actual imager timing can be calculated using Table 4 on page 13 and Table 5 on
page 14 which describe “Row Timing and FV/LV signals.” The minimum number of
vertical blank rows is 4.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 52 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Pixel Integration Control
Total Integration
Total integration time is the result of coarse shutter width and fine shutter width regis-
ters, and depends also on whether manual or automatic exposure is selected.
The actual total integration time, tINT is defined as:
tINT = tINTCoarse + tINTFint (EQ 2)
= (number of rows of integration x row time) + (number of pixels of integration x pixel time)
where:
Number of Rows of Integration
(Auto Exposure Control: Enabled)
When automatic exposure control (AEC) is enabled, the number of rows of integration
may vary from frame to frame, with the limits controlled by R0xAC (minimum coarse
shutter width) and R0xAD (maximum coarse shutter width).
Number of Rows of Integration
(Auto Exposure Control: Disabled)
If AEC is disabled, the number of rows of integration equals the value in R0x0B.
or
If context B is enabled, the number of rows of integration equals the value in R0xD2.
Number of Pixels of Integration
The number of fine shutter width pixels is independent of AEC mode (enabled or
disabled):
Context A: the number of pixels of integration equals the value in R0xD5.
Context B: the number of pixels of integration equals the value in R0xD8.
Row Timing
Context A: Row time = (R0x04 + R0x05) master clock periods (EQ 3)
Context B: Row time = (R0xCC + R0xCD) master clock periods (EQ 4)
Typically, the value of the Coarse Shutter Width Total registers is limited to the number
of rows per frame (which includes vertical blanking rows), such that the frame rate is not
affected by the integration time. If the Coarse Shutter Width Total is increased beyond
the total number of rows per frame, the user must add additional blanking rows using
the Vertical Blanking registers as needed. See descriptions of the Vertical Blanking regis-
ters, R0x06 and R0xCE in Table 8 on page 21 and Table 9 on page 25.
A second constraint is that tINT must be adjusted to avoid banding in the image from
light flicker. Under 60Hz flicker, this means the frame time must be a multiple of 1/120 of
a second. Under 50Hz flicker, the frame time must be a multiple of 1/100 of a second.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 53 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Changes to Integration Time
With automatic exposure control disabled (R0xAF[0] for context A, or R0xAF[8] for
context B) and if the total integration time (R0x0B or R0xD2) is changed through the
two-wire serial interface while FV is asserted for frame n, the first frame output using the
new integration time is frame (n + 2). Similarly, when automatic exposure control is
enabled, any change to the integration time for frame n first appears in frame (n + 2)
output.
The sequence is as follows:
1. During frame n, the new integration time is held in the R0x0B or R0D2 live register.
2. At the start of frame (n + 1), the new integration time is transferred to the exposure
control module. Integration for each row of frame (n + 1) has been completed using
the old integration time. The earliest time that a row can start integrating using the
new integration time is immediately after that row has been read for frame (n + 1).
The actual time that rows start integrating using the new integration time is depen-
dent on the new value of the integration time.
3. When frame (n + 1) is read out, it is integrated using the new integration time. If the
integration time is changed (R0x0B or R0xD2 written) on successive frames, each
value written is applied to a single frame; the latency between writing a value and it
affecting the frame readout remains at two frames.
However, when automatic exposure control is disabled, if the integration time is
changed through the two-wire serial interface after the falling edge of FV for frame n,
the first frame output using the new integration time becomes frame (n+3).
Figure 20: Latency When Changing Integration
FRAME_VALID
Image Data
Frame Start
LED_OUT
Output image with
Int = 200 rows Output
image with
Int = 300
rows
Int = 300 rows
Int = 200 rows
Int = 200 rows Int = 300 rows
New Integration
Programmed
Actual
Integration
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 54 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Exposure Indicator
The exposure indicator is controlled by:
•R0x1B LED_OUT Control
The MT9V034 provides an output pin, LED_OUT, to indicate when the exposure takes
place. When R0x1B bit 0 is clear, LED_OUT is HIGH during exposure. By using R0x1B, bit
1, the polarity of the LED_OUT pin can be inverted.
High Dynamic Range
High dynamic range is controlled by:
In the MT9V034, high dynamic range (by setting R0x0F, bit 0 or 8 to 1) is achieved by
controlling the saturation level of the pixel (HDR or high dynamic range gate) during the
exposure period. The sequence of the control voltages at the HDR gate is shown in
Figure 21. After the pixels are reset, the step voltage, V_Step, which is applied to HDR
gate, is set up at V1 for integration time t1, then to V2 for time t2, then V3 for time t3, and
finally it is parked at V4, which also serves as an antiblooming voltage for the photode-
tector. This sequence of voltages leads to a piecewise linear pixel response, illustrated
(approximately) in Figure 21 and Figure 22 on page 55.
Figure 21: Sequence of Control Voltages at the HDR Gate
Context A Context B
High Dynamic Enable R0x0F[0] R0x0F[8]
Shutter Width 1 R0x08 R0xCF
Shutter Width 2 R0x09 R0xD0
Shutter Width Control R0x0A R0xD1
V_Step Voltages R0x31-R0x34 R0x39-R0x3C
t2t3
V4~0.8V
Exposure
t1
HDR
Voltage
VAA (3.3V)
V1~1.4V V2~1.2V V3~1.0V
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 55 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 22: Sequence of Voltages in a Piecewise Linear Pixel Response
The parameters of the step voltage V_Step which takes values V1, V2, and V3 directly
affect the position of the knee points in Figure 22.
Light intensities work approximately as a reciprocal of the partial exposure time. Typi-
cally, t1 is the longest exposure, t2 shorter, and so on. Thus the range of light intensities is
shortest for the first slope, providing the highest sensitivity.
The register settings for V_Step and partial exposures are:
V1 = R0x31, bits 5:0 (Context B: R0x39, bits 5:0)
V2 = R0x32, bits 5:0 (Context B: R0x3A, bits 5:0)
V3 = R0x33, bits 5:0 (Context B: R0x3B, bits 5:0)
V4 = R0x34, bits 5:0 (Context B: R0x3C, bits 5:0)
tINT = t1 + t2 + t3
There are two ways to specify the knee points timing, the first by manual setting and the
second by automatic knee point adjustment. Knee point auto adjust is controlled for
context A by R0x0A[8] (where default is ON), and for context B by R0xD1[8] (where
default is OFF).
When the knee point auto adjust enabler is enabled (set HIGH), the MT9V034 calculates
the knee points automatically using the following equations:
t1 = tINT – t2 – t3(EQ 5)
t2 = tINT x (½)R0x0A[3:0] or R0xD1[3:0](EQ 6)
t3 = tINT x (½)R0x0A[7:4] or R0xD1[7:4] (EQ 7)
As a default for auto exposure, t2 is 1/16 of tINT, t3 is 1/64 of tINT.
When the auto adjust enabler is disabled (set LOW), t1, t2, and t3 may be programmed
through the two-wire serial interface:
t1 = Coarse SW1 (row-times) + Fine SW1 (pixel-times) (EQ 8)
t2 = Coarse SW2 – Coarse SW1 + Fine SW2 - Fine SW1 (EQ 9)
t3 = Total Integration – t1 – t2(EQ 10)
= Coarse Total Shutter Width + Fine Shutter Width Total – t1 – t2
d
V1
dV2
dV3
1/t11/t21/t3
Light Intensity
Output
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 56 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
For context A these become:
t1 = R0x08 + R0xD3 (EQ 11)
t2 = R0x09 - R0x08 + R0xD4 – R0xD3 (EQ 12)
t3 = R0x0B + R0xD4 – t1 – t2(EQ 13)
For context B these are:
t1 = R0xCF + R0xD6 (EQ 14)
t2 = R0xD0 - R0xCF + R0xD7 - R0xD6 (EQ 15)
t3 = R0xD2 + R0xD8 -t1 -t2(EQ 16)
In all cases above, the coarse component of total integration time may be based on the
result of AEC or values in Reg0x0B and Reg0xD2, depending on the settings.
Similar to Fine Shutter Width Total registers, the user must not set the Fine Shutter
Width 1 or Fine Shutter Width 2 register to exceed the row time (Horizontal Blanking +
Window Width). The absolute maximum value for the Fine Shutter Width registers is
1774 master clocks.
ADC Companding Mode
By default, ADC resolution of the sensor is 10-bit. Additionally, a companding scheme of
12-bit into 10-bit is enabled by the ADC Companding Mode register. This mode allows
higher ADC resolution, which means less quantization noise at low-light, and lower
resolution at high light, where good ADC quantization is not so critical because of the
high level of the photons shot noise.
Figure 23: 12- to 10-Bit Companding Chart
256
512
768
1,024
4,0962,048
1,024
512
256
4 to 1 Companding (1,536 384)
8 to 1 Companding (2,048 256)
10-bit
Codes
12-bit
Codes
2 to 1 Companding (256 128)
No companding (256 256)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 57 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Gain Settings
Changes to Gain Settings
When the digital gain settings (R0x80R0x98) are changed, the gain is updated on the
next frame start. However, the latency for an analog gain change to take effect depends
on the automatic gain control.
If automatic gain control is enabled (R0xAF, bit 1 is set to HIGH), the gain changed for
frame n first appears in frame (n + 1); if the automatic gain control is disabled, the gain
changed for frame n first appears in frame (n + 2).
Both analog and digital gain change regardless of whether the integration time is also
changed simultaneously.
Figure 24: Latency of Analog Gain Change When AGC Is Disabled
FRAME_VALID
Image Data
Frame Start
Output image with
Gain = 3.0X Output image with
Gain = 3.5X
Gain = 3.0X Gain = 3.5X
Gain = 3.0X Gain = 3.5X
New Gain
Programmed
Actual
Gain
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 58 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Analog Gain
Analog gain is controlled by:
R0x35 Global Gain context A
R0x36 Global Gain context B
The formula for gain setting is:
Gain = Bits[6:0] x 0.0625 (EQ 17)
The analog gain range supported in the MT9V034 is 1X4X with a step size of
6.25 percent. To control gain manually with this register, the sensor must NOT be in AGC
mode. When adjusting the luminosity of an image, it is recommended to alter exposure
first and yield to gain increases only when the exposure value has reached a maximum
limit.
Analog gain = bits (6:0) x 0.0625 for values 16–31
Analog gain = bits (6:0)/2 x 0.125 for values 32–64
For values 16–31: each LSB increases analog gain 0.0625v/v. A value of 16 = 1X gain.
Range: 1X to 1.9375X.
For values 32–64: each 2 LSB increases analog gain 0.125v/v (that is, double the gain
increase for 2 LSB). Range: 2X to 4X. Odd values do not result in gain increases; the gain
increases by 0.125 for values 32, 34, 36, and so on.
Digital Gain
Digital gain is controlled by:
R0x99-R0xA4 Tile Coordinates
R0x80-R0x98 Tiled Digital Gain and Weight
In the MT9V034, the gain logic divides the image into 25 tiles, as shown in Figure 25 on
page 59. The size and gain of each tile can be adjusted using the above digital gain
control registers. Separate tile gains can be assigned for context A and context B.
Registers 0x99–0x9E and 0x9F–0xA4 represent the coordinates X0/5–X5/5 and Y0/5–Y5/5
in Figure 25 on page 59, respectively.
Digital gains of registers 0x80–0x98 apply to their corresponding tiles. The MT9V034
supports a digital gain of 0.25–3.75X.
When binning is enabled, the tile offsets maintain their absolute values; that is, tile coor-
dinates do not scale with row or column bin setting.
Note: There is one exception, for the condition when Column Bin 4 is enabled (R0x0D[3:2]
or R0x0E[3:2] = 2). For this case, the value for Digital Tile Coordinate
X–direction must be doubled.
The formula for digital gain setting is:
Digital Gain = Bits[3:0] x 0.25 (EQ 18)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 59 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 25: Tiled Sample
Black Level Calibration
Black level calibration is controlled by:
•Frame Dark Average: R0x42
Dark Average Thresholds: R0x46
Black Level Calibration Control: R0x47
Black Level Calibration Value: R0x48
Black Level Calibration Value Step Size: R0x4C
The MT9V034 has automatic black level calibration on-chip, and if enabled, its result
may be used in the offset correction shown in Figure 26.
Figure 26: Black Level Calibration Flow Chart
X0/5 X1/5 X2/5 X3/5 X4/5 X5/5
Y0/5
Y1/5
Y2/5
Y3/5
Y4/5
Y5/5
x0_y0 x1_y0 x4_y0
x0_y1 x1_y1 x4_y1
x0_y2 x1_y2 x4_y2
x0_y3 x1_y3 x4_y3
x0_y4 x1_y4 x4_y4
Pixel Output
(reset minus signal)
Offset Correction
Voltage (R0x48 or
result of BLC)
10 (12) bit ADC ADC Data
(9:0)
Gain Selection
(R0x35 or R0x36 or
result of AGC) VREF
(R0x2C)
C2
C1
Σ
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 60 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
The automatic black level calibration measures the average value of pixels from 2 dark
rows (1 dark row if row bin 4 is enabled) of the chip. (The pixels are averaged as if they
were light-sensitive and passed through the appropriate gain.)
This row average is then digitally low-pass filtered over many frames (R0x47, bits 7:5) to
remove temporal noise and random instabilities associated with this measurement.
Then, the new filtered average is compared to a minimum acceptable level, low
threshold, and a maximum acceptable level, high threshold.
If the average is lower than the minimum acceptable level, the offset correction voltage
is increased by a programmable offset LSB in R0x4C. (Default step size is 2 LSB Offset = 1
ADC LSB at analog gain = 1X.)
If it is above the maximum level, the offset correction voltage is decreased by 2 LSB
(default).
To avoid oscillation of the black level from below to above, the region the thresholds
should be programmed so the difference is at least two times the offset DAC step size.
In normal operation, the black level calibration value/offset correction value is calcu-
lated at the beginning of each frame and can be read through the two-wire serial inter-
face from R0x48. This register is an 8-bit signed twos complement value.
However, if R0x47, bit 0 is set to “1,” the calibration value in R0x48 is used rather than the
automatic black level calculation result. This feature can be used in conjunction with the
show dark rows” feature (R0x0D[6]) if using an external black level calibration circuit.
The offset correction voltage is generated according to the following formulas:
Offset Correction Voltage = (8-bit signed twos complement calibration value,-127 to 127) × 0.5mV (EQ 19)
ADC input voltage = (Pixel Output Voltage + Offset Correction Voltage) × Analog Gain (EQ 20)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 61 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Row-wise Noise Correction
Row-wise noise correction is controlled by the following registers:
•R0x70 Row Noise Control
•R0x72 Row Noise Constant
Row-wise noise cancellation is performed by calculating a row average from a set of opti-
cally black pixels at the start of each row and then applying each average to all the active
pixels of the row. Read Dark Columns register bit and Row Noise Correction Enable
register bit must both be set to enable row-wise noise cancellation to be performed. The
behavior when Read Dark Columns register bit = 0 and Row Noise Correction Enable
register bit = 1 is undefined.
The algorithm works as follows:
Logical columns 755-790 in the pixel array provide 36 optically black pixel values. Of the
36 values, two smallest value and two largest values are discarded. The remaining 32
values are averaged by summing them and discarding the 5 LSB of the result. The 10-bit
result is subtracted from each pixel value on the row in turn. In addition, a positive
constant will be added (Reg0x71, bits 7:0). This constant should be set to the dark level
targeted by the black level algorithm plus the noise expected on the measurements of
the averaged values from dark columns; it is meant to prevent clipping from negative
noise fluctuations.
Pixel value = ADC value – dark column average + R0x71[9:0] (EQ 21)
Note that this algorithm does not work in color sensor.
Automatic Gain Control and Automatic Exposure Control
The integrated AEC/AGC unit is responsible for ensuring that optimal auto settings of
exposure and (analog) gain are computed and updated every frame.
AEC and AGC can be individually enabled or disabled by R0xAF. When AEC is disabled
(R0xAF[0] = 0), the sensor uses the manual exposure value in coarse and fine shutter
width registers. When AGC is disabled (R0xAF[1] = 0), the sensor uses the manual gain
value in R0x35 or R0x36. See “Pixel Integration Control” on page 52 for more informa-
tion.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 62 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 27: Controllable and Observable AEC/AGC Registers
The exposure is measured in row-time by reading R0xBB. The exposure range is
1 to 2047. The gain is measured in gain-units by reading R0xBA. The gain range is
16 to 63 (unity gain = 16 gain-units; multiply by 1/16 to get the true gain).
When AEC is enabled (R0xAF), the maximum auto exposure value is limited by R0xBD;
minimum auto exposure is limited by AEC Minimum Exposure, R0xAC.
Note: AEC does not support sub-row timing; calculated exposure values are rounded down
to the nearest row-time. For smoother response, manual control is recommended for
short exposure times.
When AGC is enabled (R0xAF), the maximum auto gain value is limited by R0xAB;
minimum auto gain is fixed to 16 gain-units.
The exposure control measures current scene luminosity and desired output luminosity
by accumulating a histogram of pixel values while reading out a frame. All pixels are
used, whether in color or mono mode. The desired exposure and gain are then calcu-
lated from this for subsequent frame.
When binning is enabled, tuning of the AEC may be required. The histogram pixel count
register, R0xB0, may be adjusted to reflect the reduced pixel count. Desired bin register,
R0xA5, may be adjusted as required.
Pixel Clock Speed
The pixel clock speed is same as the master clock (SYSCLK) at 26.66 MHz by default.
However, when column binning 2 or 4 (R0x0D or R0x0E, bit 2 or 3) is enabled, the pixel
clock speed is reduced by half and one-fourth of the master clock speed respectively. See
“Read Mode Options” on page 63 and “Column Binning” on page 65 for additional infor-
mation.
EXP. LPF
(R0xA8)
1
0
1
0
EXP. SKIP
(R0xA6)
Coarse Shutter
Width Total
AEC ENABLE
(R0xAF[0 or 8])
MAX. EXPOSURE (R0xBD)
MIN EXPOSURE (R0xAC)
AEC
UNIT
To exposure
timing control
AEC
OUTPUT
R0xBB
R0xBA
To analog
gain control
HISTOGRAM
GENERATOR
UNIT
AGC
UNIT
GAIN LPF
(R0xAB)
GAIN SKIP
(R0xA9)
MANUAL GAIN
A or B
AGC ENABLE
(R0xAF[1 or 9])
AGC OUTPUT
MAX. GAIN
(R0xAB)
MIN GAIN
DESIRED BIN
(desired luminance)
(R0xA5)
CURRENT BIN
(current luminance)
(R0xBC)
16
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 63 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Hard Reset of Logic
The RC circuit for the MT9V034 uses a 10kΩ resistor and a 0.1μF capacitor. The rise time
for the RC circuit is 1μs maximum.
Soft Reset of Logic
Soft reset of logic is controlled by:
•R0x0C Reset
Bit 0 is used to reset the digital logic of the sensor while preserving the existing two-wire
serial interface configuration. Furthermore, by asserting the soft reset, the sensor aborts
the current frame it is processing and starts a new frame. Bit 1 is a shadowed reset
control register bit to explicitly reset the automatic gain and exposure control feature.
These two bits are self-resetting bits and also return to “0” during two-wire serial inter-
face reads.
STANDBY Control
The sensor goes into standby mode by setting STANDBY to HIGH. Once the sensor
detects that STANDBY is asserted, it completes the current frame before disabling the
digital logic, internal clocks, and analog power enable signal. To release the sensor out
from the standby mode, reset STANDBY back to LOW. The LVDS must be powered to
ensure that the device is in standby mode. See "Appendix A Power-
On Reset and Standby Timing" on page 81 for more information on standby.
Monitor Mode Control
Monitor mode is controlled by:
R0xD9 Monitor Mode Enable
R0xC0 Monitor Mode Image Capture Control
The sensor goes into monitor mode when R0xD9[0] is set to HIGH. In this mode, the
sensor first captures a programmable number of frames (R0xC0), then goes into a sleep
period for five minutes. The cycle of sleeping for five minutes and waking up to capture a
number of frames continues until R0xD9[0] is cleared to return to normal operation.
In some applications when monitor mode is enabled, the purpose of capturing frames is
to calibrate the gain and exposure of the scene using automatic gain and exposure
control feature. This feature typically takes less than 10 frames to settle. In case a larger
number of frames is needed, the value of R0xC0 may be increased to capture more
frames.
During the sleep period, none of the analog circuitry and a very small fraction of digital
logic (including a five-minute timer) is powered. The master clock (SYSCLK) is therefore
always required.
Read Mode Options
(Also see “Output Data Format” on page 12 and “Output Data Timing” on page 13.)
Column Flip
By setting bit 5 of R0x0D or R0x0E the readout order of the columns is reversed, as shown
in Figure 28 on page 64.
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 64 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Row Flip
By setting bit 4 of R0x0D or R0x0E the readout order of the rows is reversed, as shown in
Figure 29 on page 64.
Figure 28: Readout of Six Pixels in Normal and Column Flip Output Mode
Figure 29: Readout of Six Rows in Normal and Row Flip Output Mode
Pixel Binning
In addition to windowing mode in which smaller resolutions (CIF, QCIF) are obtained by
selecting a smaller window from the sensor array, the MT9V034 also provides the ability
to down-sample the entire image captured by the pixel array using pixel binning.
There are two resolution options: binning 2 and binning 4, which reduce resolution by
two or by four, respectively. Row and column binning are separately selected. Image
mirroring options will work in conjunction with binning.
For column binning, either two or four columns are combined by averaging to create the
resulting column. For row binning, the binning result value depends on the difference in
pixel values: for pixel signal differences of less than 200 LSB's, the result is the average of
the pixel values. For pixel differences of greater than 200 LSB's, the result is the value of
the darker pixel value.
Binning operation increases SNR but decreases resolution. Enabling row bin2 and row
bin4 improves frame rate by 2x and 4x, respectively. Column binning does not increase
the frame rate.
LINE_VALID
Normal readout
D
OUT
(9:0)
Reverse readout
D
OUT
(9:0)
P4,1
(9:0)
P4,n
(9:0) P4,n-1
(9:0) P4,n-2
(9:0) P4,n-3
(9:0) P4,n-4
(9:0) P4,n-5
(9:0)
P4,2
(9:0) P4,3
(9:0) P4,4
(9:0) P4,5
(9:0) P4,6
(9:0)
LINE_VALID
Normal readout
DOUT(9:0)
Reverse readout
DOUT(9:0)
Row4
(9:0) Row5
(9:0) Row6
(9:0) Row7
(9:0) Row8
7(9:0) Row9
(9:0)
Row484
(9:0) Row483
(9:0) Row482
(9:0) Row481
(9:0) Row480
7(9:0) Row479
(9:0)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 65 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Row Binning
By setting bit 0 or 1 of R0x0D or R0x0E, only half or one-fourth of the row set is read out,
as shown in Figure 30. The number of rows read out is half or one-fourth of the value set
in R0x03. The row binning result depends on the difference in pixel values: for pixel
signal differences less than 200 LSB's, the result is the average of the pixel values.
For pixel differences of 200 LSB's or more, the result is the value of the darker pixel value.
Column Binning
For column binning, either two or four columns are combined by averaging to create the
result. In setting bit 2 or 3 of R0x0D or R0x0E, the pixel data rate is slowed down by a
factor of either two or four, respectively. This is due to the overhead time in the digital
pixel data processing chain. As a result, the pixel clock speed is also reduced accordingly.
Figure 30: Readout of 8 Pixels in Normal and Row Bin Output Mode
LINE_VALID
Normal readout
D
OUT
(9:0)
Row4
(9:0) Row5
(9:0) Row6
(9:0) Row7
(9:0) Row8
(9:0) Row9
(9:0) Row10
(9:0) Row11
(9:0)
LINE_VALID
Row Bin 2 readout
D
OUT
(9:0)
Row4
(9:0) Row6
(9:0) Row8
(9:0)
LINE_VALID
Row Bin 4 readout
D
OUT
(9:0)
Row4
(9:0) Row8
(9:0)
Row10
(9:0)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 66 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 31: Readout of 8 Pixels in Normal and Column Bin Output Mode
Interlaced Readout
The MT9V034 has two interlaced readout options. By setting R0x07[2:0] = 1, all the even-
numbered rows are read out first, followed by a number of programmable field blanking
rows (set by R0xBF[7:0]), then the odd-numbered rows, and finally the vertical blanking
rows. By setting R0x07[2:0] = 2 only one field row is read out.
Consequently, the number of rows read out is half what is set in the window height
register. The row start register determines which field gets read out; if the row start
register is even, then the even field is read out; if row start address is odd, then the odd
field is read out.
_
Normal readout
DOUT(9:0)
PIXCLK
DOUT(9:0)
PIXCLK
DOUT(9:0)
PIXCLK
D1
(9:0) D2
(9:0) D3
(9:0) D4
(9:0) D5
(9:0) D6
(9:0) D7
(9:0) D8
(9:0)
LINE_VALID
Column Bin 2 readout
D12
(9:0) D34
(9:0) D56
(9:0) D78
(9:0)
LINE_VALID
Column Bin 4 readout
DOUT(9:0)
D1234
(9:0) D5678
(9:0)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 67 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 32: Spatial Illustration of Interlaced Image Readout
When interlaced mode is enabled, the total number of blanking rows are determined by
both Field Blanking register (R0xBF) and Vertical Blanking register (R0x06 or R0xCE).
The followings are their equations.
Field Blanking = R0xBF[7:0] (EQ 22)
Vertical Blanking = R0x06[8:0] – R0xBF[7:0] (context A) or R0xCE[8:0] – R0xBF[7:0] (context B) (EQ 23)
with
minimum vertical blanking requirement = 4 (absolute minimum to operate; see Vertical Blanking Registers
description for VBlank minimums for valid image output) (EQ 24)
Similar to progressive scan, FV is logic LOW during the valid image row only. Binning
should not be used in conjunction with interlaced mode.
P
4,1
P
4,2
P
4,3
.....................................P
4,n-1
P
4,n
P
6,0
P
6,1
P
6,2
.....................................P
6,n-1
P
6,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
P
m-2,0
P
m-2,2
.....................................P
m-2,n-2
P
m-2,n
P
m,2
P
m,2
.....................................P
m,n-1
P
m,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ............................................................................................. 00 00 00
00 00 00 ............................................................................................. 00 00 00
VALID IMAGE - Even Field HORIZONTAL
BLANKING
VERTICAL BLANKING
P
5,1
P
5,2
P
5,3
.....................................P
5,n-1
P
5,n
P
7,0
P
7,1
P
7,2
.....................................P
7,n-1
P
7,n
P
m-3,1
P
m-3,2
.....................................P
m-3,n-1
P
m-3,n
P
m,1
P
m,1
.....................................P
m,n-1
P
m,n
VALID IMAGE - Odd Field
FIELD BLANKING
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 68 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
LINE_VALID
By setting bit 2 and 3 of R0x72, the LV signal can get three different output formats. The
formats for reading out four rows and two vertical blanking rows are shown in Figure 33.
In the last format, the LV signal is the XOR between the continuous LV signal and the FV
signal.
Figure 33: Different LINE_VALID Formats
LVDS Serial (Stand-Alone/Stereo) Output
The LVDS interface allows for the streaming of sensor data serially to a standard off-the-
shelf deserializer up to eight meters away from the sensor. The pixels (and controls) are
packeted—12-bit packets for stand-alone mode and 18-bit packets for stereoscopy
mode. All serial signalling (CLK and data) is LVDS. The LVDS serial output could either
be data from a single sensor (stand-alone) or stream-merged data from two sensors (self
and its stereoscopic slave pair). The appendices describe in detail the topologies for
both stand-alone and stereoscopic modes.
There are two standard deserializers that can be used. One for a stand-alone sensor
stream and the other from a stereoscopic stream. The deserializer attached to a stand-
alone sensor is able to reproduce the standard parallel output (8-bit pixel data, LV, FV,
and PIXCLK). The deserializer attached to a stereoscopic sensor is able to reproduce 8-
bit pixel data from each sensor (with embedded LV and FV) and pixel-clk. An additional
(simple) piece of logic is required to extract LV and FV from the 8-bit pixel data. Irrespec-
tive of the mode (stereoscopy/stand-alone), LV and FV are always embedded in the pixel
data.
In stereoscopic mode, the two sensors run in lock-step, implying all state machines are
in the same state at any given time. This is ensured by the sensor-pair getting their sys-
clks and sys-resets in the same instance. Configuration writes through the two-wire
serial interface are done in such a way that both sensors can get their configuration
updates at once. The inter-sensor serial link is designed in such a way that once the slave
PLL locks and the data-dly, shft-clk-dly and stream-latency-sel are configured, the
master sensor streams valid stereo content irrespective of any variation voltage and/or
temperature as long as it is within specification. The configuration values of data-dly,
shft-clk-dly and stream-latency-sel are either predetermined from the board-layout or
can be empirically determined by reading back the stereo-error flag. This flag is asserted
when the two sensor streams are not in sync when merged. The combo_reg is used for
out-of-sync diagnosis.
Default
FRAME_VALID
LINE_VALID
Continuously
FRAME_VALID
LINE_VALID
XOR
FRAME_VALID
LINE_VALID
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 69 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Figure 34: Serial Output Format for a 6x2 Frame
Notes: 1. External pixel values of 0, 1, 2, 3, are reserved (they only convey control information). Any raw pixel of
value 0, 1, 2 and 3 will be substituted with 4.
2. The external pixel sequence 1023, 0, 1023 is a reserved sequence (conveys control information for legacy
support of MT9V021 applications). Any raw pixel sequence of 1023, 0, 1023 will be substituted with an
output serial stream of 1023, 4, 1023.
LVDS Output Format
In stand-alone mode, the packet size is 12 bits (2 frame bits and 10 payload bits); 10-bit
pixels or 8-bit pixels can be selected. In 8-bit pixel mode (R0xB6[0] = 0), the packet
consists of a start bit, 8-bit pixel data (with sync codes), the line valid bit, the frame valid
bit and the stop bit. For 10-bit pixel mode (R0xB6[0] = 1), the packet consists of a start
bit, 10-bit pixel data, and the stop bit.
In stereoscopic mode, the packet size is 18 bits (2 frame bits and 16 payload bits). The
packet consists of a start bit, the master pixel byte (with sync codes), the slave byte (with
sync codes), and the stop bit.
Table 10: LVDS Packet Format in Stand-Alone Mode
(Stereoscopy Mode Bit De-Asserted)
12-Bit Packet
use_10-bit_pixels Bit
De-Asserted
(8-Bit Mode) use_10-bit_pixels Bit Asserted
(10-Bit Mode)
Bit[0] 1'b1 (Start bit) 1'b1 (Start bit)
Bit[1] PixelData[2] PixelData[0]
Bit2] PixelData[3] PixelData[1]
Bit[3] PixelData[4] PixelData[2]
Bit4] PixelData[5] PixelData[3]
Bit[5] PixelData[6] PixelData[4]
Bit[6] PixelData[7] PixelData[5]
Bit[7] PixelData[8] PixelData[6]
Bit[8] PixelData[9] PixelData[7]
Bit[9] LINE_VALID PixelData[8]
Bit[10] FRAME_VALID PixelData[9]
Bit[11] 1'b0 (Stop bit) 1'b0 (Stop bit)
Internal
PIXCLK
Internal
Parallel
Data
Internal
Line_Valid
Internal
Frame_Valid
External
Serial
Data Out
P41 P43P42 P44 P45 P46 P54 P55 P56P52P51 P53
1023 102301P41 P42 P46 21
P44P43 P45 P51 P52
P56
2
P54P53 P55
3
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 70 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
Control signals LV and FV can be reconstructed from their respective preceding and
succeeding flags that are always embedded within the pixel data in the form of reserved
words.
When LVDS mode is enabled along with column binning (bin 2 or bin 4, R0x0D[3:2], the
packet size remains the same but the serial pixel data stream repeats itself depending on
whether 2X or 4X binning is set:
For bin 2, LVDS outputs double the expected data (post-binning pixel 0,0 is output
twice in sequence, followed by pixel 0,1 twice, . . .).
For bin 4, LVDS outputs 4 times the expected data (pixel 0,0 is output 4 times in
sequence followed by pixel 0,1 times 4, . . .).
The receiving hardware will need to undersample the output stream getting data either
every 2 clocks (bin 2) or every 4 (bin 4) clocks.
If the sensor provides a pixel whose value is 0,1, 2, or 3 (that is, the same as a reserved
word) then the outgoing serial pixel value is switched to 4.
Table 11: LVDS Packet Format in Stereoscopy Mode (Stereoscopy Mode Bit Asserted)
18-bit Packet Function
Bit[0] 1'b1 (Start bit)
Bit[1] MasterSensorPixelData[2]
Bit[2] MasterSensorPixelData[3]
Bit[3] MasterSensorPixelData[4]
Bit[4] MasterSensorPixelData[5]
Bit[5] MasterSensorPixelData[6]
Bit[6] MasterSensorPixelData[7]
Bit[7] MasterSensorPixelData[8]
Bit[8] MasterSensorPixelData[9]
Bit[9] SlaveSensorPixelData[2]
Bit[10] SlaveSensorPixelData[3]
Bit[11] SlaveSensorPixelData[4]
Bit[12] SlaveSensorPixelData[5]
Bit[13] SlaveSensorPixelData[6]
Bit[14] SlaveSensorPixelData[7]
Bit[15] SlaveSensorPixelData[8]
Bit[16] SlaveSensorPixelData[9]
Bit[17] 1'b0 (Stop bit)
Table 12: Reserved Words in the Pixel Data Stream
Pixel Data Reserved Word Flag
0 Precedes frame valid assertion
1 Precedes line valid assertion
2 Succeeds line valid de-assertion
3 Succeeds frame valid de-assertion
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 71 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
LVDS Enable and Disable
The Table 13 and Table 14 further explain the state of the LVDS output pins depending
on LVDS control settings. When the LVDS block is not used, it may be left powered down
to reduce power consumption.
Note: ERROR pin: When sensor is not in stereo mode, ERROR pin is at LOW.
Table 13: SER_DATAOUT_* state
R0xB1[1]
LVDS power down R0xB3[4]
LVDS data power down SER_DATAOUT_*
00Active
01Active
10Z
11Z
Table 14: SHFT_CLK_* state
R0xB1[1]
LVDS power down R0xB2[4]
LVDS shift-clk power down SHFT_CLKOUT_*
00Active
01Z
10Z
11Z
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 72 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Feature Description
Aptina Confidential and Proprietary
LVDS Data Bus Timing
The LVDS bus timing waveforms and timing specifications are shown in Table 15 and
Figure 35.
Figure 35: LVDS Timing
Table 15: LVDS AC Timing Specifications
VPWR = 3.3V ±0.3V; TJ = – 30°C to +70°C; output load = 100 Ω; frequency 27 MHz
Parameter Minimum Typical Maximum Unit
LVDS clock rise time 0.22 0.30 ns
LVDS clock fall time 0.22 0.30 ns
LVDS data rise time 0.28 0.30 ns
LVDS data fall time 0.28 0.30 ns
LVDS data setup time 0.3 0.67 ns
LVDS data hold time 0.1 1.34 ns
LVDS clock jitter 92 ps
Data Rise/Fall Time
(10% - 90%) Data Setup Time Data Hold Time
LVDS Data Output
(SER_DATAOUT_N/P)
LVDS Clock Output
(Shft_CLKOUT_N/P)
Clock Rise/Fall Time
(10% - 90%)
Clock Jitter
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 73 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Electrical Specifications
Table 16: DC Electrical Characteristics Over Temperature
VPWR = 3.3V ±0.3V; TJ = – 30°C to +70°C; Output load = 10pF; Frequency 13 MHz to 27 MHz; LVDS off
Symbol Definition Condition Min. Typ. Max. Unit
VIH Input HIGH voltage VPWR - 1.4 V
VIL Input LOW voltage 1.3 V
IIN Input leakage current No pull-up resistor;
VIN = VPWR or VGND
-5 5 μA
VOH Output HIGH voltage IOH = –4.0mA VPWR - 0.3 V
VOL Output LOW voltage IOL = 4.0mA 0.3 V
IOH Output HIGH current VOH = VDD - 0.7 -11 mA
IOL Output LOW current VOL = 0.7 11 mA
IPWRA Analog supply current Default settings 12 20 mA
IPIX Pixel supply current Default settings 1.1 3 mA
IPWRD Digital supply current Default settings, CLOAD = 10pF 42 60 mA
ILVDS LVDS supply current Default settings with LVDS on 13 16 mA
IPWRA
Standby
Analog standby supply current STDBY = VDD –0.23μA
IPWRD
Standby
Clock Off
Digital standby supply current with
clock off
STDBY = VDD, CLKIN = 0 MHz 0.1 10 μA
IPWRD
Standby
Clock On
Digital standby supply current with
clock on
STDBY= VDD, CLKIN = 27 MHz 1 2 mA
Table 17: DC Electrical Characteristics
VPWR = 3.3V ±0.3V; TA = Ambient = 25°C
Symbol Definition Condition Min. Typ. Max. Unit
LVDS Driver DC Specifications
|VOD| Output differential voltage
RLOAD = 100
Ω±1%
250 400 mV
|DVOD| Change in VOD between
complementary output states
––50mV
VOS Output offset voltage 1.0 1.2 1.4 mV
DVOS Pixel array current 35 mV
IOS Digital supply current ±10 mA
IOZ Output current when driver is tri-
state
±1μA
LVDS Receiver DC Specifications
VIDTH+ Input differential | VGPD| < 925mV –100 100 mV
Iin Input current ±20 μA
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 74 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Note: This is a stress rating only, and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect
reliability.
Table 18: Absolute Maximum Ratings
Caution Stresses greater than those listed may cause permanent damage to the device.
Symbol Parameter Min. Max. Unit
VSUPPLY Power supply voltage (all supplies) –0.3 4.5 V
ISUPPLY Total power supply current 200 mA
IGND Total ground current 200 mA
VIN DC input voltage –0.3 VDD + 0.3 V
VOUT DC output voltage –0.3 VDD + 0.3 V
TSTGNote: Storage temperature –40 +125 °C
Table 19: AC Electrical Characteristics
VPWR = 3.3V ±0.3V; TJ = – 30°C to +70°C; Output Load = 10pF
Symbol Definition Condition Min. Typ. Max. Unit
SYSCLK Input clock frequency Note 1 13.0 26.6 27.0 MHz
Clock duty cycle 45.0 50.0 55.0 %
tR Input clock rise time 3 5 ns
tF Input clock fall time 3 5 ns
tPLHPSYSCLK to PIXCLK propagation delay CLOAD = 10pF 4 6 8 ns
tPD PIXCLK to valid DOUT(9:0) propagation delay CLOAD = 10pF –3 0.6 3 ns
tSD Data setup time 14 16 ns
tHD Data hold time 14 16
tPFLR PIXCLK to LV propagation delay CLOAD = 10pF 5 7 9 ns
tPFLF PIXCLK to FV propagation delay CLOAD = 10pF 5 7 9 ns
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 75 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Propagation Delays for PIXCLK and Data Out Signals
The pixel clock is inverted and delayed relative to the master clock. The relative delay
from the master clock (SYSCLK) rising edge to both the pixel clock (PIXCLK) falling edge
and the data output transition is typically 7ns. Note that the falling edge of the pixel
clock occurs at approximately the same time as the data output transitions. See Table 19
for data setup and hold times.
Figure 36: Propagation Delays for PIXCLK and Data Out Signals
Propagation Delays for FRAME_VALID and LINE_VALID Signals
The LV and FV signals change on the same rising master clock edge as the data output.
The LV goes HIGH on the same rising master clock edge as the output of the first valid
pixel's data and returns LOW on the same master clock rising edge as the end of the
output of the last valid pixel's data.
As shown in the “Output Data Timing” on page 13, FV goes HIGH 143 pixel clocks before
the first LV goes HIGH. It returns LOW 23 pixel clocks after the last LV goes LOW.
Figure 37: Propagation Delays for FRAME_VALID and LINE_VALID Signals
t
PD
t
R
t
F
t
PLH
P
t
HD
t
SD
SYSCLK
PIXCLK
D
OUT
(9:0)
PIXCLK
FRAME_VALID
LINE_VALID
tPFLF
tPFLR
PIXCLK
FRAME_VALID
LINE_VALID
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 76 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Two-Wire Serial Bus Timing
Detailed timing waveforms and parameters for the two-wire serial interface bus are
shown in Figure and Table 20.
Figure 38: Two-wire Serial Bus Timing
Table 20: Two-Wire Serial Bus Timing Parameters
Test Conditions: 25°C, 26.67 MHz, and 3.3V
Symbol Parameter Condition Min. Typ. Max. Unit
fSCLK Serial interface input clock frequency 400 kHz
tSCLK Serial Input clock period 2.5 μsec
SCLK duty cycle When active 40 50 60 %
tr_sclk SCLK rise time 165 ns
tf_sclk SCLK fall time 6 ns
tr_sdat SDATA rise time 1.5 kΩ pull-up 180 ns
tf_sdat SDATA fall time 9 ns
tSRTS Start setup time WRITE/READ 148 150 167 ns
tSRTH Start hold time WRITE/READ 36.9 36 37.6 ns
tSDSW SDATA setup WRITE 0 5 12 ns
tSDHW SDATA hold WRITE 1.3 36 37 ns
tASW ACK setup time WRITE 146 146 148 ns
tAHW ACK hold time WRITE 98.9 107 144 ns
tSTPS Stop setup time WRITE/READ 624 ns
tSTPH Stop hold time WRITE/READ 1.61 ns
tASR ACK setup time READ 192 228 229 ns
tAHR ACK hold time READ 247 284 287 ns
tSDSR SDATA setup READ 654 655 690 ns
tSDHR SDATA hold READ 560 595 596 ns
CIN_SI Serial interface input pin capacitance 3.5 pF
CLOAD_SD SDATA max load capacitance 15 pF
RSD SDATA external pull-up resistor 1.5 kΩ
SCLK
S
DATA
SCLK
S
DATA
Read Start
Write Start
ACK
ACK Stop
tr_clk tf_clk tr_sdat tf_sdat
90% 90%
10% 10%
t
SRTH
t
SCLK
t
SCHW
t
SDSW
t
ASR
t
AHR
t
STPS
t
STPH
Register Value
Bit 0
Register Address
Bit 7
Register Value
Bit 0
Register Value
Bit 7
Write Address
Bit 7
Write Address
Bit 0
Read Address
Bit 7
Read Address
Bit 0
t
ASW
t
AHW
t
SHDR
t
SDSR
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 77 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Minimum Master Clock Cycles
In addition to the AC timing requirements described in Table 20 on page 76, the
two-wire serial bus operation also requires certain minimum master clock cycles
between transitions. These are specified in Figures 39 through 44, in units of master
clock cycles.
Figure 39: Serial Host Interface Start Condition Timing
Figure 40: Serial Host Interface Stop Condition Timing
Note: All timing are in units of master clock cycle.
Figure 41: Serial Host Interface Data Timing for Write
Note: SDATA is driven by an off-chip transmitter.
SCLK
4
SDATA
4
SCLK
4
SDATA
4
SCLK
4
SDATA
4
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 78 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Figure 42: Serial Host Interface Data Timing for Read
Note: SDATA is pulled LOW by the sensor, or allowed to be pulled HIGH by a pull-up resistor off-chip.
Figure 43: Acknowledge Signal Timing After an 8-Bit WRITE to the Sensor
Figure 44: Acknowledge Signal Timing After an 8-Bit READ from the Sensor
Note: After a READ, the master receiver must pull down SDATA to acknowledge receipt of data bits. When read
sequence is complete, the master must generate a “No Acknowledge” by leaving SDATA to float HIGH.
On the following cycle, a start or stop bit may be used.
SCLK
5
SDATA
SCLK
Sensor pulls down
S
DATA
pin
6
S
DATA
3
SCLK
Sensor tri-states SDATA pin
(turns off pull down)
7
SDATA
6
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 79 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Electrical Specifications
Aptina Confidential and Proprietary
Figure 45: Typical Quantum EfficiencyColor
Figure 46: Typical Quantum EfficiencyMonochrome
0
5
10
15
20
25
30
35
40
45
1150350 450 550 650 750 850 950 1050
Wavelength (nm)
Quantum Efficiency (%)
Blue
Green (B)
Green (R)
Red
0
10
20
30
40
50
60
350 450 550 650 750 850 950 1050 1150
Wavelength (nm)
Quantum Efficiency (%)
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 80 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Package Dimensions
Aptina Confidential and Proprietary
Package Dimensions
Figure 47: 48-Pin CLCC Package Outline Drawing
Notes: 1. All dimensions in millimeters.
2. Optical center = Package center.
Seating
plane
4.4
11.43
5.215 5.715
Lid material: borosilicate glass 0.55 thickness
Wall material: alumina ceramic
Substrate material: alumina ceramic 0.7 thickness
8.8
4.4 5.715
4.84
5.215
0.8
TYP 1.75
0.8 TYP
8.8
48 1
10.9 ±0.1
CTR
47X
1.0 ±0.2
48X R 0.15
48X
0.40 ±0.05
11.43 10.9 ±0.1
CTR
Lead finish:
Au plating, 0.50 microns
minimum thickness
over Ni plating, 1.27 microns
minimum thickness
2.3 ±0.2
1.7
Note: 1. Optical center = package center.
First
clear
pixel
Optical
center
1
CA
B
Optical
area
Optical area:
Maximum rotation of optical area relative to package edges: 1º
Maximum tilt of optical area relative to
seating plane A : 50 microns
Maximum tilt of optical area relative to
top of cover glass D : 100 microns
A
D
0.90
for reference only
1.400 ±0.125
0.35
for reference only
V CTR
Ø0.20 A B C
H CTR
Ø0.20 A B C
Image
sensor die:
0.675 thickness
0.10 A0.05
0.24X
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 81 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Appendix A Power-On Reset and Standby Timing
Aptina Confidential and Proprietary
Appendix A Power-On Reset and Standby Timing
There are no constraints concerning the order in which the various power supplies are
applied; however, the MT9V034 requires reset in order operate properly at power-up.
Refer to Figure 48 for the power-up, reset, and standby sequences.
Figure 48: Power-up, Reset, Clock and Standby Sequence
Notes: 1. All output signals are defined during initial power-up with RESET_BAR held LOW without SYSCLK being
active. To properly reset the rest of the sensor, during initial power-up, assert RESET_BAR (set to LOW
state) for at least 750ns after all power supplies have stabilized and SYSCLK is active (being clocked).
Driving RESET_BAR to LOW state does not put the part in a low power state.
2. Before using two-wire serial interface, wait for 10 SYSCLK rising edges after RESET_BAR is de-asserted.
3. Once the sensor detects that STANDBY has been asserted, it completes the current frame readout before
entering standby mode. The user must supply enough SYSCLKs to allow a complete frame readout. See
Table 4,Frame Time, on page 13 for more information.
4. In standby, all video data and synchronization output signals are High-Z.
5. In standby, the two-wire serial interface is not active.
SYSCLK
Two-Wire Serial I/F
SCLK, SDATA
RESET_BAR
VDD, VDDLVDS,
VAA, VAAPIX
DATA OUTPUT
STANDBY
MIN 10 SYSCLK cycles
Pre-Standby
Standby
Wake
up Active
Driven = 0
Low-Powernon-Low-Power
Does not
respond to
serial
interface
when
STANDBY = 1
DOUT[9:0]
Power
up
non-Low-Power
MIN 20 SYSCLK cycles
MIN 10 SYSCLK cycles
Active Power
down
DOUT[9:0]
Driven = 0
Note 3
MIN 10 SYSCLK cycles
10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com
Aptina, Aptina Imaging, and the Aptina logo are the property of Aptina Imaging Corporation
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final,
these specifications are subject to change, as further product development and data characterization sometimes occur.
MT9V034: 1/3-Inch Wide-VGA Digital Image Sensor
Revision History
PDF:6981573426/Source: 7298095240 .
MT9V034_DS - Rev. D Pub. 5/12 EN 82 ©2008 Aptina Imaging Corporation All rights reserved.
Aptina Confidential and Proprietary
Revision History
REv. D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/12
Updated trademarks
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11/10
Applied updated Aptina template
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9/10
Updated to Aptina template
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10/08
•Initial release