September 2013 Doc ID 17387 Rev 2 1/28
1
VNQ810P-E
Quad channel high-side driver
Features
ECOPACK®: lead free and RoHS compliant
Automotive Grade: compliance with AEC
guidelines
Very low standby current
CMOS compatible input
On-state open-load detection
Off-state open-load detection
Thermal shutdown protection and diagnosis
Undervoltage shutdown
Overvoltage clamp
Output stuck to VCC detection
Load current limitation
Reverse battery protection
Electrostatic discharge protection
Description
The VNQ810P-E is a quad HSD formed by
assembling two VND810P-E chips in the same
SO-28 package. The VNQ810P-E is a monolithic
device made by using STMicroelectronics
VIPower™ M0-3 technology, intended for driving
any kind of load with one side connected to
ground. Active VCC pin voltage clamp protects the
device against low energy spikes (see ISO7637
transient compatibility table).
Active current limitation combined with thermal
shutdown and automatic restart protects the
device against overload. The device detects
open-load condition both in on and off-state.
Output shorted to VCC is detected in the off-state.
Device automatically turns off in case of ground
pin disconnection.
Type RDS(on) IOUT VCC
VNQ810P-E 160mΩ(1)
1. Per each channel.
3.5A(1) 36V
SO-28 (double island)
Table 1. Device summary
Package
Order codes
Tube Tape and reel
SO-28 (double island) VNQ810P-E VNQ810PTR-E
www.st.com
Contents VNQ810P-E
2/28 Doc ID 17387 Rev 2
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 17
3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 17
3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 18
3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . . 20
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 SO-28 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 SO-28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 SO-28 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
VNQ810P-E List of tables
Doc ID 17387 Rev 2 3/28
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 9. Switching (VCC = 13V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 10. Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 12. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 13. Electrical transient requirements on VCC pin (part 1/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 14. Electrical transient requirements on VCC pin (part 2/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 15. Electrical transient requirements on VCC pin (part 3/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 16. Thermal calculation according to the PCB heatsink area . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 17. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 18. SO-28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 19. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
List of figures VNQ810P-E
4/28 Doc ID 17387 Rev 2
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Status timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Switching time Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Off-state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 14. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. On-state resistance vs Tcase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 19. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 20. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 21. Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 22. Open-load off-state voltage detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 23. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 24. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 25. Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 26. SO-28 (double island) maximum turn-off current versus load inductance . . . . . . . . . . . . . 20
Figure 27. SO-28 double island PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 28. Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 22
Figure 29. SO-28 thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 30. Thermal fitting model of a quad channel HSD in SO-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 31. SO-28 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 32. SO-28 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 33. SO-28 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
VNQ810P-E Block diagram and pin description
Doc ID 17387 Rev 2 5/28
1 Block diagram and pin description
Figure 1. Block diagram
OVERTEMP. 1
VCC1,2
GND1,2
INPUT1 OUTPUT1
OVERVOLTAGE
LOGIC
DRIVER 1
STATUS1
Vcc
CLAMP
UNDERVOLTAGE
CLAMP 1
OPENLOAD ON 1
CURRENT LIMITER 1
OPENLOAD OFF 1
OUTPUT2
DRIVER 2
CLAMP 2
OPENLOAD ON 2
OPENLOAD OFF 2
OVERTEMP. 2
INPUT2
STATUS2
CURRENT LIMITER 2
OVERTEMP. 3
VCC3,4
GND3,4
INPUT3 OUTPUT3
OVERVOLTAGE
LOGIC
DRIVER 3
STATU S3
Vcc
CLAMP
UNDERVOLTAGE
CLAMP 3
OPENLOAD ON 3
CURRENT LIMITER 3
OPENLOAD OFF 3
OUTPUT4
DRIVER 4
CLAMP 4
OPENLOAD ON 4
OPENLOAD OFF 4
OVERTEMP. 4
INPUT4
STATUS4
CURRENT LIMITER 4
Block diagram and pin description VNQ810P-E
6/28 Doc ID 17387 Rev 2
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection / pin Status N.C. Output Input
Floating X X X X
To ground X Through 10 KΩ
resistor
VCC1,2
GND 1,2
INPUT1
STATUS1
STATUS2
VCC1,2
VCC3,4
GND 3,4
INPUT3
STATUS3
VCC3,4 VCC3,4
OUTPUT4
OUTPUT4
OUTPUT4
OUTPUT3
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT1
VCC1,2
OUTPUT3
OUTPUT3
OUTPUT1
OUTPUT1
INPUT2
STATUS4
INPUT4
1
14 15
28
VNQ810P-E Electrical specifications
Doc ID 17387 Rev 2 7/28
2 Electrical specifications
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the Ta bl e 5 may cause permanent damage to
the device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics SURE program and other relevant quality
document.
2.2 Thermal data
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
VCC DC supply voltage 41 V
-VCC Reverse DC supply voltage -0.3 V
-IGND DC reverse ground pin current -200 mΑ
IOUT DC output current Internally limited A
-IOUT Reverse DC output current -6 A
IIN DC input current +/-10 mA
ISTAT DC Status current +/-10 mA
VESD
Electrostatic discharge (human body model: R = 1.5 KΩ;
C=100pF)
- INPUT
- STATUS
- OUTPUT
- VCC
4000
4000
5000
5000
V
V
V
V
EMAX
Maximum switching energy
(L = 2.5 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C; IL = 9 A) 23 mJ
Ptot Power dissipation (per island) at Tlead = 25°C 6.25 W
TjJunction operating temperature Internally limited °C
Tstg Storage temperature - 55 to 150 °C
Table 4. Thermal data (per island)
Symbol Parameter Value Unit
Rthj-lead Thermal resistance junction-lead 20 °C/W
Rthj-amb Thermal resistance junction-ambient (one chip ON) 60(1)
1. When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35 µm thick) connected
to all VCC pins. Horizontal mounting and no artificial air flow.
44(2)
2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 µm thick) connected to
all VCC pins. Horizontal mounting and no artificial air flow.
°C/W
Rthj-amb Thermal resistance junction-ambient (two chips ON) 46(1) 31(2) °C/W
Electrical specifications VNQ810P-E
8/28 Doc ID 17387 Rev 2
2.3 Electrical characteristics
Values specified in this section are for 8 V < VCC < 36 V; -40 °C < Tj < 150 °C, unless
otherwise stated.
Figure 3. Current and voltage conventions
1. VFn = VCCn - VOUTn during reverse battery condition.
Table 5. Power output
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC(1)
1. Per island.
Operating supply voltage 5.5 13 36 V
VUSD(1) Undervoltage shutdown 3 4 5.5 V
VOV(1) Overvoltage shutdown 36 V
RON On-state resistance IOUT = 1 A; Tj = 25 °C
IOUT = 1 A; VCC > 8 V
160
320
mΩ
mΩ
IS Supply current
Off-state; VCC = 13 V;
VIN = VOUT = 0 V 12 40 µA
Off-state; VCC = 13 V;
VIN = VOUT = 0 V; Tj = 25 °C 12 25 µA
On-state; VCC = 13 V; VIN = 5 V;
IOUT =0A 57mA
IL(off1) Off-state output current VIN = VOUT = 0 V 0 50 µA
IL(off2) Off-state output current VIN = 0V; VOUT = 3.5 V -75 0 µA
IL(off3) Off-state output current VIN = VOUT = 0V; VCC = 13 V;
Tj=12C A
IL(off4) Off-state output current VIN = VOUT = 0V; VCC = 13 V;
Tj=2C A
I
S1,2
I
GND1,2
OUTPUT3
V
CC1,2
GND
1,2
INPUT2
I
OUT3
V
CC1,2
V
OUT4
OUTPUT2
I
OUT2
V
OUT3
INPUT1
I
IN1
STATUS1
I
STAT1
OUTPUT1
I
OUT1
OUTPUT4
I
OUT4
V
OUT2
V
OUT1
I
IN2
I
STAT2
I
STAT3
I
IN4
I
STAT4
STATUS2
STATUS3
STATUS4
INPUT3
INPUT4
V
STAT4
V
IN4
V
STAT3
V
IN3
V
STAT2
I
IN3
V
IN2
V
STAT1
V
IN1
I
GND3,4
GND
3,4
I
S3,4
V
CC3,4
V
CC3,4
V
F1 (1)
VNQ810P-E Electrical specifications
Doc ID 17387 Rev 2 9/28
Table 6. Protections(1)
Symbol Parameter Test conditions Min. Typ. Max. Unit
TTSD Shutdown temperature 150 175 200 °C
TRReset temperature 135 °C
Thyst Thermal hysteresis 7 15 °C
tSDL
Status delay in overload
conditions Tj > TTSD 20 µs
Ilim Current limitation VCC = 13 V 3.5 5 7.5 A
5.5 V < VCC < 36 V 7.5 A
Vdemag Turn-off output clamp voltage IOUT = 1A; L = 6mH VCC-41 VCC-48 VCC-55 V
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device is subjected to
abnormal conditions, this software must limit the duration and number of activation cycles.
Table 7. VCC - output diode
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFForward on voltage -IOUT = 0.5 A; Tj = 150 °C - - 0.6 V
Table 8. Status pin
Symbol Parameter Test conditions Min. Typ. Max. Unit
VSTAT Status low output voltage ISTAT = 1.6mA 0.5 V
ILSTAT Status leakage current Normal operation; VSTAT = 5 V 10 µA
CSTAT Status pin Input capacitance Normal operation; VSTAT = 5 V 100 pF
VSCL Status clamp voltage ISTAT = 1 mA 6 6.8 8 V
ISTAT = - 1 mA -0.7 V
Table 9. Switching (VCC = 13V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
td(on) Turn-on delay time RL = 13 Ω from VIN rising edge
to VOUT = 1.3 V -30 -µs
td(off) Turn-off delay time RL = 13 Ω from VIN falling
edge to VOUT = 11.7 V -30 -µs
dVOUT/dt(on) Turn-on voltage slope RL = 13 Ω from VOUT = 1.3 V
to VOUT = 10.4 V -See
Figure 10 -V/µs
dVOUT/dt(off) Turn-off voltage slope RL = 13 Ω from VOUT = 11.7 V
to VOUT = 1.3 V -See
Figure 12 -V/µs
Electrical specifications VNQ810P-E
10/28 Doc ID 17387 Rev 2
Figure 4. Status timings
Table 10. Open-load detection
Symbol Parameter Test conditions Min. Typ. Max. Unit
IOL Open-load on-state detection threshold VIN = 5 V 20 40 80 mA
tDOL(on) Open-load on-state detection delay IOUT = 0 A 200 µs
VOL
Open-load off-state voltage detection
threshold VIN = 0 V 1.5 2.5 3.5 V
tDOL(off) Open-load detection delay at turn-off 1000 µs
Table 11. Logic inputs
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Input low level 1.25 V
IIL Low level input current VIN = 1.25 V 1 µA
VIH Input high level 3.25 V
IIH High level input current VIN = 3.25 V 10 µA
VI(hyst) Input hysteresis voltage 0.5 V
VICL Input clamp voltage IIN = 1 mA 6 6.8 8 V
IIN = -1 mA - 0.7 V
V
INn
V
STATn
t
DOL(off)
OPEN LOAD STATUS TIMING (with external pull-up)
V
INn
V
STATn
OVER TEMP STATUS TIMING
t
SDL
t
SDL
I
OUT
< I
OL
V
OUT
> V
OL
t
DOL(on)
T
j
> T
TSD
VNQ810P-E Electrical specifications
Doc ID 17387 Rev 2 11/28
Figure 5. Switching time Waveforms
Table 12. Truth table
Conditions Input Output Sense
Normal operation L
H
L
H
H
H
Current limitation
L
H
H
L
X
X
H
(Tj < TTSD) H
(Tj > TTSD) L
Overtemperature L
H
L
L
H
L
Undervoltage L
H
L
L
X
X
Overvoltage L
H
L
L
H
H
Output voltage > VOL
L
H
H
H
L
H
Output current < IOL
L
H
L
H
H
L
Electrical specifications VNQ810P-E
12/28 Doc ID 17387 Rev 2
Table 13. Electrical transient requirements on VCC pin (part 1/3)
ISO T/R
7637/1
Test pulse
Test levels
I II III IV Delays and impedance
1 - 25V - 50V - 75V - 100V 2ms, 10Ω
2 + 25V + 50V + 75V + 100V 0.2ms, 10Ω
3a - 25V - 50V - 100V - 150V 0.1µs, 50Ω
3b + 25V + 50V + 75V + 100V 0.1µs, 50Ω
4 - 4V - 5V - 6V - 7V 100ms, 0.01Ω
5 + 26.5V + 46.5V + 66.5V + 86.5V 400ms, 2Ω
Table 14. Electrical transient requirements on VCC pin (part 2/3)
ISO T/R
7637/1
Test pulse
Test levels results
IIIIIIIV
1C C C C
2C C C C
3a C C C C
3b C C C C
4C C C C
5C E E E
Table 15. Electrical transient requirements on VCC pin (part 3/3)
Class Contents
CAll functions of the device are performed as designed after exposure to
disturbance.
EOne or more functions of the device is not performed as designed after exposure
and cannot be returned to proper operation without replacing the device.
VNQ810P-E Electrical specifications
Doc ID 17387 Rev 2 13/28
Figure 6. Waveforms
Open-load without external pull-up
STATUSn
INPUTn
Normal operation
Undervoltage
VCC
VUSD
V
USDhyst
INPUTn
Overvoltage
VCC
VCC > VOV
STATUSn
INPUTn
STATUSn
STATUSn
INPUTn
STATUSn
INPUTn
Open-load with external pull-up
undefined
Overtemperature
INPUTn
STATUSn
TTSD
TR
Tj
OUTPUT VOLTAGEn
VCC<VOV
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
VOUT > VOL
VOL
Electrical specifications VNQ810P-E
14/28 Doc ID 17387 Rev 2
2.4 Electrical characteristics curves
Figure 7. Off-state output current Figure 8. High level input current
Figure 9. Input clamp voltage Figure 10. Status leakage current
Figure 11. Status low output voltage Figure 12. Status clamp voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
0.16
0.32
0.48
0.64
0.8
0.96
1.12
1.28
1.44
1.6
IL(off1) (uA)
Off state
Vcc=36V
Vin=Vout=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Iih (uA)
Vin=3.25V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vicl (V)
Iin=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.01
0.02
0.03
0.04
0.05
Ilstat (uA)
Vstat=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Vstat (V)
Istat=1.6mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vscl (V)
Istat=1mA
VNQ810P-E Electrical specifications
Doc ID 17387 Rev 2 15/28
Figure 13. Overvoltage shutdown Figure 14. ILIM vs Tcase
Figure 15. Turn-on voltage slope Figure 16. Turn-off voltage slope
Figure 17. On-state resistance vs Tcase Figure 18. On-state resistance vs VCC
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
30
32
34
36
38
40
42
44
46
48
50
Vov (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
1
2
3
4
5
6
7
8
9
10
Ilim (A)
Vcc=13V
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
100
200
300
400
500
600
700
800
900
1000
dVout/dt(on) (V/ms)
Vcc=13V
Rl=13Ohm
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
50
100
150
200
250
300
350
400
450
500
dVout/dt(off) (V/ms)
Rl=13Ohm
5 10152025303540
Vcc (V)
50
75
100
125
150
175
200
225
250
275
300
Ron (mOhm)
Iout=0.5A
Tc= - 40°C
Tc= 25°C
Tc= 150°C
Electrical specifications VNQ810P-E
16/28 Doc ID 17387 Rev 2
Figure 19. Input high level Figure 20. Input low level
Figure 21. Open-load on-state detection
threshold
Figure 22. Open-load off-state voltage
detection threshold
Figure 23. Input hysteresis voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
10
15
20
25
30
35
40
45
50
55
60
Iol (mA)
Vcc=13V
Vin=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Vol (V)
Vin=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
Vhyst (V)
VNQ810P-E Application information
Doc ID 17387 Rev 2 17/28
3 Application information
Figure 24. Application schematic
Note: Channels 3 and 4 have the same internal circuit as channel 1 and 2.
3.1 GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1 Solution 1: a resistor in the ground line (RGND only)
It can be used with any type of load.
The following show how to dimension the RGND resistor:
Equation 1
RGND 600mV / 2 (IS(on)max)
V
CC1,2
OUTPUT2
+5V
R
prot
OUTPUT1
STATUS1
INPUT1
+5V
STATUS2
INPUT2
+5V
D
GND
R
GND
V
GND
GND1,2 GND3,4
OUTPUT3
OUTPUT4
μ
C
V
CC3,4
STATUS3
INPUT3
STATUS4
INPUT4
+5V
+5V
R
prot
R
prot
R
prot
R
prot
R
prot
R
prot
R
prot
D
ld
Application information VNQ810P-E
18/28 Doc ID 17387 Rev 2
Equation 2
RGND ≥ ( - VCC) / ( - IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:
PD = ( - VCC)2/ RGND
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with Equation 1 where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that, if the microprocessor ground is not shared by the device ground, then the
RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift varies depending on how many devices are ON in the case of several high
side drivers sharing the same RGND .
If the calculated power dissipation requires the use of a large resistor, or several devices
have to share the same resistor, then ST suggests using solution 2 below.
3.1.2 Solution 2: a diode (DGND) in the ground line
A resistor (RGND = 1kΩ) should be inserted in parallel to DGND if the device is driving an
inductive load. This small signal diode can be safely shared amongst several different HSD.
Also in this case, the presence of the ground network produces a shift ( 600mV) in the
input threshold and the status output values if the microprocessor ground is not common
with the device ground. This shift not varies if more than one HSD shares the same
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to
prevent that, during battery voltage transient, the current exceeds the Absolute Maximum
Rating. Safest configuration for unused INPUT and STATUS pin is to leave them
unconnected.
3.2 Load dump protection
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the
VCC maximum DC rating. The same applies if the device is subject to transients on the VCC
line that are greater than those shown in the ISO T/R 7637/1 table.
3.3 MCU I/O protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins are pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent
the microcontroller I/O pins from latching up.
The value of these resistors is a compromise between the leakage current of microcontroller
and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of
microcontroller I/Os:
- VCCpeak / Ilatchup Rprot (VOHμC - VIH - VGND) / IIHmax
VNQ810P-E Application information
Doc ID 17387 Rev 2 19/28
Example
For the following conditions:
VCCpeak = - 100 V
Ilatchup 20 mA
VOHμC 4.5 V
5kΩ Rprot 65 kΩ.
Recommended values are:
Rprot = 10 kΩ
3.4 Open-load detection in off-state
Off-state open-load detection requires an external pull-up resistor (RPU) connected between
output pin and a positive supply voltage (VPU) like the +5V line used to supply the
microprocessor.
The external resistor has to be selected according to the following requirements:
1. No false open-load indication when load is connected: in this case we have to avoid
VOUT to be higher than VOlmin; this results in the following condition
VOUT = (VPU / (RL + RPU))RL < VOlmin.
2. No misdetection when load is disconnected: in this case the VOUT has to be higher than
VOLmax; this results in the following condition RPU < (VPU - VOLmax) / IL(off2).
Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-
up resistor RPU should be connected to a supply that is switched OFF when the module is in
standby.
The values of VOLmin, VOLmax and IL(off2) are available in Section 2.3: Electrical
characteristics.
Figure 25. Open-load detection in off-state
VOL
V batt. VPU
RPU
RL
R
DRIVER
+
LOGIC
+
-
INPUT
STATUS
VCC
OUT
GROUND
IL(off2)
Application information VNQ810P-E
20/28 Doc ID 17387 Rev 2
3.5 Maximum demagnetization energy (VCC = 13.5V)
Figure 26. SO-28 (double island) maximum turn-off current versus load inductance
Note: Values are generated with RL = 0Ω.
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse
must not exceed the temperature specified above for curves B and C.
VIN, IL
t
Demagnetization Demagnetization Demagnetization
A = single pulse at TJstart = 150 ºC
B= repetitive pulse at TJstart = 100 ºC
C= repetitive pulse at TJstart = 125 ºC
1
10
0.01 0.1 1 10 100
L(mH)
ILMAX (A)
A
B
C
VNQ810P-E Package and PCB thermal data
Doc ID 17387 Rev 2 21/28
4 Package and PCB thermal data
4.1 SO-28 thermal data
Figure 27. SO-28 double island PC board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 58 mm x 58 mm, PCB
thickness = 2 mm, Cu thickness = 35 µm, Copper areas: 0.5 cm2, 3 cm2, 6 cm2).
RthA = thermal resistance junction to ambient with one chip ON
RthB = thermal resistance junction to ambient with both chips ON and Pdchip1 = Pdchip2
RthC = mutual thermal resistance
Table 16. Thermal calculation according to the PCB heatsink area
Chip 1 Chip 2 Tjchip1 Tjchip2 Note
ON OFF RthA x Pdchip1 + Tamb RthC x Pdchip1 + Tamb
OFF ON RthC x Pdchip2 + Tamb RthA x Pdchip2 + Tamb
ON ON RthB x (Pdchip1 + Pdchip2) + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1 = Pdchip2
ON ON (RthA x Pdchip1) + RthC x Pdchip2
+ Tamb
(RthA x Pdchip2) + RthC x Pdchip1
+ Tamb
Pdchip1 Pdchip2
Package and PCB thermal data VNQ810P-E
22/28 Doc ID 17387 Rev 2
Figure 28. Rthj-amb vs PCB copper area in open box free air condition
Figure 29. SO-28 thermal impedance junction ambient single pulse
Equation 3: pulse calculation formula
10
20
30
40
50
60
70
01234567
PCB Cu heatsink area (cm ^2)/island
RTHj_am b
C/W)
RthA
RthB
RthC
0.01
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 1000
time(s)
Zth(°C/W)
6 cm ^2/is land
3 cm ^2/is land
0,5 cm ^2/island
One channel ON
Two channels
ON on same chip
ZTHδRTH δZTHtp 1δ()+=
where
δtpT=
VNQ810P-E Package and PCB thermal data
Doc ID 17387 Rev 2 23/28
Figure 30. Thermal fitting model of a quad channel HSD in SO-28
Table 17. Thermal parameters
Area / island (cm2)0.56
R1 = R7 = R13 = R15 (°C/W) 0.35
R2 = R8 = R14 = R16 (°C/W) 1.8
R3 = R9 (°C/W) 4.5
R4 = R10 (°C/W) 11
R5 = R11 (°C/W) 15
R6 = R12 (°C/W) 30 13
C1 = C7 = C13 = C15 (W.s/°C) 0.0001
C2 = C8 = C14 = C16 (W.s/°C) 7E-04
C3 = C9 (W.s/°C) 6E-03
C4 = C10 (W.s/°C) 0.2
C5 = C11 (W.s/°C) 1.5
C6 = C12 (W.s/°C) 5 8
R17 = R18 (°C/W) 150
Pd1
C1
R4
C3 C4
R3R1 R6R5R2
C5 C6C2
Pd2
R14
C13 C14
R13
Tj_1
Tj_2
T_amb
Pd3
C7
R10
C9 C10
R9R7 R12R11
R8
C11 C12
C8
Pd4
R16
C15 C16
R15
Tj_3
Tj_4
R17 R18
Package and packing information VNQ810P-E
24/28 Doc ID 17387 Rev 2
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 SO-28 package information
Figure 31. SO-28 package dimensions
VNQ810P-E Package and packing information
Doc ID 17387 Rev 2 25/28
Table 18. SO-28 mechanical data
Symbol
Millimeters
Min. Typ. Max.
A2.65
a1 0.10 0.30
b 0.35 0.49
b1 0.23 0.32
C0.50
c1 45° (typ.)
D 17.7 18.1
E 10.00 10.65
e1.27
e3 16.51
F 7.40 7.60
L 0.40 1.27
S 8° (max.)
Package and packing information VNQ810P-E
26/28 Doc ID 17387 Rev 2
5.3 SO-28 packing information
Figure 32. SO-28 tube shipment (no suffix)
Figure 33. SO-28 tape and reel shipment (suffix “TR”)
All dimensions are in mm.
Base Q.ty 28
Bulk Q.ty 700
Tube length (± 0.5) 532
A3.5
B13.8
C (± 0.1) 0.6
A
C
B
Base Q.ty 1000
Bulk Q.ty 1000
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 16.4
N (min) 60
T (max) 22.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 16
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 12
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 7.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
Reel dimensions
VNQ810P-E Revision history
Doc ID 17387 Rev 2 27/28
6 Revision history
Table 19. Document revision history
Date Revision Changes
27-Apr-2010 1 Initial release.
19-Sep-2013 2 Updated Disclaimer
VNQ810P-E
28/28 Doc ID 17387 Rev 2
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
VNQ810P-E VNQ810PTR-E