SOT-227
IS OTO P
®
file # E145592
"UL Recognized"
GS
S
D
N-Channel FREDFET
Absolute Maximum Ratings
Thermal and Mechanical Characteristics
G
D
S
Single die FREDFET
Unit
A
V
mJ
A
Unit
W
°C/W
°C
V
oz
g
in·lbf
N·m
Ratings
84
52
447
±30
3352
60
Min Typ Max
961
0.13
0.15
-55 150
2500
1.03
29.2
10
1.1
Parameter
Continuous Drain Current @ TC = 25°C
Continuous Drain Current @ TC = 100°C
Pulsed Drain Current 1
Gate-Source Voltage
Single Pulse Avalanche Energy 2
Avalanche Current, Repetitive or Non-Repetitive
Characteristic
Total Power Dissipation @ TC = 25°C
Junction to Case Thermal Resistance
Case to Sink Thermal Resistance, Flat, Greased Surface
Operating and Storage Junction Temperature Range
RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
Package Weight
Terminals and Mounting Screws.
Symbol
ID
IDM
VGS
EAS
IAR
Symbol
PD
RθJC
RθCS
TJ,TSTG
VIsolation
WT
Torque
Microsemi Website - http://www.microsemi.com
TYPICAL APPLICATIONS
ZVS phase shifted and other full bridge
• Half bridge
• PFC and other boost converter
• Buck converter
• Single and two switch forward
• Flyback
FEATURES
• Fast switching with low EMI
• Low trr for high reliability
• Ultra low Crss for improved noise immunity
• Low gate charge
Avalanche energy rated
• RoHS compliant
APT80F60J
600V, 84A, 0.055Ω Max, trr 370ns
APT80F60J
Power MOS 8 is a high speed, high voltage N-channel switch-mode power MOSFET.
This 'FREDFET' version has a drain-source (body) diode that has been optimized for
high reliability in ZVS phase shifted bridge and other circuits through reduced trr, soft
recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly
reduced ratio of Crss/Ciss result in excellent noise immunity and low switching loss.
The intrinsic gate resistance and capacitance of the poly-silicon gate structure help
control di/dt during switching, resulting in low EMI and reliable paralleling, even when
switching at very high frequency.
050-8175 Rev C 4-2011
Symbol Parameter Test Conditions Min Typ Max Unit
gfs Forward Transconductance VDS = 50V, ID = 60A 117 S
Ciss Input Capacitance VGS = 0V, VDS = 25V
f = 1MHz
23994
pF
Crss Reverse Transfer Capacitance 245
Coss Output Capacitance 2201
Co(cr)
4Effective Output Capacitance, Charge Related VGS = 0V, VDS = 0V to 400V 1170
Co(er)
5Effective Output Capacitance, Energy Related 606
QgTotal Gate Charge VGS = 0 to 10V, ID = 60A,
VDS = 300V
598
nC
Qgs Gate-Source Charge 128
Qgd Gate-Drain Charge 251
td(on) Turn-On Delay Time Resistive Switching
VDD = 400V, ID = 60A
RG = 2.2Ω 6 , VGG = 15V
134
ns
trCurrent Rise Time 156
td(off) Turn-Off Delay Time 408
tfCurrent Fall Time 123
Static Characteristics TJ = 25°C unless otherwise speci ed
Dynamic Characteristics TJ = 25°C unless otherwise speci ed
Source-Drain Diode Characteristics
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 2.08mH, RG = 25Ω, IAS = 60A.
3 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
4 Co(cr) is de ned as a xed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is de ned as a xed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of
V
DS less than V(BR)DSS, use this equation: Co(er) = -3.14E-7/VDS^2 + 7.31E-8/VDS + 2.09E-10.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the speci cations and information contained herein.
G
D
S
Unit
V
V/°C
Ω
V
mV/°C
μA
nA
Unit
A
V
ns
μC
A
V/ns
Min Typ Max
600
0.60
0.042 0.055
2.5 4 5
-10
250
1000
±100
Min Typ Max
84
447
1.0
370
690
2.6
7.0
14.5
20
25
Test Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 250μA
VGS = 10V, ID = 60A
VGS = VDS, ID = 2.5mA
V
DS = 600V TJ = 25°C
V
GS = 0V TJ = 125°C
VGS = ±30V
Test Conditions
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
ISD = 60A, TJ = 25°C, VGS = 0V
T
J = 25°C
T
J = 125°C
ISD = 60A 3 T
J = 25°C
V
DD = 100V TJ = 125°C
diSD/dt = 100A/μs TJ = 25°C
T
J = 125°C
ISD 60A, di/dt 1000A/μs, VDD = 400V,
TJ = 125°C
Parameter
Drain-Source Breakdown Voltage
Breakdown Voltage Temperature Coef cient
Drain-Source On Resistance 3
Gate-Source Threshold Voltage
Threshold Voltage Temperature Coef cient
Zero Gate Voltage Drain Current
Gate-Source Leakage Current
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 1
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current
Peak Recovery dv/dt
Symbol
VBR(DSS)
VBR(DSS)/TJ
RDS(on)
VGS(th)
VGS(th)/TJ
IDSS
IGSS
Symbol
IS
ISM
VSD
trr
Qrr
Irrm
dv/dt
050-8175 Rev C 4-2011
APT80F60J
VGS= 7,8 & 10V
TJ = 125°C
TJ = 25°C
TJ = -55°C
VGS = 10V
6V
VDS> ID(ON) x RDS(ON) MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
NORMALIZED TO
VGS = 10V @ 42A
TJ = 125°C
TJ = 25°C
TJ = -55°C
Coss
Ciss
ID = 42A
VDS = 400V
VDS = 100V
VDS = 250V
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 150°C
TJ = 25°C
TJ = 125°C
TJ = 150°C
Crss
5V
4.5V
V
GS, GATE-TO-SOURCE VOLTAGE (V) gfs, TRANSCONDUCTANCE RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE ID, DRAIN CURRENT (A)
I
SD, REVERSE DRAIN CURRENT (A) C, CAPACITANCE (pF) ID, DRAIN CURRENT (A) ID, DRIAN CURRENT (A)
V
DS(ON), DRAIN-TO-SOURCE VOLTAGE (V) VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 1, Output Characteristics Figure 2, Output Characteristics
TJ, JUNCTION TEMPERATURE (°C) VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 3, RDS(ON) vs Junction Temperature Figure 4, Transfer Characteristics
ID, DRAIN CURRENT (A) VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 5, Gain vs Drain Current Figure 6, Capacitance vs Drain-to-Source Voltage
Qg, TOTAL GATE CHARGE (nC) VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 7, Gate Charge vs Gate-to-Source Voltage Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
0 5 10 15 20 25 0 5 10 15 20 25 30
-55 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 6 7 8
0 10 20 30 40 50 60 70 80 90 0 100 200 300 400 500
0 100 200 300 400 500 0 0.3 0.6 0.9 1.2 1.5
350
300
250
200
150
100
50
0
2.5
2.0
1.5
1.0
0.5
0
120
100
80
60
40
20
0
16
14
12
10
8
6
4
2
0
160
140
120
100
80
60
40
20
0
280
240
200
160
120
80
40
0
20,000
10,000
1000
100
10
280
240
200
160
120
80
40
0
APT80F60J
050-8175 Rev C 4-2011
e3 100% Sn Plated
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M 4
(4 places )
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Source Drai n
Gate
*
r = 4.0 (.157)
(2 places)
4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Source
Emitter terminals are shorte d
internally. Current handlin g
capability is equal for either
Source terminal .
SOT-227 (ISOTOP®) Package Outline
Peak T
J
= P
DM
x Z
θJC + TC
Duty Factor D = t1/t2
t2
t1
P
DM
Note:
t1 = Pulse Duration
1ms
100ms
Rds(on)
0.5
SINGLE PULSE
0.1
0.3
0.7
0.05
D = 0.9
Scaling for Different Case & Junction
Temperatures:
ID = ID(TC = 25°C)*(TJ - TC)/125
DC line
100μs
IDM
10ms
13μs100μs
IDM
100ms
10ms
13μs
Rds(on)
DC line
TJ = 150°C
TC = 25°C
1ms
TJ = 125°C
TC = 75°C
ID, DRAIN CURRENT (A)
V
DS, DRAIN-TO-SOURCE VOLTAGE (V) VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area Figure 10, Maximum Forward Safe Operating Area
ZθJC, THERMAL IMPEDANCE (°C/W)
10-5 10-4 10-3 10-2 10-1 1.0
RECTANGULAR PULSE DURATION (seconds)
Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
ID, DRAIN CURRENT (A)
1 10 100 800 1 10 100 800
0.25
0.20
0.15
0.10
0.05
0
447
100
10
1
0.1
447
100
10
1
0.1
APT80F60J
050-8175 Rev C 4-2011