VYBRIDFSERIESEC
VF6xx, VF5xx, VF3xx
Features
Operating characteristics
Voltage range 3 V to 3.6 V
Temperature range(ambient) -40 °C to 85 °C
ARM® Cortex® A5 Core features
Up to 500 MHz ARM Cortex A5
32 KB/32 KB I/D L1 Cache
1.6 DMIPS/MHz based on ARMv7 architecture
NEON™ MPE (Media Processing Engine) Co-
processor
Double Precision Floating Point Unit
512 KB L2 cache (on selected part numbers only)
ARM Cortex M4 Core features
Up to 167 MHz ARM Cortex M4
Integrated DSP capability
64 KB Tightly Coupled Memory (TCM)
16 KB/16 KB I/D L1 Cache
1.25 DMIPS/MHz based on ARMv7 architecture
Clocks
24 MHz crystal oscillator
32 kHz crystal oscillator
Internal reference clocks (128 KHz and 24 MHz)
Phase Locked Loops (PLLs)
Low Jitter Digital PLLs
System debug, protection, and power management
Various stop, wait, and run modes to provide low
power based on application needs
Peripheral clock enable register can disable clocks to
unused modules, thereby reducing currents
Low voltage warning and detect with selectable trip
points
Illegal opcode and illegal address detection with
programmable reset or processor exception response
Hardware CRC module to support fast cyclic
redundancy checks (CRC)
128-bit unique chip identifier
Hardware watchdog
External Watchdog Monitor (EWM)
Dual DMA controller with 32 channels (with
DMAMUX)
Debug
Standard JTAG
16-bit Trace port
Timers
Motor control/general purpose timer (FTM)
Periodic Interrupt Timers (PITs)
Low-power timer (LPTMR0)
IEEE 1588 Timer per MAC interface (part of
Ethernet Subsystem)
Communications
Six Universal asynchronous receivers/transmitters
(UART)/Serial communications interface (SCI) with
LIN, ISO7816, IrDA, and hardware flow control
Four Deserial Serial peripheral interface (DSPI)
Four Inter-Integrated Circuit (I2C) with SMBUS
support
Dual USB OTG Controller + PHY
Dual 4/8 bit Secure Digital Host controller
Dual 10/100 Ethernet with L2 Switch (IEEE 1588)
Dual FlexCAN3
Security
ARM TrustZone including the TZ architecture
Cryptographic Acceleration and Assurance Module,
incorporates 16 KB secure RAM (CAAM)
Secure Non-Volatile Storage, including Secure Real
Time Clock (SNVS)
Real Time Integrity Checker (RTIC)
Tamper detection - supported by external pins, on-
chip clock monitors, voltage and temperature
tampers
TrustZone Watchdog (TZ WDOG)
Trust Zone Address Space Controller
Central Security Unit
Secure JTAG
High Assurance Boot (HAB) with support for
encrypted boot
Memory Interfaces
8/16 bit DRAM Controller with support for
LPDDR2/DDR3 - Up to 400 MHz (ECC supported
for 8-bit only and not 16-bit)
8/16 bit NAND Flash controller with ECC
8/16/32 bit External bus (Flexbus)
Dual Quad SPI with XIP (Execute-In-Place)
Freescale Semiconductor Document Number VYBRIDFSERIESEC
Data Sheet: Technical Data Rev 8, 11/2014
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2012–2013 Freescale Semiconductor, Inc.
Display and Video
Dual Display Control Unit (DCU) with support for color TFT display up to SVGA
Segmented LCD (3V Glass only) configurable as 40x4, 38x8, and 36x6
Video Interface Unit (VIU) for camera
Open VG Graphics Processing Unit (GPU)
VideoADC
Analog
Dual 12-bit SAR ADC with 1MS/s
Dual 12-bit DAC
Audio
Four Synchronous Audio Interface (SAI)
Enhanced Serial Audio Interface (ESAI)
Sony Philips Digital Interface (SPDIF), Rx and Tx
Asynchronous Sample Rate Converter (ASRC)
Human-Machine Interface (HMI)
GPIO pins with interrupt support, DMA request capability, digital glitch filter.
Hysteresis and configurable pull up/down device on all input pins
Configurable slew rate and drive strength on all output pins
On-Chip Memory
512 KB On-chip SRAM with ECC
1 MB On-chip graphics SRAM (no ECC). This depends on the part selected. Alternate configuration could be 512 KB
graphics and 512 KB L2 cache.
96 KB Boot ROM
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
2 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts.....................................................................................5
1.1 Determining valid orderable parts ..........................................5
2 Part identification...............................................................................5
2.1 Description.............................................................................. 5
2.2 Part Number Format................................................................5
2.3 Fields....................................................................................... 6
2.4 Part Numbers ..........................................................................7
3 Terminology and guidelines...............................................................8
3.1 Definition: Operating requirement..........................................8
3.2 Definition: Operating behavior............................................... 8
3.3 Definition: Attribute................................................................8
3.4 Definition: Rating....................................................................9
3.5 Result of exceeding a rating....................................................9
3.6 Relationship between ratings and operating requirements......10
3.7 Guidelines for ratings and operating requirements................. 10
3.8 Definition: Typical value........................................................ 10
3.9 Typical Value Conditions........................................................11
4 Handling ratings.................................................................................12
4.1 ESD Handling Ratings Table [JEDEC].................................. 12
4.2 Thermal handling ratings........................................................ 12
4.3 Moisture handling ratings........................................................12
5 Operating Requirements.....................................................................13
5.1 Thermal operating requirements............................................. 13
6 General............................................................................................... 13
6.1 AC electrical characteristics....................................................13
6.2 Nonswitching electrical specifications ...................................14
6.2.1 VREG electrical specifications ..............................14
6.2.1.1 HPREG electrical characteristics........ 14
6.2.1.2 LPREG electrical characteristics.........14
6.2.1.3 ULPREG electrical characteristics......15
6.2.1.4 WBREG electrical characteristics.......15
6.2.1.5 External NPN Ballast.......................... 16
6.2.2 LVD electrical specifications .................................18
6.2.2.1 Main Supply electrical characteristics 18
6.2.2.2 LVD DIG characteristics.....................18
6.2.3 LDO electrical specifications .................................19
6.2.3.1 LDO_1P1............................................ 19
6.2.3.2 LDO_2P5............................................ 19
6.2.3.3 LDO_3P0 ........................................... 20
6.2.4 Power consumption operating behaviors................20
6.2.5 USB PHY current consumption..............................21
6.2.5.1 Power Down Mode............................. 21
6.2.6 EMC radiated emissions operating behaviors........ 21
6.2.7 EMC Radiated Emissions Web Search Procedure
boilerplate............................................................... 22
6.2.8 Capacitance attributes.............................................22
7 I/O parameters....................................................................................22
7.1 GPIO parameters.....................................................................22
7.1.1 Output Buffer Impedance measurement................. 24
7.2 DDR parameters......................................................................25
8 Power supplies and sequencing..........................................................28
8.1 Power sequencing ...................................................................28
8.2 Power supply...........................................................................30
8.3 Absolute maximum ratings..................................................... 31
8.4 Recommended operating conditions....................................... 32
8.5 Recommended Connections for Unused Analog Interfaces... 33
9 Peripheral operating requirements and behaviours............................34
9.1 Analog..................................................................................... 34
9.1.1 12-bit ADC electrical characteristics......................34
9.1.1.1 12-bit ADC operating conditions........34
9.1.1.2 12-bit ADC characteristics..................35
9.1.2 12-bit DAC electrical characteristics......................39
9.1.2.1 12-bit DAC operating requirements....39
9.1.2.2 12-bit DAC operating behaviors......... 39
9.1.3 VideoADC Specifications.......................................43
9.2 Display and Video interfaces.................................................. 45
9.2.1 DCU Switching Specifications............................... 45
9.2.1.1 Interface to TFT panels (DCU0/1)......45
9.2.1.2 Interface to TFT LCD Panels—Pixel
Level Timings..................................... 46
9.2.1.3 Interface to TFT LCD panels—access
level.....................................................47
9.2.2 Video Input Unit timing..........................................48
9.2.3 LCD driver electrical characteristics...................... 49
9.3 Ethernet specifications............................................................ 49
9.3.1 Ethernet Switching Specifications..........................49
9.3.2 Receive and Transmit signal timing specifications 49
9.3.3 Receive and Transmit signal timing specifications
for MII interfaces.................................................... 51
9.4 Audio interfaces...................................................................... 53
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 3
9.4.1 Enhanced Serial Audio Interface (ESAI) Timing
Parameters...............................................................53
9.4.2 SPDIF Timing Parameters......................................55
9.4.3 SAI/I2S Switching Specifications.......................... 56
9.5 Memory interfaces...................................................................58
9.5.1 QuadSPI timing.......................................................58
9.5.2 NFC specifications..................................................61
9.5.3 FlexBus timing specifications.................................64
9.5.4 DDR controller specifications................................ 66
9.5.4.1 DDR3 Timing Parameters ..................66
9.5.4.2 DDR3 Read Cycle...............................68
9.5.4.3 DDR3 Write cycle...............................69
9.5.4.4 LPDDR2 Timing Parameter................70
9.5.4.5 LPDDR2 Read Cycle.......................... 71
9.5.4.6 LPDDR2 Write Cycle......................... 72
9.6 Communication interfaces.......................................................73
9.6.1 DSPI timing specifications..................................... 73
9.6.2 I2C timing...............................................................75
9.6.3 SDHC specifications...............................................77
9.6.4 USB PHY specifications.........................................78
9.7 Clocks and PLL Specifications............................................... 79
9.7.1 24 MHz Oscillator Specifications...........................79
9.7.2 32 KHz Oscillator Specifications........................... 79
9.7.3 Fast internal RC oscillator (24 MHz) electrical
characteristics..........................................................80
9.7.4 Slow internal RC oscillator (128 KHz) electrical
characteristics..........................................................81
9.7.5 PLL1 and PLL2 (528 MHz System PLL)
Electrical Parameters.............................................. 81
9.7.6 PLL3 and PLL7 (480 MHz USB PLL) Electrical
Parameters...............................................................82
9.7.7 PLL5 (Ethernet PLL) Electrical Parameters...........82
9.7.8 PLL4 (Audio PLL) Electrical Parameters...............82
9.7.9 PLL6 (Video PLL) Electrical Parameters...............83
9.8 Debug specifications............................................................... 83
9.8.1 JTAG electricals..................................................... 83
9.8.2 Debug trace timing specifications...........................85
10 Thermal attributes.............................................................................. 86
10.1 Thermal attributes................................................................... 86
11 Dimensions.........................................................................................88
11.1 Obtaining package dimensions ...............................................88
12 Pinouts................................................................................................88
12.1 Pinouts.....................................................................................88
12.2 Pinout diagrams.......................................................................100
12.2.1 GPIO Mapping........................................................102
12.2.2 Special Signal ........................................................ 106
13 Power Supply Pins............................................................................. 108
13.1 Power Supply Pins.................................................................. 108
14 Functional Assignment Pins...............................................................109
14.1 Functional Assignment Pins....................................................109
15 Revision History.................................................................................118
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
4 Freescale Semiconductor, Inc.
Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web.
1. To determine the orderable part numbers for this device, go to www.freescale.com
and search the required part number. The part numbering format is described in the
section that follows.
Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Part Number Format
The figure below represents the format of part number of this device.
1
2
Ordering parts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 5
M V 0N S CMK
Brand: V = Vybrid
Series: F = current
40
Qualification Status
P = engineering samples
M = qualified
Family
3 = Standard (A5 Only)
5 = Advanced (A5 Only)
6 = Dual Core (A5 & M4)
F
Option
0N = Standard
1N = L2 Cache
2N = M4 Primary
Security
N = No Security
S = Security Enabled
Memory Size
15 = 1.5MB
Temp Spec
C = -40 to +85C Ta
Speed (A5 core)
26 = 266MHz
40 = 400MHz
50 = 500MHz
Package
KU = 176LQFP
MK = 364BGA
1
Revision
1 = Rev.1.x
15
Tape & Reel
R = Tape & Reel
(Optional)
R
5
Figure 1. Part Number Format
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field Description Values
Q Qualification status P = Engineering samples
M = Qualified
B Brand V = Vybrid
S Series F = current
F Family 3 = Standard (A5 Only)
5 = Advanced (A5 Only)
6 = Dual Core (A5 & M4)
O Option 0N = Standard
1N = L2 Cache
2N = M4 Primary
S Security N = No Security
S = Security Enabled
MM Memory size 15 = 1.5 MB
Table continues on the next page...
Part identification
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
6 Freescale Semiconductor, Inc.
Field Description Values
R Revision 1 = Rev 1.x
T Temperature range (°C) C = -40 0C to +85 0C Ta
PP Package type KU = 176LQFP
MK = 364 MAPBGA
S Speed Speed A5 Core
26 = 266MHz
40 = 400MHz
50 = 500MHz
2.4 Part Numbers
This table lists the part numbers on the device.
Part Number Package Description
MVF30NN151CKU26 LQFP-EP 176 24*24*1.6 A5-266, No Security, 176LQFP
MVF30NS151CKU26 LQFP-EP 176 24*24*1.6 A5-266, Security, 176LQFP
MVF50NN151CMK40 MAP 364 17*17*1.5 P0.8 A5-400, No Security, 364BGA
MVF50NS151CMK40 MAP 364 17*17*1.5 P0.8 A5-400, Security, 364BGA
MVF50NN151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, No Security, 364BGA
MVF50NS151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, Security, 364BGA
MVF51NN151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, L2 Cache, No Security, 364BGA
MVF51NS151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, L2 Cache, Security, 364BGA
MVF60NN151CMK40 MAP 364 17*17*1.5 P0.8 A5-400, M4, No Security, 364BGA
MVF60NS151CMK40 MAP 364 17*17*1.5 P0.8 A5-400, M4, Security, 364BGA
MVF60NN151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, M4, No Security, 364BGA
MVF60NS151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, M4, Security, 364BGA
MVF61NN151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, M4, L2 Cache, No Security,
364BGA
MVF61NS151CMK50 MAP 364 17*17*1.5 P0.8 A5-500, M4, L2 Cache, Security,
364BGA
MVF62NN151CMK40 MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, No Security,
364BGA
Part identification
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 7
Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
0.9 1.1 V
3.2 Definition: Operating behavior
Unless otherwise specified, an operating behavior is a specified value or range of values
for a technical characteristic that are guaranteed during operation if you meet the
operating requirements and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior:
Symbol Description Min. Max. Unit
IWP Digital I/O weak pullup/
pulldown current
10 130 µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3
Terminology and guidelines
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
8 Freescale Semiconductor, Inc.
3.3.1 Example
This is an example of an attribute:
Symbol Description Min. Max. Unit
CIN_D Input capacitance:
digital pins
7 pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
–0.3 1.2 V
3.5 Result of exceeding a rating
40
30
20
10
0
Measured characteristic
Operating rating
Failures in time (ppm)
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
Terminology and guidelines
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 9
3.6 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
Terminology and guidelines
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
10 Freescale Semiconductor, Inc.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol Description Min. Typ. Max. Unit
IWP Digital I/O weak
pullup/pulldown
current
10 70 130 µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
0.90 0.95 1.00 1.05 1.10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
150 °C
105 °C
25 °C
–40 °C
VDD (V)
I(μA)
DD_STOP
TJ
3.9 Typical Value Conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD 3.3 V supply voltage 3.3 V
Terminology and guidelines
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 11
Handling ratings
4.1 ESD Handling Ratings Table [JEDEC]
Symbol Description Max. Unit Notes
VHBM Electrostatic discharge
voltage, human body
model
2000 V 1
VCDM Electrostatic discharge
voltage, charged-device
model
Corner pins: 750
Other pins: 500 V2
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.2 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
Solder temperature, leaded 245
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4
Handling ratings
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
12 Freescale Semiconductor, Inc.
Operating Requirements
5.1 Thermal operating requirements
Table 1. Thermal operating requirements
Symbol Description Min. Max. Unit
TAAmbient temperature –40 85 °C
TJJunction temperature 105 °C
General
6.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
80%
20%
50%
VIL
Input Signal
VIH
Fall Time
High
Low
Rise Time
Midpoint1
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
5
6
Operating Requirements
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 13
Nonswitching electrical specifications
VREG electrical specifications
6.2.1.1 HPREG electrical characteristics
Table 2. HPREG electrical characteristics
Parameters Min Typ Max Unit Comments
Power supply 3.0 3.3 3.6 V -
Current Consumption - 1.2 1.5 mA @ no load
- 2.0 2.5 mA @ full load
Output current capacity - 600 12001mA DC load current
Output voltage @ no load 1.23 1.26 V
Output voltage @ full load 1.20 1.21 V
External decoupling cap 4.7 - μF -
0.05 0.1 Ohms ESR of external
cap
20 mOhms Total effective
PAD+PCB trace
resistances
PSRR with 4.7uF output cap
@ DC @noload
@ DC @full load
@ worst case any frequency
-48
-40
-20
dB
1. This is peak and not continuous maximum value.
6.2.1.2 LPREG electrical characteristics
Table 3. LPREG electrical characteristics
Parameters Min Typ Max Unit Comments
Power supply 3.0 3.3 3.6 V
Current Consumption 350 400 μA @ no load
- 500 650 μA @ full load
Output current capacity 100 200 mA DC load current
Output voltage @ no load 1.22 1.240 V
Output voltage @ full load 1.180 V
External decoupling cap 4.7 μF
0.05 0.1 Ohms ESR of external cap
20 mOhms Total PAD+PCB trace
resistance
Table continues on the next page...
6.2
6.2.1
Nonswitching electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
14 Freescale Semiconductor, Inc.
Table 3. LPREG electrical characteristics
(continued)
Parameters Min Typ Max Unit Comments
PSRR with 4.7uF output cap
@ DC @noload
@ DC @full load
Worst case @ any frequency
-40
-35
-12
dB
6.2.1.3 ULPREG electrical characteristics
Table 4. ULPREG electrical characteristics
Parameters Min Typ Max Unit Comments
Power supply 3.0 3.3 3.6 V
Current Consumption 1.88 2.3 2.86 μA @ no load
- 610 670 μA @ full load
Output current capacity 20 mA DC load current
Output voltage @ no load 1.175 V
Output voltage @ full load 1.125 V
PSRR with 500 pF output cap -20 dB Worst case at any frequency
across corners
@ DC @noload
@200KHz @noload
@ DC @full load
@200KHz @full load
Worst case @ any frequency
@ any load
-50
-37
-42
-37
-15
dB
6.2.1.4 WBREG electrical characteristics
Table 5. WBREG electrical characteristics
Parameters Min Typ Max Unit Comments
Power supply 3 3.3 3.6 V -
Current Consumption - 2 5 µA @ no load
- 2 5 µA @ full load
Output current capacity - 1 2 mA DC load current
Output voltage @ no load 1.4 1.425 V
Output voltage @ full load 1.375 1.398 V
Output voltage programmability 1.4 1.4 1.7 V 16 steps of 25
mV each
VREG electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 15
6.2.1.5 External NPN Ballast
The internal main regulator requires an external NPN ballast transistor to be connected as
shown in the following figure as well as an external capacitance to be connected to the
device in order to provide a stable 1.2V digital supply to the device. The HPREG design
allows for collector voltage lower than VDDREG value. See AN4807 at
www.freescale.com .
NOTE
To not overload BCTRL output, collector voltage should appear
no later than VDDREG / VDD33 (3.3V).
Figure 3. External NPN Ballast connections
Table 6. BCTRL OUTPUT specification
Parameter Value Comments
BCTRL OUTPUT specification 20mA BCTRL driver can not drive more than
20mA current
Maximum pin voltage VDDREG-0.5V For Example, VDDREG =3.0V BCTRL
should not exceed 2.5V.
Table 7. Assumptions For calculations
Parameter Value
VDDREG 3.0V to 3.6V with typical value of 3.3V
Max DC Collector current 0.85A @85 °C
Emitter voltage 1.2V to 1.25V
Collector voltage Equal to VDDREG
VREG electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
16 Freescale Semiconductor, Inc.
Table 8. General guidelines for selection of NPN ballast
Symbol Parameters Value Unit Comments
Hfe Minimum DC
current gain (Beta)
42.5 As BCTRL pin can not drive more than
20mA Minimum value of beta for a
collector current of 0.85A comes out to
be 42.5.
PD (Junction to
ambient)
Minimum power
dissipation @
TA=85 °C
2.04 W Assuming 0.85A collector current with
Collector voltage of Ballast 3.6V(max)
we get VCE= 3.6V-1.2V=2.4V So power
dissipated is 2.4V*0.85A=2.04W . This
should be met for junction to ambient
power dissipation spec of ballast
IcmaxDC peak Maximum peak DC
collector current
0.85 A 1.2A and above capacity device
preferable
VBE Maximum voltage
that BCTRL pin can
drive
1.25V for 0.85A @
85 °C
V For a VDDREG of 3.0 V (min.), BCTRL
pin can drive voltage up to VDDREG -
0.5 V = 2.5 V. Since emitter of ballast is
fixed at 1.25 V (max) if chosen ballast
can supply 0.85 A collector current @ 85
°C with a base-to-emitter voltage of 1.25
V or lower, it is suitable for application.
Ft Unity current gain
Frequency of
Ballast
50 MHz
Reducing the collector-to-emitter voltage drop lowers the ballast transistor heat
dissipation. This can be implemented in two ways:
1. By introducing series resistor or diode(s) between the collector and VDDREG
(placed far enough from the transistor for proper cooling)
2. By connecting the collector to a separate lower-voltage supply
In both of the above cases the transistor has to stay away from the deep saturation region;
otherwise, due to significant Hfe degradation, its base current exceeds the BCTRL output
maximum value.
In general, the transistor must be selected such that its Vce saturation voltage is lower
than the expected minimum Collector-Emitter voltage, and at the same time, the base
current is less than 20 mA for the maximum expected collector current. More information
can be found in collateral documentation at http://www.freescale.com
VREG electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 17
LVD electrical specifications
6.2.2.1 Main Supply electrical characteristics
Table 9. LVD_MAIN supply electrical characteristics
Main Supply LVD
Parameters
Min Typ Max Unit Comments
Power supply 3.0 3.3 3.6 V
Upper voltage threshold
(value @27oC)
2.76 2.915 V
Lower voltage threshold
(value @27oC)
2.656 2.73 V
Time constant of RC filter at
LVD input (0.69*RC)
3.3 μs 3.3 V noise rejection at LVD
comparator input
6.2.2.2 LVD DIG characteristics
Table 10. LVD DIG electrical specifications [HPREG(RUN MODE) and
LPREG(STOP MODE)]
LVD DIG
Parameters
Min Typ Max Unit Comments
Power supply 3.0 3.3 3.6 V
Upper voltage
threshold
1.135 1.16 1.185 V
Lower voltage
threshold
1.105 1.13 1.155 V
Time constant of
RC filter at LVD
input
200 ns 1.2V noise rejection at the input of
LVD comparator
Table 11. LVD DIG electrical specifications [ULPREG(STANDBY
MODE)]
LVD DIG Parameters Min Typ Max Unit Comments
Power supply 3.0 3.3 3.6 V
Upper voltage threshold 1.105 1.13 1.155 V
Lower voltage threshold 1.075 1.10 1.125 V
Time constant of RC filter at
LVD input
200 ns 1.2V noise rejection at the
input of LVD comparator
6.2.2
LVD electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
18 Freescale Semiconductor, Inc.
LDO electrical specifications
6.2.3.1 LDO_1P1 Table 12. LDO_1P1 parameters
Specification Min Typ Max Unit Comments
VDDIO 3 3.3 3.6 V IO supply
VDD1P1_OUT 0.9 1.1 1.2 V Regulator output
I_out - 150 mA >= 300mV drop out
Regulator output
programming range
0.8 1.1 1.4 V Programmable in
25mV steps
Brownout Voltage 0.85 0.94 V
Brownout offset
step
0 - 175 mV Programmable in
25mV steps
Minimum external
decoupling
capacitor
1 - - µF low ESR
For additional information, see the device reference manual.
6.2.3.2 LDO_2P5 Table 13. LDO_2P5 parameters
Specification Min Typ Max Unit Comments
VDDIO 3 3.3 3.6 V IO supply
VDD2P5_OUT 2.3 2.5 2.6 V Regulator output
I_out - 350 mA @500mV drop out
Regulator output
programming range
2.0 2.5 2.75 V Programmable in
25mV steps
[P:][C:] Brownout
Voltage
2.25 2.33 V
Brownout offset
step
0 - 175 mV Programmable in
25mV steps
Minimum external
decoupling
capacitor
1 - - µF low ESR
For additional information, see the reference manual.
6.2.3
LDO electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 19
6.2.3.3 LDO_3P0 Table 14. LDO_3P0 parameters
Specification Min Typ Max Unit Comments
Input OTG VBUS
Supply
4.4 5.25 V
Input HOST VBUS
Supply
4.4 5.25 V
VDD3P0_OUT 2.9 3.0 3.1 V Regulator output at
default setting
I_out - 50 mA 500 mV drop-out
voltage
Regulator output
programming range
2.625 3.4 V Programmable in
25mV steps
[P:][C:] Brownout
Voltage
2.75 2.85 V
Brownout offset
step
0 - 175 mV Programmable in
25mV steps
Minimum external
decoupling
capacitor
1 - - µF low ESR
NOTE
These values are with Anadig_REG_3P0[ENABLE_ILIMIT]=
0 and Anadig_REG_3P0[ENABLE_LINREG]= 1. It is required
to set these values before using USB.
6.2.4 Power consumption operating behaviors
Table 15. Power consumption operating behaviors
Symbol Description Typ.1Max.2Unit Notes
IDD_RUN Run mode current — All functionalities of the chip
available
400 850 mA
IDD_WAIT Wait mode high frequency current at 3.3 V ± 10% 80 500 mA 3
IDD_LPRUN Low-power run mode current at 3.3 V ± 10%,
24MHz operation, PLL Bypass.
13 325 mA 4
IDD_ULPRUN Ultra-low-power run mode current at 3.3 V ± 10% 12 395 mA 5
IDD_STOP Stop mode current at 3.3 V ± 10% 7 300 mA 6
IDD_LPS3 Low-power stop3 mode current at 3.3 V ± 10% 300 1300 uA 7
IDD_LPS2 Low-power stop 2 mode current at 3.3 V ± 10% 50 875 uA 8
IDD_VBAT Battery backup mode 5 45 uA 9
1. The Typ numbers represent the average value taken from a matrix lot of parts across normal process variation at ambient
temperature.
LDO electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
20 Freescale Semiconductor, Inc.
2. The Max numbers represent the single worst case value taken from a matrix lot of parts across normal process variation at
maximum temperature.
3. CA5, CM4 cores halted
4. 24MHz operation, PLL Bypass
5. 32 kHz /128 kHz operation, PLL Off
6. Lowest power mode with all power retained, RAM retention and LVD protection.
7. Standby Mode. 64K RAM retention. I/O states held. ADCs/DACs optionally power-gated. RTC functional. Wakeup from
interrupts. Fast IRC enabled.
8. Standby Mode 16K RAM retention. I/O states held. ADCs/DACs optionally power-gated. RTC functional. Wakeup from
interrupts. Fast IRC enabled.
9. All supplies OFF, SRTC, 32kXOSC ON, tampers and monitors ON. 128k IRC optionally ON.
6.2.5 USB PHY current consumption
6.2.5.1 Power Down Mode
Everything powered down, including the VBUS valid detectors, typ condition.
Table 16. USB PHY Current Consumption in Normal Mode
USBx_VBUS
(3.0V)
Avg
VDD33_LDOIN
(2.5V)
Avg
VDD33_LDOIN
(1.1V)
Avg
Current 5.1 μA 1.7 μA <0.5 μA
NOTE
The currents on the 2.5 voltage regulator and 3.0 voltage
regulator were identified to be the voltage divider circuits in the
USB-specific level shifters.
6.2.6 EMC radiated emissions operating behaviors
Table 17. EMC radiated emissions operating behaviors
Symbol Condition1Clocks Frequency
band 2Level
(Typ)3Unit
VEME Device Configuration, test conditions and EM testing
per standard IEC 61967-2; Supply voltages: VDD= 5.0
V VDD33 = 3.3 V VDD15 = 1.5 V VDD12 = 1.2 V
Temp = 25°C
FCPU = 396
MHz FBUS
= 66 MHz
External
Crystal = 24
MHz
150 KHz –
50 MHz
22 dBμV
50 MHz –
150 MHz
24
150 MHz –
500 MHz
25
500–1000 20
IEC level4K
1. Measurements were made per IEC 61967-2 while the device was running basic application code.
2. Measurements were performed on the BGA364 version of the device
LDO electrical specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 21
3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from
among the measured orientations in each frequency range.
4. IEC Level Maximums: N ≤ 12dBmV, M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV, H ≤ 42dBmV
6.2.7 EMC Radiated Emissions Web Search Procedure boilerplate
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
6.2.8 Capacitance attributes
Table 18. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance:
analog pins
7 pF
CIN_D Input capacitance:
digital pins
7 pF
I/O parameters
7.1 GPIO parameters
Table 19. GPIO DC operating conditions
Symbol Parameter Min Typ Max Unit
vddi1Core internal
supply voltage
1.2 V
ovdd I/O output
supply voltage
3 3.3 3.6 V
1. This is internally controlled.
Table 20. GPIO DC Electrical characteristics
Symbol Parameter Test condition Min Typ Max Unit
Voh High-level
output voltage
Ioh= -1mA ovdd-0.15 V
Table continues on the next page...
7
I/O parameters
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
22 Freescale Semiconductor, Inc.
Table 20. GPIO DC Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
VOH/VOL
values are with
respect to
DSE=0011
Vol Low-level output
voltage
Iol= 1mA 0.15 V
Vih 2High-Level DC
input voltage
0.7*ovdd ovdd V
Vil2Low-Level DC
input voltage
0 0.3*ovdd V
Vhys Input Hysteresis ovdd=3.3 V 250 mV
Vt+2, 3Schmitt trigger
VT+
0.5*ovdd V
Vt-2, 3Schmitt trigger
VT-
0.5*ovdd V
Iin4Input current (no
pull-up/down)
Vin = ovdd or 0 -1 1 uA
Iin_22pu Input current
(22KOhm PU)
Vin = 0 212 uA
Vin = ovdd 1
Iin_47pu Input current
(47KOhm PU)
Vin = 0 100
Vin = ovdd 1
Iin_100pu Input current
(100KOhm PU)
Vin = 0 50
Vin = ovdd 1
Iin_100pd Input current
(100KOhm PD)
Vin = 0 1
Vin = ovdd 50
R_Keeper Keeper Circuit
Resistance
Vin = 0.3 x
OVDD VI = 0.7 x
OVDD
105 175 Ohm
Issod Sink current in
open drain
mode
Vin = ovdd 7 mA
Issop Sink/source
current in Push
Pull mode
Vin = ovdd 7 mA
1. For details about Software MUX Pad Control Register DSE bit, see IOMUX Controller chapter of the device reference
manual.
2. To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current
DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1ns to 1s. Vil and Vih do not
apply when hysteresis is enabled.
3. Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
4. Typ condition: typ model, 3.3V, and 25°C. Max condition: bcs model, 3.6V, and -40°C. Min condition: wcs model, 3.0V and
85 °C. These values are for digital IO buffer cells.
I/O parameters
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 23
Table 21. GPIO AC Electrical Characteristics (3.3V power mode)
Symbol Parameter Drive strength1Slew
rate
Test conditions Min Max Unit
tpr IO Output Transition
Times (PA1), rise/fall
Max 1 1 1 slow
fast
15pF Cload on pad,
input edge rate 200ps
1.70
1.04
1.81
1.18
ns
High 1 0 1 slow
fast
2.30
1.69
2.44
1.79
Medium 1 0 0 slow
fast
3.07
2.45
3.31
2.61
Low 0 1 1 slow
fast
5.13
4.79
5.44
5.18
tpo IO Output
Propagation Delay
(PA2), rise/fall
Max 1 1 1 slow
fast
15pF Cload on pad,
input edge rate 200ps
5.01
3.06
5.04
3.10
ns
High 1 0 1 slow
fast
5.55
3.52
5.68
3.55
Medium 1 0 0 slow
fast
6.37
4.04
6.67
4.11
Low 0 1 1 slow
fast
7.39
5.54
7.60
6.10
tpv Output Enable to
Output Valid Delay,
rise/fall
Max 1 1 1 slow
fast
15pF Cload on pad,
input edge rate
200ps, 0->1, 1->0
pad transitions
5.12
3.18
5.21
3.28
ns
High 1 0 1 slow
fast
5.72
3.67
5.80
3.71
Medium 1 0 0 slow
fast
6.55
4.06
6.80
4.09
Low 0 1 1 slow
fast
7.80
5.72
8.19
6.22
tpi Input Pad
Propagation Delay
rise/fall
without hysteresis - 150f Cload on, input
edge rate from pad
=1.2ns
1.06 1.31 ns
with hysteresis - 1.22 1.41
1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX
Controller chapter of the device reference manual.
7.1.1 Output Buffer Impedance measurement
Table 22. Output Buffer Average Impedance (3.3V power mode)
Symbol Parameter Drive strength1Min Typ Max Unit
Rdrv Output driver
impedance
0 0 1 116 150 220 Ohm
0 1 0 58 75 110
0 1 1 39 50 73
Table continues on the next page...
I/O parameters
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
24 Freescale Semiconductor, Inc.
Table 22. Output Buffer Average Impedance (3.3V power mode) (continued)
Symbol Parameter Drive strength1Min Typ Max Unit
1 0 0 30 37 58
1 0 1 24 30 46
1 1 0
Extra drive strength
20 25 38
1 1 1 17 20 32
1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX
Controller chapter of the device reference manual.
7.2 DDR parameters
Table 23. DDR operating conditions
Symbol Parameter Min Typ Max Unit
vddi Core internal supply voltage 1.16 1.23 1.26 V
ovdd I/O output supply voltage
(DDR3 mode)
1.425 1.5 1.575 V
ovdd I/O output supply voltage
(LPDDR2 mode)
1.14 1.2 1.26 V
vdd2p5 I/O PD predriver and level
shifters supply voltage
2.25 2.5 2.75 V
Table 24. LPDDR2 mode DC Electrical characteristics
Symbol Parameter Test
condition
Min Typ Max Unit Notes
Voh High-level
output voltage
0.9*ovdd V Note that the
JEDEC
LPDDR2
specification
(JESD209_2B
) supersedes
any
specification
in this
document.
Vol Low-level
output voltage
0.1*ovdd V
Vref Input
reference
voltage
0.49*ovdd 0.5*ovdd 0.51*ovdd V
Vih(dc) DC input high
voltage
Vref+0.13 ovdd V
Vil(dc) DC input low
voltage
ovss Vref-0.13 V
Vih(diff) DC differential
input logic
high
0.26 Note1V
Vil(diff) DC differential
input logic low
Note1-0.26 V
Table continues on the next page...
I/O parameters
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 25
Table 24. LPDDR2 mode DC Electrical characteristics (continued)
Symbol Parameter Test
condition
Min Typ Max Unit Notes
Iin2Input current
(no pull-up/
down)
Vin = ovdd or
0
2.5 uA
Tri-state I/O
supply
current2
Icc-ovdd Vin = ovdd or
0
4
Tri-state
vdd2p5 supply
current2
Icc-vdd2p5 Vi = vddi or 0 1.5
Tri-state core
supply
current2
Icc-vddi 1
Driver unit
(240 Ohm)
calibration
resolution
Rres 10 Ohm
1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well
as the limitations for overshoot and undershoot.
2. Typ condition: typ model, 1.2 V, and 25 °C junction. Max condition: bcs model, 1.26V, and -40 °C. Min condition: wcs
model, 1.14V, and Tj 125 °C.
Table 25. DDR3 mode DC Electrical characteristics
Symbol Parameter Test
condition
Min Typ Max Unit Notes
Voh High-level
output voltage
0.8*ovdd V Note that the
JEDEC
JESD79_3E
specification
supersedes
any
specification
in this
document
Vol Low-level
output voltage
Iol= 1mA 0.2*ovdd V
Vref Input
reference
voltage
0.49*ovdd 0.5*ovdd 0.51*ovdd V
Vih(dc) DC input high
voltage
Vref+0.1 ovdd V
Vil(dc) DC input low
voltage
ovss Vref-0.1 V
Vih(diff) DC differential
input logic
high
0.2 Note1V
Vil(diff) DC differential
input logic low
Note1-0.2 V
Vtt2Termination
voltage
Vin = ovdd or
0
0.49*ovdd 0.5*ovdd 0.51*ovdd
Iin3Input current
(no pullup/
pulldown)
Vi = 0 Vi =
ovdd
3 uA
Table continues on the next page...
I/O parameters
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
26 Freescale Semiconductor, Inc.
Table 25. DDR3 mode DC Electrical characteristics (continued)
Symbol Parameter Test
condition
Min Typ Max Unit Notes
Tri-state I/O
supply
current3
Icc-ovdd Vin = ovdd or
0
5
Tri-state
vdd2p5 supply
current3
Icc-vdd2p5 Vi = vddi or 0 1.5
Tri-state core
supply
current3
Icc-vddi 1
Driver unit
(240 Ohm)
calibration
resolution
Rres 10 Ohm
1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well
as the limitations for overshoot and undershoot.
2. Vtt is expected to track ovdd/2.
3. Typ condition: typ model, 1.5 V, and 25 °C. Max condition: bcs model, 1.575V, and -40 °C. Min condition: wcs model,
1.425V, and max Tj °C 125 °C junction
Table 26. LPDDR2 mode AC Electrical characteristics
Symbol Parameter Test condition Min Max Unit Notes
Vih(ac) AC input logic
high
Vref+0.22 ovdd V Note that the
Jedec LPDDR2
specification
(JESD209-2B)
supersedes any
specification in
this document.
Vil(ac) AC input logic
low
Vref-0.22 V
Vidh(ac)1AC differential
input high
voltage
0.44 - V
Vidl(ac)1AC differential
input low voltage
0.44 V
Vix(ac)2AC differential
input crosspoint
voltage
Relative to
ovdd/2
-0.12 0.12 V
Vpeak Over/undershoot
peak
0.35 V
Varea Over/undershoot
area (above
ovdd or below
ovss)
at 800MHz data
rate
0.3 V*ns
tsr Single output
slew rate
0.4 2 V/ns
tskd Skew between
pad rise/fall
asymmetry +
skew cased by
SSN
0.2 ns
I/O parameters
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 27
1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac).
2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac)
indicates the voltage at which differential input signal must cross.
Table 27. DDR3 mode AC Electrical characteristics
Symbol Parameter Test condition Min Max Unit Notes
Vih(ac) AC input logic
high
Vref+0.175 ovdd V Note that the
JEDEC
JESD79_3E
specification
supersedes any
specification in
this document
Vil(ac) AC input logic
low
ovss Vref-0.175 V
Vidh(ac)1AC differential
input high
voltage
0.35 - V
Vidl(ac)1AC differential
input low voltage
0.35 V
Vix(ac)2AC differential
input crosspoint
voltage
relative to
ovdd/2
Vref-0.15 Vref+0.15 V
Vpeak Over/undershoot
peak
0.4 V
Varea Over/undershoot
area (above
ovdd or below
ovss)
at 800 MHz data
rate
0.5 V*ns
tsr Single output
slew rate
0.4 2 V/ns
tskd Skew between
pad rise/fall
asymmetry +
skew cased by
SSN
0.2 ns
1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac).
2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac)
indicates the voltage at which differential input signal must cross.
Power supplies and sequencing
8.1 Power sequencing
Table 28. Power sequencing
Power Supply (PKG
Level)
Board Level
Power Nets
Parameters Power
Order
Comment
VBAT VBAT Battery supply in case of LDOIN
fails
NA
Table continues on the next page...
8
Power supplies and sequencing
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
28 Freescale Semiconductor, Inc.
Table 28. Power sequencing (continued)
Power Supply (PKG
Level)
Board Level
Power Nets
Parameters Power
Order
Comment
VDD33_LDOIN VDD33 LDO input supply (LDO1P1,
LDO2P5, LDO1P1_RTC)
1 VDD33_LDOIN,VDDREG and
VDD33 should come from a
common supply source
(represented as 3.3V SMPS in
the Figure 4)
VDDREG VDD33 Device PMU regulator and
External ballast supply
1
VDD33 VDD33 GPIO 3.3V IO supply, LCD Supply 1
SDRAMC_VDD1P5 SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply NA In case the Ballast transistor’s
collector is connected to the
1.5V DRAM supply (instead of
the 3.3V supply), turn this
1.5V supply on before turning
on the 3.3V.
VDDA33_ADC VDDA33_ADC 3.3V supply for ADC, DAC and IO
segment
1
VREFH_ADC VREFH_ADC High Reference of ADC, DAC 1
VDDA33_AFE VDDA33_AFE 3.3V supply of AFE (Video ADC) 1
VDD12_AFE VDD 1.2V supply for AFE (Video ADC) 2
FA_VDD VDD Shorted with VDD at Board Level
in 364BGA (Test pin only)
NA
VDD VDD 1.2V core supply from External
ballast
2
USB0_VBUS 1USB_VBUS VBUS supply for USB NA
USB1_VBUS 2USB_VBUS VBUS supply for USB NA
1. Power sequencing of USB0_VBUS is independent of any other power supply.
2. Power sequencing of USB1_VBUS is independent of any other power supply.
NOTE
NA stands for no sequencing needs, for example, the supply
can come in any order.
NOTE
All supplies grouped together e.g. 1,2, others. These have no
power sequencing restriction in between them.
NOTE
If none of the SDRAMC pins are connected on the board, the
SDRAMC supply could be left floating.
NOTE
At power up, 1.2V supply will follow 3.3V supply. At power
down, it should be checked that 1.2V falls before 3.3V.
NOTE
The standby current on USBx_VBUS is 300 - 500 uA. This is
well below the 2.5 mA limit set by the USB 2.0 specification.
Power supplies and sequencing
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 29
This supply will be ON for applications that need to monitor the
USB bus during standby. This supply can be turned-off during
standby in applications that cannot tolerate the standby current
and do not monitor the USB bus.
8.2 Power supply
3.3V
HPREG
LPREG
ULPREG
48K
GPIO's
16K
PD0
VDDA33_AFE
VideoADC
PD1
BCTRL VDD
4.7uF
10uF
LDO2P5 USB 0/1 PHY
PLLs
COIN
cell
Battery supply
(See note) SNVS
LDO LDO3P0
USB0_VBUS (5V)
USB1_VBUS (5V)
DECAP_V25_LDO_OUT
SNVS_IO
LDO1P1
SNVS DECAP_V11_LDO_OUT
DDR IO
PLLs
USB_DCAP
VDDA33_ADC
VREFH_ADC
12-bit SAR
ADC x 2
DAC x 2
VDDREG
VDD33_LDOIN
VDD33
VDD
WBREG
eFUSE
WELL
SDRAMC_VDD2P5
1.5V/1.2V DDR Supply
SDRAMC_VDD1P5
*
Figure 4. Power supply
NOTE
VBAT is the battery supply. If not required, then VBAT should
be tied to VDDREG.
Power supplies and sequencing
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
30 Freescale Semiconductor, Inc.
NOTE
WBREG is the Well Bias Regulator. Supplies PD1 WELL
during well bias modes.
8.3 Absolute maximum ratings
NOTE
These are the values above which device can get damaged.
Refer to the recommended operating conditions table for
intended use case values
Table 29. Absolute maximum ratings
Symbol Parameters Min Max Unit
USB0_VBUS VBUS supply for USB - 5.25 V
USB1_VBUS VBUS supply for USB - 5.25 V
USB_DCAP USB LDO 5V->3.3V Outpu -0.3 3.6 V
VBAT Battery supply in case of LDOIN
fails
-0.3 3.6 V
VDD33_LDOIN LDO input supply -0.3 3.6 V
DECAP_V11_LDO_OUT LDO 3.3V -> 1.1V Output -0.3 1.3 V
DECAP_V25_LDO_OUT LDO 3.3V -> 2.5 Output for PLL,
DDR, EFUSE
-0.3 3.6 V
VDD33 GPIO 3.3V IO supply -0.3 3.6 V
VDDREG Device PMU regulator and
External ballast supply
-0.3 3.6 V
VDDA33_ADC 3.3V supply for ADC, DAC and IO
segment
-0.3 3.6 V
VREFH_ADC 3.3V supply of AFE (Video ADC) -0.3 3.6 V
VDDA33_AFE 3.3V supply of AFE (Video ADC) -0.3 3.6 V
VDD12_AFE 1.2V supply for AFE (Video ADC) -0.3 1.3 V
FA_VDD Test purpose only -0.3 1.3 V
VDD 1.2V core supply -0.3 1.3 V
SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply -0.3 1.975 V
SDRAMC_VDD2P5 2.5V DDR pre-drive supply
DD2P5_LDO_OUT
-0.3 3.6 V
Power supplies and sequencing
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 31
8.4 Recommended operating conditions
Table 30. Recommended operating conditions
Symbol Parameters Conditions Min Typ Max Unit
USB0_VBUS VBUS supply for USB
w.r.t USB0_GND
4.4 5 5.25 V
USB1_VBUS VBUS supply for USB
w.r.t USB1_GND
4.4 5 5.25 V
USB_DCAP USB LDO 5V->3 V
Output
External DCAP (10uF
termination for
USBREG)
3 V
VBAT Battery supply in case
of LDOIN fails
External CAP 0.1uF 2.4 3.3 3.6 V
VDD33_LDOIN LDO input supply 3 3.3 3.6 V
DECAP_V11_LDO_OU
T
LDO 3.3V -> 1.1V
Output
Recommended
External DCAP:
1uF(Min) 10uF (Max)
1.1 V
DECAP_V25_LDO_OU
T
LDO 3.3V -> 2.5 Output
for PLL, DDR pre-
driver, EFUSE
Recommended
External DCAP:
1uF(Min) 10uF (Max)
2.5 V
VDD33 GPIO 3.3V IO supply External CAP (10uF) 3 3.3 3.6 V
VDDREG Device PMU regulator
and External ballast
supply
External CAP (10uF) 3 3.3 3.6 V
VDDA33_ADC 3.3V supply for ADC,
DAC and IO segment
External CAP (10uF) 3 3.3 3.6 V
VREFH_ADC High reference voltage
for ADC and DAC
Relation with
VDDDA33_ADC (1uF)
2.5 3.3 VDDA33_
ADC
V
VREFL_ADC Low reference voltage
for ADC and DAC
External CAP (10uF) 0 V
VDDA33_AFE 3.3V supply of AFE
(Video ADC)
External CAP 10uF 3 3.3 3.6 V
VDD12_AFE 1.2V supply for AFE
(Video ADC)
1.16 1.23 1.26 V
FA_VDD For testing purpose
only should be shorted
to VDD on board.
1.16 1.23 1.26 V
VDD11.2V core supply 4.7uF with a low ESR
value (100 milliohms)
1.16 1.23 1.26 V
USB0_GND Ground supply for USB 0 V
USB1_GND Ground supply for USB 0 V
VSS_KEL0 USB LDO ground
output
0 V
VSS VSS ground 0 V
VSSA33_ADC Ground supply for ADC,
DAC and IO segment
0 V
Table continues on the next page...
Power supplies and sequencing
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
32 Freescale Semiconductor, Inc.
Table 30. Recommended operating conditions (continued)
Symbol Parameters Conditions Min Typ Max Unit
VSSA33_AFE Ground supply of AFE
(Video ADC)
0 V
VSS12_AFE Ground supply for AFE
(Video ADC)
0 V
SDRAMC_VDD1P5 LPDDR2 External CAP 10uF 1.142 1.2 1.26 V
SDRAMC_VDD1P5 DDR3 External CAP 10uF 1.425 1.5 1.575 V
SDRAMC_VDD2P5 2.5V DDR pre-drive
supply
DD2P5_LDO_OUT
External CAP 10uF 2.25 2.5 2.75 V
- Maximum power supply
ramp rate (Slew limit for
power-up)
- 0.1 V/us
1. For customer applications, this is governed by ballast output which is controlled by the device and appropriate voltage
ranges are maintained.
8.5 Recommended Connections for Unused Analog Interfaces
NOTE
There are two options to handle unused power pins:
1. Connect all unused supplies to their respective voltage. To
save the power, do not enable the module and/or do not
enable clock gate to the module.
2. Keep all unused supplies floating.
If pin is shared by several peripheral, then all peripherals
connected to multiplexer have to be powered. For example: if
pin is shared by GPIO and ADC input and GPIO functionality
is used, then ADC has to be powered due to internal structure of
the multiplexer. Keep unused input signals grounded if power
pins are powered. Keep unused input signals floating if power
pins are floating. Keep unused output signals floating.
Module Name Recommendation if Unused
ADC VDDA33_ADC 3.3V or float (Note: Powers both ADC
and DAC)
VREFH_ADC, VREFL_ADC VREFH_ADC same as VDDA33_ADC
VREFL_ADC ground or float
ADC0SE8, ADC0SE9, ADC1SE8,
ADC1SE9
Ground or float
CCM LVDS0P, LVDS0N Float
DAC DACO0, DACO1 Float
Table continues on the next page...
Power supplies and sequencing
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 33
Module Name Recommendation if Unused
USB USB_DCAP, USB0_VBUS,
USB1_VBUS
Connect USBx_VBUS and USB_DCAP
together and tie to ground through a 10K
ohm resistor. Do NOT tie directly to
ground, latch-up risk.
USB0_GND, USB1_GND Ground
USB0_VBUS_DETECT,
USB1_VBUS_DETECT
Float
USB0_DM, USB0_DP, USB1_DM,
USB1_DP
Float
Video ADC VDDA33_AFE 3.3V or Float
VDD12_AFE 1.2V or Float
VADC_AFE_BANDGAP Float
VADCSE0, VADCSE1, VADCSE2,
VADCSE3
Ground or Float
Peripheral operating requirements and behaviours
Analog
9.1.1 12-bit ADC electrical characteristics
9.1.1.1 12-bit ADC operating conditions
Table 31. 12-bit ADC Operating Conditions
Characteristic Conditions Symb Min Typ
1
Max Unit Comment
Supply voltage Absolute VDDAD 2.5 - 3.6 V -
Delta to VDDAD (VDD-
VDDAD), 2ΔVDDAD -100 0 100 mV -
Ground voltage Delta to VSSAD (VSS-
VSSAD)2ΔVSSAD -100 0 100 mV -
Ref Voltage High - VREFH 1.5 VDDAD VDDAD V -
Ref Voltage Low - VREFL VSSAD VSSAD VSSAD V -
Input Voltage - VADIN VREFL - VREFH V -
Input Capacitance 8/10/12 bit modes CADIN - 1.5 2 pF -
Input Resistance ADLPC=0, ADHSC=1 RADIN - 5 7 kohms -
ADLPC=0, ADHSC=0 - 12.5 15 kohms -
ADLPC=1, ADHSC=0 - 25 30 kohms -
Table continues on the next page...
9
9.1
Peripheral operating requirements and behaviours
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
34 Freescale Semiconductor, Inc.
Table 31. 12-bit ADC Operating Conditions (continued)
Characteristic Conditions Symb Min Typ
1
Max Unit Comment
Analog Source
Resistance
12 bit mode fADCK =
40MHz ADLSMP=0,
ADSTS=10, ADHSC=1
RAS - - 1 kohms Tsamp=150
ns
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum
Sample Time vs RAS
ADC Conversion Clock
Frequency
ADLPC=0, ADHSC=1
12 bit mode
fADCK 4 - 40 MHz -
ADLPC=0, ADHSC=0
12 bit mode
4 - 30 MHz -
ADLPC=1, ADHSC=0
12 bit mode
4 - 20 MHz -
1. Typical values assume VDDAD = 3.3 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference
+
RADIN
Pad
leakage
due to
input
protection
VADIN
+
ZAS
CAS
VAS
RAS
Simplified input pin
equivalent circuit
RADIN
Input pin RADIN
Input pin RADIN
Input pin CADIN
ADC SAR
engine
Simplified channel
select circuit
ZADIN
Figure 5. 12-bit ADC Input Impedance Equivalency Diagram
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 35
9.1.1.2 12-bit ADC characteristics
Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD)
Characteristic Conditions1Symb Min Typ 2Max Unit Comment
Supply Current ADLPC=1, ADHSC=0 IDDAD 250 µA ADLSMP=0
ADSTS=10 ADCO=1
ADLPC=0, ADHSC=0 350
ADLPC=0, ADHSC=1 400
Supply Current Stop, Reset, Module
Off
IDDAD 0.01 0.8 µA
ADC Asynchronous
Clock Source
ADHSC=0 fADACK 10 MHz tADACK = 1/fADACK
ADHSC=1 20
Sample Cycles ADLSMP=0,
ADSTS=00
Csamp 2 cycles
ADLSMP=0,
ADSTS=01
4
ADLSMP=0,
ADSTS=10
6
ADLSMP=0,
ADSTS=11
8
ADLSMP=1,
ADSTS=00
12
ADLSMP=1,
ADSTS=01
16
ADLSMP=1,
ADSTS=10
20
ADLSMP=1,
ADSTS=11
24
Conversion Cycles ADLSMP=0
ADSTS=00
Cconv 28 cycles
ADLSMP=0
ADSTS=01
30
ADLSMP=0
ADSTS=10
32
ADLSMP=0
ADSTS=11
34
ADLSMP=1
ADSTS=00
38
ADLSMP=1
ADSTS=01
42
ADLSMP=1
ADSTS=10
46
ADLSMP=1,
ADSTS=11
50
Conversion Time ADLSMP=0
ADSTS=00
Tconv 0.7 µs Fadc=40 MHz
ADLSMP=0
ADSTS=01
0.75
Table continues on the next page...
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
36 Freescale Semiconductor, Inc.
Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)
Characteristic Conditions1Symb Min Typ 2Max Unit Comment
ADLSMP=0
ADSTS=10
0.8
ADLSMP=0
ADSTS=11
0.85
ADLSMP=1
ADSTS=00
0.95
ADLSMP=1
ADSTS=01
1.05
ADLSMP=1
ADSTS=10
1.15
ADLSMP=1,
ADSTS=11
1.25
Total Unadjusted
Error
12 bit mode TUE -2 - +5 LSB3With Max Averaging
10 bit mode -0.5 - +2
8 bit mode -0.25 - +1.5
Differential Non-
Linearity
12 bit mode DNL - ±0.6 ±1.5 LSB3Waiting for histogram
method confirmation
10bit mode - ±0.5 ±1
8 bit mode - ±0.25 ±0.5
Integral Non-Linearity 12 bit mode INL - ±2 ±4 LSB3Waiting for histogram
method confirmation
10bit mode - ±1 ±2
8 bit mode - ±0.5 ±1
Zero-Scale Error 12 bit mode EZS - +1.0 ±1.6 LSB3VADIN = VREFL With
Max Averaging
10bit mode - ±0.4 ±0.8
8 bit mode - ±0.1 ±0.4
Full-Scale Error 12 bit mode EFS - ±2 ±3.5 LSB3VADIN = VREFH With
Max Averaging
10bit mode - ±0.5 ±1
8 bit mode - ±0.25 ±0.75
Quantization Error 12 bit mode EQ- ±1 to 0 LSB3
10bit mode - ±0.5
8 bit mode - ±0.5
Effective Number of
Bits
12 bit mode ENOB 10.1 10.7 - Bits Fin = 100Hz
Signal to Noise plus
Distortion
See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 dB
Input Leakage Error all modes EIL IIn x RAS mV IIn = 400 nA leakage
current
Temp Sensor Slope Across the full
temperature range of
the device
m -- 1.84 -- mV/°C
Temp Sensor Voltage 25°C VTEMP25 - 696 - mV
1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD
2. Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. 1 LSB = (VREFH - VREFL)/2N
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 37
NOTE
The ADC electrical spec would be met with the calibration
enabled configuration.
Figure 6. Minimum Sample Time Vs Ras (Cas = 2pF)
Figure 7. Minimum Sample Time Vs Ras (Cas = 5pF)
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
38 Freescale Semiconductor, Inc.
Figure 8. Minimum Sample Time Vs Ras (Cas = 10pF)
9.1.2 12-bit DAC electrical characteristics
9.1.2.1 12-bit DAC operating requirements
Table 33. 12-bit DAC operating requirements
Symbol Desciption Min. Typ Max. Unit Notes
VDDA33_ADC Supply voltage 3.0 3.3 3.6 V
VREFH_ADC Reference voltage 2.5 3.3 VDDA33_
ADC
V1
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. User will need to set up DACx_STATCTRL [DACRFS]=1 to select the valid VREFH_ADC reference. When
DACx_STATCTRL [DACRFS]=0, the DAC reference is connected to an internal ground node and is not a valid voltage
reference. Note that the DAC and ADC share the VREFH_ADC reference simultaneously. )
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
9.1.2.2 12-bit DAC operating behaviors
Table 34. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 100 μA
IDDA_DACH
P
Supply current — high-power mode 500 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
10 15 μs 1
Table continues on the next page...
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 39
Table 34. 12-bit DAC operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
3 5 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) μs 1
low-power mode 5
high-power mode 1
Vdacoutl DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 3
VOFFSET Offset error ±0.4 ±0.8 %FSR 4
EGGain error ±0.1 ±0.6 %FSR 4
PSRR Power supply rejection ratio, VDDA =3 V, T =
25 C
70 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 5
TGE Temperature coefficient gain error 0.000421 %FSR/C
ACOffset aging coefficient 100 μV/yr
Rop Output resistance load = 3 kΩ 250 Ω
SR Slew rate -80hF7Fh80h V/μs
High power (SPHP) 1.7 3
Low power (SPLP) 0.3 0.6
CT Channel to channel cross talk 70 dB
1. Settling within ±1 LSB
2. The INL is measured for 0+100mV to VDACR−100 mV
3. The DNL is measured for 0+100mV to VDACR−100 mV
4. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV
5. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set
to 0x800, Temp range from -40 °C to 85 °C
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
40 Freescale Semiconductor, Inc.
Figure 9. INL error vs. digital code
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 41
Figure 10. DNL error vs. digital code
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
42 Freescale Semiconductor, Inc.
Figure 11. Offset at half scale vs. temperature
9.1.3 VideoADC Specifications
This section describes the electrical specification and characteristics of the VideoADC
Analog Front End.
Table 35. VideoADC Specifications
Symbol Description Min. Typ. Max. Unit Notes
VDDA33_AFE Supply voltage 3.0 3.3 3.6 V
Supply current 41 mA
VDDA12_AFE Supply voltage 1.1 1.2 1.26 V
Supply current 14 mA
Vin Input signal voltage range
0
0.5
1.4
V
External AC coupling 10 47 nF The external AC coupling
capacitance cannot be too large.
Table continues on the next page...
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 43
Table 35. VideoADC Specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
VBG Bandgap voltage 0.6 V Bandgap voltage on
VADC_AFE_BANDGAP pin. Pin
should be decoupled with a 100nF
capacitor
Mux,
Clamp
and
Filter
Control
Interface
ADC Correction
VADCSE0
VADCSE1
VADCSE2
VADCSE3
Band Gap
VADC_AFE_BANDGAP
VDDA33_AFE VSSA33_AFE
100nF
(See notes)
VDD12_AFE VSS12_AFE
100nF
(See notes)
To Video
Decoder
100nF
47nF
47nF
47nF
47nF
Figure 12. VideoADC supply scheme
Figure 13. VideoADC supply decoupling
Analog
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
44 Freescale Semiconductor, Inc.
NOTE
VideoADC 3.3V and 1.2V power supply pins should be
decoupled to their respective grounds using low-ESR 100nF
capacitors
NOTE
If possible, avoid using switched voltage regulators for the AFE
power domains. Use linear voltage regulators instead.
NOTE
The 3.3V and 1.2V power domains should be separated from
other circuitry on the board by inductors/beads to filter out high
frequency noise.
Display and Video interfaces
DCU Switching Specifications
9.2.1.1 Interface to TFT panels (DCU0/1)
This section provides the LCD interface timing for a generic active matrix color TFT
panel. In the figure below, signals are shown with positive polarity. The sequence of
events for active matrix interface timing:
PCLK latches data into the panel on its positive edge (when positive polarity is
selected). In active mode, PCLK runs continuously. This signal frequency could be
from 5 to 66 MHz depending on the panel type.
HSYNC causes the panel to start a new line. It always encompasses at least one
PCLK pulse.
VSYNC causes the panel to start a new frame. It always encompasses at least one
HSYNC pulse.
DE acts like an output enable signal to the LCD panel. This output enables the data
to be shifted onto the display. When disabled, the data is invalid and the trace is off.
Figure 14. TFT LCD interface timing overview1
9.2
9.2.1
1. In the figure, LD[23:0]” signal is “line data,” an aggregation of the DCU’s RGB signals—R[0:7], G[0:7] and B[0:7].
Display and Video interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 45
9.2.1.2 Interface to TFT LCD Panels—Pixel Level Timings
This section provides the horizontal timing (timing of one line), including both the
horizontal sync pulse and data. All parameters shown in the figure below are
programmable. This timing diagram corresponds to positive polarity of the PCLK signal
(meaning the data and sync signals change on the rising edge) and active-high polarity of
the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and
VSYNC signals via the SYN_POL register, whether active-high or active-low. The
default is active-high. The DE signal is always active-high. Pixel clock inversion and a
flexible programmable pixel clock delay are also supported. They are programmed via
the clock divide . The DELTA_X and DELTA_Y parameters are programmed via the
DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the
HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the
VSYN_PARA register.
Table 36. LCD interface timing parameters—horizontal and vertical
Symbol Characteristic Unit
tPCP Display pixel clock period 11.2 ns
tPWH HSYNC pulse width PW_H * tPCP ns
tBPH HSYNC back porch width BP_H * tPCP ns
tFPH HSYNC front porch width FP_H * tPCP ns
tSW Screen width DELTA_X * tPCP ns
tHSP HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) * tPCP ns
tPWV VSYNC pulse width PWV * tHSP ns
tBPV VSYNC back porch width BP_V * tHSP ns
tFPV VSYNC front porch width FP_V * tHSP ns
tSH Screen height DELTA_Y * tHSP ns
tVSP VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) * tHSP ns
DCU Switching Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
46 Freescale Semiconductor, Inc.
LD[23:0]
DELTA_X
123 Invalid Data
Invalid Data
PCLK
tPCP
tPWH
tHSP
tBPH tSW tFPH
HSYNC
DE
Start
of line
Figure 15. Horizontal sync timing
LD[23:0]
(Line Data)
DELTA_Y
123 Invalid Data
Invalid Data
tHCP
tPWV
tVSP
tBPV tSH tFPV
HSYNC
HSYNC
DE
Start of
Frame
Figure 16. Vertical sync pulse
9.2.1.3 Interface to TFT LCD panels—access level
This section provides the access level timing parameters of the LCD interface.
Table 37. LCD Interface Timing Parameters1, 2, 3—Access Level
Symbol Description Min Max Unit
tCKP Pixel Clock Period 11.2 _ ns
tDV TFT interface data valid after pixel clock _ 4.4 ns
tDV TFT interface HSYNC valid after pixel clock _ 4.4 ns
tDV TFT interface VSYNC valid after pixel clock _ 4.4 ns
tDV TFT interface DE valid after pixel clock _ 4.4 ns
tHO TFT interface output hold time for data and control bits 0 _ ns
Relative skew between the data bits _ 4.4 ns
1. The characteristics in this table are based on the assumption that data is output at +ve edge and displays latch data on -ve
edg6
DCU Switching Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 47
2. Intra bit skew is less than 2 ns
3. Load CL = 50 pf
tHO
tDV
Figure 17. LCD Interface Timing Parameters—Access Level
9.2.2 Video Input Unit timing
This section provides the timing parameters of the Video Input Unit (VIU) interface.
tHO
tSU
tHO
tSU
Figure 18. VIU Timing Parameters
Table 38. VIU Timing Parameters
Symbol Characteristic Min Value Max Value Unit
fPIX_CK VIU pixel clock frequency _ 64 MHz
tDSU VIU data setup time 4 _ ns
tDHD VIU data hold time 1 _ ns
DCU Switching Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
48 Freescale Semiconductor, Inc.
9.2.3 LCD driver electrical characteristics
This section provides LCD driver electrical specification at VDD33 = 3.3 V ± 10%.
Table 39. LCD driver specifications
Symbol Parameter Min Typical Max Unit
VLCD Voltage on VLCD (LCD supply) pin with
respect to VSS
0 VDD33 +
0.3
V
ZBP/FP LCD output impedance
(BP[n-1:0],FP[m-1:0]) for output levels
VDDE, VSS
_ _ 5.0 KΩ
IBP/FP LCD output current (BP[n-1:0],FP[m-1:0]) for
outputs charge/discharge voltage levels
VDDE2/3, VDDE1/2, VDDE/3)1
_ 25 _ µA
1. With PWR=10, BSTEN=0, and BSTAO=0
Ethernet specifications
9.3.1 Ethernet Switching Specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface. All Ethernet
signals use pad type pad_fsr. The timing specifications described i the section assume a
pad slew rate setting of 11 and a load of 50 pF2.
9.3.2 Receive and Transmit signal timing specifications
This section provides timing specs that meet the requirements for RMII interfaces for a
range of transceiver devices.
Table 40. Receive signal timing for RMII interfaces
Characteristic RMII Mode Unit
Min Max
EXTAL frequency (RMII input clock RMII_CLK) 50 MHz
E3, E7 RMII_CLK pulse width high 35% 65% RMII_CLK period
Table continues on the next page...
9.3
2. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11).
When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase
edge rise and fall times, thus reducing EMI.
Ethernet specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 49
Table 40. Receive signal timing for RMII interfaces (continued)
Characteristic RMII Mode Unit
Min Max
E4, E8 RMII_CLK pulse width low 35% 65% RMII_CLK period
E1 RXD[1:0], CVS_DV, RXER to RMII_CLK setup 4 ns
E2 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 ns
E6 RMII_CLK to TXD[1:0], TXEN valid 14 ns
E5 RMII_CLK to TXD[1:0], TXEN invalid 4 ns
Figure 19. RMII receive signal timing diagram
Figure 20. RMII transmit signal timing diagram
NOTE
See the most current device errata document when using the
internally generated RXCLK and TXCLK clocks.
Ethernet specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
50 Freescale Semiconductor, Inc.
tCYC
tHtS
tPWH
RX_CLK
(Input)
RXDn,
RX_DV,
RX_ER
(Input)
(n = 0-3)
Figure 21. MII receive signal timing diagram
Table 41. Receive signal timing for MII interfaces
Characteristic MII Mode Unit
Min Typ Max
RX_CLK clock period (100/10 MBPS) tCYC 40/400 ns
RX_CLK duty cycle, tPWH/tCYC 45 50 55 %
Input setup time before RX_CLK tS5 ns
Input setup time after RX_CLK tH5 ns
9.3.3 Receive and Transmit signal timing specifications for MII
interfaces
This section provides timing specs that meet the requirements for MII interfaces for a
range of transceiver devices.
Ethernet specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 51
tCYC
tHtS
tPWH
RX_CLK
(Input)
RXDn,
RX_DV,
RX_ER
(Input)
(n = 0-3)
Figure 22. MII receive signal timing diagram
Table 42. Receive signal timing for MII interfaces
Characteristic MII Mode Unit
Min Typ Max
RX_CLK clock period (100/10 MBPS) tCYC 40/400 ns
RX_CLK duty cycle, tPWH/tCYC 45 50 55 %
Input setup time before RX_CLK ts5 ns
Input hold time after RX_CLK th5 ns
tCYC
tD
tPWH
TX_CLK
(Input)
TXDn,
TX_EN,
TX_ER
(Output)
Note: Device pins applicable to MII interface are applicable to TMII interface,
and operates at 50 MHz reference clock.
Figure 23. MII transmit signal timing diagram
Table 43. Transmit signal timing for MII interfaces
Characteristic MII Mode Unit
Min Typ Max
TX_CLK clock period (100/10 MBPS) tCYC 40/400 ns
TX_CLK duty cycle, tPWH/tCYC 45 50 55 %
Out delay from TX_CLK tD2 25 ns
Ethernet specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
52 Freescale Semiconductor, Inc.
Audio interfaces
9.4.1 Enhanced Serial Audio Interface (ESAI) Timing Parameters
The ESAI consists of independent transmitter and receiver sections, each section with its
own clock generator. The following table shows the interface timing values.
Table 44. Enhanced Serial Audio Interface (ESAI) Timing
No Characteristics Symbol Min Max Condition1Unit
1 Clock cycle2tSSICC 30.0
(4 × Tc)
master ns
2 Clock high period:
master
slave
6
(2 × Tc
9.0)
15
(2 × Tc)
ns
3 Clock low period:
master
slave
6 (2 × Tc
9.0)
15 (2 × Tc)
ns
4 FSR Input and Data Input setup time before SCKR
(SCK in synchronous mode) falling edge
6
15
Slave
Master
ns
5 FSR Input and Data Input hold time after SCKR
falling edge
2
0
Slave
Master
ns
6 SCKT rising edge to FST out and Data out valid
15
6
Slave
Master
ns
7 SCKT rising edge to FST out and Data out hold
0
0
Slave
Master
ns
8 FST input setup time before SCKT falling edge
6
15
Slave
Master
ns
9 FST input hold time after SCKT falling edge
2
0
Slave
Master
ns
10 HCKR/HCKT clock cycle 15
(2 x TC)
ns
11 HCKT input rising edge to SCKT output 18.0 ns
12 HCKR input rising edge to SCKR output 18.0 ns
1. SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) =
receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock
2. For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.
9.4
Audio interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 53
3
2
1
6
9
89
SCKT
(input/output)
FST (bit) out
FST (word) out
Data out
FST (bit) in
FST (word) in
First bit Last bitLast bit
Figure 24. ESAI Transmitter Timing
3
2
1
45
SCKR
(input/output)
FSR (bit) out
FSR (word) out
Data in
FSR (bit) in
FSR (word) in
First bit Last bit
Figure 25. ESAI Receiver Timing
Audio interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
54 Freescale Semiconductor, Inc.
9.4.2 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase
marking code. When encoding, the SPDIF data signal is modulated by a clock that is
twice the bit rate of the data signal. Table and Figure below show SPDIF timing
parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the
timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the
modulating Tx clock (STCLK) for SPDIF in Tx mode.
Table 45. SPDIF Timing Parameters
Characteristic Symbol Timing Parameter Range Unit
Min Max
SPDIFIN Skew: asynchronous inputs, no specs apply 0.7 ns
SPDIFOUT output (Load = 50pf)
Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
SPDIFOUT1 output (Load = 30pf) - Skew 1.5 ns
Transition rising
Transition falling
Refer Table 21
Modulating Rx clock (SRCK) period srckp 40 ns
SRCK high period srckph 16 ns
SRCK low period srckpl 16 ns
Modulating Tx clock (STCLK) period stclkp 40 ns
STCLK high period stclkph 16 ns
STCLK low period stclkpl 16 ns
Figure 26. SRCK Timing Diagram
Audio interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 55
Figure 27. STCLK Timing Diagram
9.4.3 SAI/I2S Switching Specifications
This section provides the AC timings for the SAI in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and a non-inverted frame sync
(SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame
sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 46. Master Mode SAI Timing
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 2 x tSYS ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 4 x tSYS ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period
S5 SAI_BCLK to SAI_FS output valid 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Audio interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
56 Freescale Semiconductor, Inc.
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_BCLK (output)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
Figure 28. SAI Timing — Master Modes
Table 47. Slave Mode SAI Timing
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 4 x tSYS ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 ns
S14 SAI_FS input hold after SAI_BCLK 2 ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid 20 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 ns
S17 SAI_RXD setup before SAI_BCLK 10 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_BCLK (input)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
Figure 29. SAI Timing — Slave Modes
Audio interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 57
Memory interfaces
9.5.1 QuadSPI timing
All data is based on a negative edge data launch from the device and a negative edge
data capture, as shown in the timing diagrams in this section. This corresponds to the
N/1 sample point as shown in the reference manual QSPI section "Internal Sampling
of Serial Flash Input Data."
Measurements are with a load of 35 pF on output pins. I/P Slew : 1ns
Timings assume a setting of 0x0000_000x for QSPI_SMPR register (see the
reference manual for details).
SDR mode
Tck
Tcss Tcsh
Tis Tih
SCK
CS
Data in
Figure 30. QuadSPI Input/Read timing (SDR mode)
Table 48. QuadSPI Input/Read timing (SDR mode)
Symbol Parameter Value Unit
Min Max
Tis Setup time for incoming data 4.5 ns
Tih Hold time requirement for incoming data 0 ns
9.5
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
58 Freescale Semiconductor, Inc.
Toh
Tov
Tck
Tcss Tcsh
SCK
CS
Data out
Figure 31. QuadSPI Output/Write timing (SDR mode)
Table 49. QuadSPI Output/Write timing (SDR mode)
Symbol Parameter Value Unit
Min Max
Tov Output Data Valid - 3.2 ns
Toh Output Data Hold 0 - ns
Tck SCK clock period - 80 MHz
Tcss Chip select output setup time 3 - SCK clock cycles
Tcsh Chip select output hold time 3 - SCK clock cycles
NOTE
Tcss and Tcsh are set by QuadSPI_FLSCH register, the
minimum values of 3 shown are the register default values,
refer to Reference Manual for further details.
The timing in the datasheet is based on default values for
the QuadSPI-SMPR register and is the recommended
setting for highest SCK frequency in SDR mode.
A negative time indicates the actual capture edge inside the
device is earlier than clock appearing at pad.
Frequency calculator guideline (Max read frequency): SCK
> (Flash access time)max + (Tis)max
A negative input hold time has no bearing on the maximum
achievable operating frequency.
DDR Mode
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 59
Tck
Tcss Tcsh
Tis Tih
SCK
CS
Data in
Figure 32. QuadSPI Input/Read timing (DDR mode)
NOTE
The numbers are for a setting of 0x1 in regiater
QuadSPI_SMPR[DDRSMP]
Read frequency calculations should be: SCK/2 > (flash
access time) + Setup (Tis) -
(QuadSPI_SMPR[DDRSMP])x SCK/4
Frequency calculator guideline (Max read frequency):
SCK/2 > (Flash access time)max + (Tis)max -
(QuadSPI_SMPR[DDRSMP]) xSCK/4
Hold timing: flash_access (min) + flash_data_valid (min) >
SCK/2 + HOLD(Tih) +
(QuadSPI_SMPR[DDRSMP])SCK/4
A negative time indicates the actual capture edge inside the
device is earlier than clock appearing at pad.
Table 50. QuadSPI Input/Read timing (DDR mode)
Symbol Parameter Value Unit
Min Max
Tis Setup time for incoming data 6.4 ns
Tih Hold time requirement for incoming data -3.0 ns
NOTE
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
60 Freescale Semiconductor, Inc.
Tck
Tcss Tcsh
Tov
Toh
SCK
CS
Data out
Figure 33. QuadSPI Output/Write timing (DDR mode)
Table 51. QuadSPI Output/Write timing (DDR mode)
Symbol Parameter Value Unit
Min Max
Tov Output Data Valid 3.2 ns
Toh Output Data Hold 0 ns
Tck SCK clock period - 45 MHz
Tcss Chip select output setup time 3 - Clk(sck)
Tcsh Chip select output hold time 3 - Clk(sck)
9.5.2 NFC specifications
The NAND flash controller (NFC) implements the interface to standard NAND flash
memory devices. This section describes the timing parameters of the NFC.
In the following table:
TH is the flash clock high time and
TL is flash clock low time,
which are defined as:
TNFC = TH + TL
NOTE
Refer to the Reference Manual for further details on setting up
the NFC clocks (CCM_CSCDR2[NFC_FRAC_DIV_EN +
NFC_FRAC_DIV] and CCM_CSCDR3[NFC_PRE_DIV]).
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 61
Table 52. NFC specifications
Num Description Min. Max. Unit
tCLS NFC_CLE setup time 2TH + TL – 1 ns
tCLH NFC_CLE hold time TH + TL – 1 ns
tCS NFC_CEn setup time 2TH + TL – 1 ns
tCH NFC_CEn hold time TH + TL ns
tWP NFC_WP pulse width TL – 1 ns
tALS NFC_ALE setup time 2TH + TL ns
tALH NFC_ALE hold time TH + TL ns
tDS Data setup time TL – 1 ns
tDH Data hold time TH – 1 ns
tWC Write cycle time TH + TL – 1 ns
tWH NFC_WE hold time TH – 1 ns
tRR Ready to NFC_RE low 4TH + 3TL + 90 ns
tRP NFC_RE pulse width TL + 1 ns
tRC Read cycle time TL + TH – 1 ns
tREH NFC_RE high hold time TH – 1 ns
tIS Data input setup time 11 ns
tCS tCHtWP
tDS tDH
tCLS tCLH
NFC_CLE
NFC_CEn
NFC_WE
NFC_IOn
Figure 34. Command latch cycle timing
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
62 Freescale Semiconductor, Inc.
tCS tCHtWP
tDS tDH
tALS tALH
address
NFC_ALE
NFC_CEn
NFC_WE
NFC_IOn
Figure 35. Address latch cycle timing
tCS tCH
tWP
tDS tDH
data data data
tWC
tWH
NFC_CEn
NFC_WE
NFC_IOn
Figure 36. Write data latch cycle timing
tCH
tRP
data data data
tRC
tREH
tIS
tRR
NFC_CEn
NFC_RE
NFC_IOn
NFC_RB
Figure 37. Read data latch cycle timing in non-fast mode
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 63
tCH
tRP
data data data
tRC
tREH
tIS
tRR
NFC_CEn
NFC_RE
NFC_IOn
NFC_RB
Figure 38. Read data latch cycle timing in fast mode
9.5.3 FlexBus timing specifications
This section provides FlexBus timing parameters. All processor bus timings are
synchronous; input setup/hold and output delay are given in respect to the rising edge of a
reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal
system bus frequency.
The following timing numbers indicate when data is latched or driven onto the external
bus, relative to the FlexBus output clock (FB_CLK). All other timing relationships can be
derived from these values.
All FlexBus signals use pad type pad_fsr. The following timing specifications assume a
pad slew rate setting of 11 and a load of 50 pF3
Table 53. FlexBus timing specifications
Num Characteristic Min Max Unit
Frequency of operation 831 (with
Wait state)
MHz
572 without
Wait state ,
-1
FB1 Clock Period 12 ns
FB4 Input setup 10.6 ns
FB5 Input hold 0 ns
FB2 Output valid 6.4 ns
FB3 Output hold 0 ns
1. Freq = 1000/(11+ access time of external memory+ trace delay for clk and data)
2. Freq = 1000/(17+access time of external memory)
3. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11).
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
64 Freescale Semiconductor, Inc.
Figure 39. FlexBus read timing
Figure 40. FlexBus write timing
Memory interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 65
DDR controller specifications
9.5.4.1 DDR3 Timing Parameters
Figure 41. DDR3 Command and Address Timing Parameters
NOTE
RESET pin has a external weak pull DOWN requirement if
DDR3 memory is NOT required to support content retention in
the device low power modes where core voltage is off but
DRAM voltage is on.
9.5.4
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
66 Freescale Semiconductor, Inc.
NOTE
RESET pin has a external weak pull UP requirement if DDR3
memory is required to support content retention in the device
low power modes where core voltage is off but DRAM voltage
is on.
NOTE
CKE pin has a external weak pull down requirement.
Table 54. DDR3 Timing Parameter
ID Parameter Symbol CK = 400 MHz Unit
Min Max
DDR1 CK clock high-level
width
tCH 0.47 0.53 tCK
DDR2 CK clock low-level
width
tCL 0.47 0.53 tCK
DDR4 CS, RAS, CAS,
CKE, WE, ODT
setup time
tIS 440 - ps
DDR5 CS, RAS, CAS,
CKE, WE, ODT
hold time
tIH 315 - ps
DDR6 Address output
setup time
tIS 440 - ps
DDR7 Address output
hold time
tIH 315 - ps
NOTE
All measurements are in reference to Vref level.
NOTE
Measurements were done using balanced load and 25 ohms
resistor from outputs to VDD_REF.
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 67
9.5.4.2 DDR3 Read Cycle
Figure 42. DDR3 Read Cycle
Table 55. DDR3 Read Cycle
ID Parameter Symbol CK = 400 MHz Unit
Min Max
DDR26 Minimum required DQ valid
window width
- 750 - ps
NOTE
To receive the reported setup and hold values, read calibration
should be performed in order to locate the DQS in the middle of
DQ window.
NOTE
All measurements are in reference to Vref level.
NOTE
Measurements were done using balanced load and 25 ohms
resistor from outputs to VDD_REF
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
68 Freescale Semiconductor, Inc.
9.5.4.3 DDR3 Write cycle
Figure 43. DDR3 Write cycle
Table 56. DDR3 Write cycle
ID Parameter Symbol CK = 400 MHz Unit
Min Max
DDR17 DQ and DQM setup time to DQS
(differential strobe)
tDS 240 ps
DDR18 DQ and DQM hold time to DQS
(differential strobe)
tDH 215 ps
DDR21 DQS latching rising transitions to
associated clock edges
tDQSS -0.25 +0.25 tCK
DDR22 DQS high level width tDQSH 0.45 0.55 tCK
DDR22 DQS low level width tDQSL 0.45 0.55 tCK
NOTE
To receive the reported setup and hold values, write calibration
should be performed in order to locate the DQS in the middle of
DQ window.
NOTE
All measurements are in reference to Vref level.
NOTE
Measurements were done using balanced load and 25 ohms
resistor from outputs to VDD_REF.
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 69
9.5.4.4 LPDDR2 Timing Parameter
Figure 44. LPDDR2 Command and Address timing parameter
NOTE
RESET pin has a external weak pull DOWN requirement if
LPDDR2 memory is NOT required to support content retention
in the device low power modes where core voltage is off but
DRAM voltage is on.
NOTE
RESET pin has a external weak pull UP requirement if
LPDDR2 memory is required to support content retention in the
device low power modes where core voltage is off but DRAM
voltage is on.
NOTE
CKE pin has a external weak pull down requirement.
Table 57. LPDDR2 Timing Parameter
ID Parameter Symbol CK = 400 MHz Unit
Min Max
LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK
LP2 SDRAM clock LOW-level width tCL 0.45 0.55 tCK
LP3 CS, CKE setup time tIS 230 - ps
LP4 CS, CKE hold time tIH 230 - ps
LP3 CA setup time tIS 230 - ps
LP4 CA hold time tIH 230 - ps
NOTE
All measurements are in reference to Vref level.
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
70 Freescale Semiconductor, Inc.
NOTE
Measurements were done using balanced load and 25 ohms
resistor from outputs to VDD_REF.
9.5.4.5 LPDDR2 Read Cycle
Figure 45. LPDDR2 Read cycle
Table 58. LPDDR2 Read Cycle
ID Parameter Symbol CK = 400 MHz Unit
Min Max
LP26 Minimum required DQ valid
window width for LPDDR2
- 270 - ps
NOTE
To receive the reported setup and hold values, read calibration
should be performed in order to locate the DQS in the middle of
DQ window.
NOTE
All measurements are in reference to Vref level.
NOTE
Measurements were done using balanced load and 25 ohms
resistor from outputs to VDD_REF
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 71
9.5.4.6 LPDDR2 Write Cycle
Figure 46. LPDDR3 Write Cycle
Table 59. LPDDR2 Write Cycle
ID Parameter Symbol CK = 400 MHz Unit
Min Max
LP17 DQ and DQM setup time to DQS
(differential strobe)
tDS 220 0.55 ps
LP18 DQ and DQM hold time to DQS
(differential strobe)
tDH 220 0.55 ps
LP21 DQS latching rising transitions to
associated clock edges
tDQSS -0.25 +0.25 tCK
LP22 DQS high level width tDQSH 0.4 - tCK
LP23 DQS low level width tDQSL 0.4 - tCK
NOTE
To receive the reported setup and hold values, write calibration
should be performed in order to locate the DQS in the middle of
DQ window.
NOTE
All measurements are in reference to Vref level.
NOTE
Measurements were done using balanced load and 25 ohms
resistor from outputs to VDD_REF.
DDR controller specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
72 Freescale Semiconductor, Inc.
Communication interfaces
9.6.1 DSPI timing specifications
Table 60. DSPI timing
No. Symbol Characteristic Condition Min Max Unit
1 tSCK SCK Cycle Time tSYS * 2 ns
4 tSDC SCK Clock Pulse Width 40% 60% tSCK
2 tCSC CS to SCK Delay Master 16 ns
3 tASC After SCK Delay Master 16 ns
5 tASlave Access Time (SS active
to SOUT driven)
Slave 15 ns
6 tDI Slave Disable Time (SS
inactive to SOUT High-Z or
invalid)
Slave 10 ns
9 tSUI Data Setup Time for Inputs Master 9 ns
Slave 4
10 tHI Data Hold Time for Inputs Master 0 ns
Slave 2
11 tDV Data Valid (after SCK edge)
for Outputs
Master 5 ns
Slave 10
12 tHO Data Hold Time for Outputs Master 0 ns
Slave 0
9.6
Communication interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 73
D a ta
L a s t D a ta
F irs t D a ta
F irs t D a ta D a ta L a s t D a ta
S IN
S O U T
C S x
S C K O u tp u t
4
9
1 2
1
1 1
1 0
4
S C K O u tp u t
(C P O L = 0 )
(CP OL = 1 )
3
2
Figure 47. DSPI classic SPI timing master, CPHA=0
D a ta
L a st D a ta
F irs t D a ta
S IN
S O U T
1 2 1 1
1 0
L a st D a ta
D a ta
F irs t D a ta
S C K O u tp u t
S C K O u tp u t
C S x
9
(C P O L = 0 )
(CP OL = 1 )
Figure 48. DSPI classic SPI timing master, CPHA=1
Communication interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
74 Freescale Semiconductor, Inc.
L a st D a ta
F irs t D a ta
3
4
1
D a ta
D a ta
S IN
S O U T
S S
4
5
6
9
1 1
1 0
1 2
S C K In p u t
F irs t D a ta
L a st D a ta
S C K In p u t
2
(C P O L = 0 )
(C P O L = 1 )
Figure 49. DSPI classic SPI timing slave, CPHA=0
5
6
9
1 2
1 1
1 0
L a s t D a ta
L a s t D a ta
S IN
S O U T
S S
F irs t D a ta
F irs t D a ta
D a ta
D a ta
S C K In p u t
S C K In p u t
(C P O L = 0 )
(C P O L = 1 )
Figure 50. DSPI classic SPI timing slave, CPHA=1
9.6.2 I2C timing
Table 61. I2C input timing specifications — SCL and SDA1
No. Parameter Min. Max. Unit
1 Start condition hold time 2 PER_CLK
Cycle2
2 Clock low time 8 PER_CLK
Cycle
Table continues on the next page...
Communication interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 75
Table 61. I2C input timing specifications — SCL and SDA1 (continued)
No. Parameter Min. Max. Unit
3 Bus free time between Start and Stop condition 4.7 μs
4 Data hold time 0.0 μs
5 Clock high time 4 PER_CLK
Cycle
6 Data setup time 0.0 ns
7 Start condition setup time (for repeated start condition only) 2 PER_CLK
Cycle
8 Stop condition setup time 2 PER_CLKCyc
le
1. I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than 1
ns (10% – 90%).
2. PER_CLK is the IPG Clock which drive the I2C BIU and module clock inputs. Typically this is 83Mhz. See the Clocking
Overview chapter in the device reference manual for more details.
Table 62. I2C output timing specifications — SCL and SDA1234
No. Parameter Min Max Unit
1 Start condition hold
time
6 PER_CLK Cycle5
2 Clock low time 10 PER_CLK Cycle
3 Bus free time between
Start and Stop condition
4.7 μs
4 Data hold time 7 PER_CLK Cycle
5 Clock high time 10 PER_CLK Cycle
6 Data setup time 2 PER_CLK Cycle
7 Start condition setup
time (for repeated start
condition only)
20 PER_CLK Cycle
8 Stop condition setup
time
10 PER_CLK Cycle
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.
3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speedsand may
cause incorrect operation.
4. Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output
timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period.
The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register.
5. PER_CLK is the IPG Clock which drive the I2C BIU and module clock inputs. Typically this is 83Mhz. See the Clocking
Overview chapter in the device reference manual for more details.
Communication interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
76 Freescale Semiconductor, Inc.
Figure 51. I2C input/output timing
9.6.3 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface. A load of 50
pF is assumed.
Table 63. SDHC switching specifications
Num Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Card input clock
SD1 fpp Clock frequency (low speed) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz
fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz
fOD Clock frequency (identification mode) 0 400 kHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6 tOD SDHC output delay (output valid) -5 4 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 0 ns
Communication interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 77
SD2SD3 SD1
SD6
SD8
SD7
SDHC_CLK
Output SDHC_CMD
Output SDHC_DAT[3:0]
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 52. SDHC timing
9.6.4 USB PHY specifications
This section describes the USB-OTG PHY and the USB Host port PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal
Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and
Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to
Host port).
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0 plus errata and ecn June 4, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
Communication interfaces
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
78 Freescale Semiconductor, Inc.
Clocks and PLL Specifications
9.7.1 24 MHz Oscillator Specifications
The system crystal oscillator consists of a Pierce-type structure running off the digital
supply. A straight forward biased-inverter implementation is used. The crystal must be
rated for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω
or less is recommended to achieve a gain margin of 5.
Table 64. 24MHz external oscillator electrical characteristics
Symbol Parameter Condition Value Unit
Min Typ Max
fosc Crystal oscillator range 24 MHz
Iosc Startup current < 5 mA
tuposc Oscillator startup time < 5 ms
CIN Input Capacitance EXTAL and XTAL pins 9 pF
VIH XTAL pin input high voltage 0.8 x
Vdd1 Vdd
+0.3
V
VIL XTAL pin input low voltage Vss
-0.3
0.2 x
Vdd
V
1. VDD =1.1 V ± 10%, TA = -40 to +85 °C, unless otherwise specified.
9.7.2 32 KHz Oscillator Specifications
This block implements an amplifier that when combined with a suitable quartz crystal
and external load capacitors implements a low power oscillator. It also implements a
power mux such that it can be powered from either a ~3 V backup battery or VDDIO
such as the oscillator consumes power from VDDIO when that supply is available and
transitions to the back up battery when VDDIO is lost.
In addition, if the clock monitor determines that the OSC32K is not present, then the
source of the 32 K will automatically switch to the 128kHz internal RC clock divided by
4.
The OSC32k runs from vdd_rtc supply, generated inside OSC32k itself from VDDIO/
VBAT. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary
for chosen VDDIO range. Appropriate series resistor (Rs) must be used when connecting
the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell.
For example:
9.7
Clocks and PLL Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 79
Average Discharge Voltage is 2.5 V
Maximum Charge Current is 0.6 mA
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k
Table 65. OSC32K Main Characteristics
Notes Min Typ Max
FOSC This frequency is nominal and determined mainly by the
crystal selected. 32.0 K would work as well.
32.768 KHz
Current
consumption
The 4 μA is the consumption of the oscillator alone (OSC32k).
Total supply consumption will depend on what the digital
portion of the RTC consumes. The ring oscillator consumes 1
μA when ring oscillator is inactive, 20 μA when the ring
oscillator is running. Another 1.5 μA is drawn from vdd_rtc in
the power_detect block. So, the total current is 6.5 μA on
vdd_rtc when the ring oscillator is not running.
4 μA
Bias resistor This the integrated bias resistor that sets the amplifier into a
high gain state. Any leakage through the ESD network,
external board leakage, or even a scope probe that is
significant relative to this value will debias the amp. The
debiasing will result in low gain, and will impact the circuit's
ability to start up and maintain oscillations.
14 MΩ
Crystal Properties
Cload Usually crystals can be purchased tuned for different Cloads.
This Cload value is typically 1/2 of the capacitances realized
on the PCB on either side of the quartz. A higher Cload will
decrease oscillation margin, but increases current oscillating
through the crystal
12.5 pF
ESR Equivalent series resistance of the crystal. Choosing a crystal
with a higher value will decrease the oscillating margin.
50 kΩ
9.7.3 Fast internal RC oscillator (24 MHz) electrical characteristics
This section describes a fast internal RC oscillator (FIRC). This is used as the default
clock at the power-up of the device.
Table 66. Fast internal oscillator electrical characteristics
Symbol Parameter Condition1Value
Min Typ Max Unit
fRCM RC oscillator high frequency TA= 25 °C, trimmed 24 MHz
IRCMRUN RC oscillator high frequency
current in running mode
TA= 25 °C, trimmed 55 μA
IRCMPWD RC oscillator high frequency
current in power down mode
TA= 25 °C 100 nA
RCMTRIM RC oscillator precision after
trimming of fRC
TA= 25 °C -1 +1 %
Table continues on the next page...
Clocks and PLL Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
80 Freescale Semiconductor, Inc.
Table 66. Fast internal oscillator electrical characteristics (continued)
Symbol Parameter Condition1Value
Min Typ Max Unit
RCMVAR RC oscillator variation in
temperature and supply with
respect to fRC at TA = 55 °C in
high frequency configuration
-5 +5 %
1. VDD = 1.2 V , TA = -40 to +85 °C, unless otherwise specified.
9.7.4 Slow internal RC oscillator (128 KHz) electrical characteristics
This section describes a slow internal RC oscillator (SIRC). This can be used as the
reference clock for the RTC module.
Table 67. Slow internal RC oscillator electrical characteristics
Symbol Parameter Condition1Value
Min Typ Max Unit
fRCL RC oscillator low frequency TA= 25 °C, trimmed 128 kHz
IRCL RC oscillator low frequency
current
TA= 25 °C, trimmed 3.1 μA
RCLTRIM RC oscillator precision after
trimming of fRCL
TA= 25 °C -1 +1 %
RCLVAR 3 RC oscillator variation in
temperature and supply with
respect to fRC at TA = 55 °C in
high frequency configuration
High frequency configuration -5 +5 %
1. VDD = 1.2 V , TA = -40 to +85 °C, unless otherwise specified.
9.7.5 PLL1 and PLL2 (528 MHz System PLL) Electrical Parameters
Table 68. PLL1 and PLL2 Electrical Parameters
Parameter Value
Clock output range 528 MHz PLL output
Reference clock 24 MHz
Lock time <7500 reference cycles
Period jitter(p2p) <140ps
Duty Cycle 48.9%~51.7% PLL output
Clocks and PLL Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 81
9.7.6 PLL3 and PLL7 (480 MHz USB PLL) Electrical Parameters
Table 69. PLL3 and PLL7 Electrical Parameters
Parameter Value
Clock output range 480 MHz PLL output
Reference clock 24 MHz
Lock time <425 reference cycles
Period jitter(p2p) <140 ps
Duty Cycle 48.9%~51.7% PLL output
9.7.7 PLL5 (Ethernet PLL) Electrical Parameters
Table 70. PLL5 Electrical Parameters
Parameter Value
Clock output range 500 MHz
Reference clock 24 MHz
Lock time <7500 reference cycles
Cycle to cycle jitter (p2p)1<400ps @ 50 MHz
Duty Cycle 45%~55%
1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out IO pad.
9.7.8 PLL4 (Audio PLL) Electrical Parameters
Table 71. PLL4 Electrical Parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <7500 reference cycles
Long term jitter(RMS) <42ps @1128MHz
Period jitter(p2p)1<115ps@1128MHz
Duty Cycle 43%~57%
1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out on IO pad.
Clocks and PLL Specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
82 Freescale Semiconductor, Inc.
9.7.9 PLL6 (Video PLL) Electrical Parameters
Table 72. PLL6 Electrical Parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <7500 reference cycles
Long term jitter(RMS)1<42ps @ 1128 MHz
Period jitter(p2p) <130ps @960MHz
Duty Cycle 43%~57%
1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out on IO pad & at use case
frequency.
Debug specifications
9.8.1 JTAG electricals
Table 73. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
-
-
-
25
25
25
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
20
20
20
ns
ns
ns
J4 TCLK rise and fall times Refer Table 21 ns
J5 Boundary scan input data setup time to TCLK rise 8 ns
J6 Boundary scan input data hold time after TCLK rise 1.3 ns
J7 TCLK low to boundary scan output data valid 17 ns
J8 TCLK low to boundary scan output high-Z 17 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.3 ns
J11 TCLK low to TDO data valid 17 ns
J12 TCLK low to TDO high-Z 17 ns
9.8
Debug specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 83
NOTE
Input transition (1ns), output load (25 pf) and SRE (000), DSE
(111), FSEL(011).
J2
J3 J3
J4 J4
TCLK (input)
Figure 53. Test clock input timing
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 54. Boundary scan (JTAG) timing
Debug specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
84 Freescale Semiconductor, Inc.
J11
J12
J11
J9 J10
Input data valid
Output data valid
Output data valid
TCLK
TDI/TMS
TDO
TDO
TDO
Figure 55. Test Access Port timing
9.8.2 Debug trace timing specifications
Table 74. Debug trace operating behaviors
Symbol Description Min. Max. Unit
Tcyc Clock period 50 MHz
Twl Low pulse width 2 ns
Twh High pulse width 2 ns
TrClock and data rise time Refer Table 21 ns
TfClock and data fall time Refer ns
tDV Data output valid 3 ns
tHO Data output hold 1 ns
TRACECLK
Tr
Twh
Tf
Tcyc
Twl
Figure 56. TRACE_CLKOUT specifications
Debug specifications
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 85
tHO
tDV
trace output clock
trace output data
Figure 57. Trace data specifications
Thermal attributes
10.1 Thermal attributes
Board type Symbol Description 176LQFP Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
50 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
32 °C/W 1,3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
40 °C/W 1, 3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
25 °C/W 1, 3
RθJB Thermal
resistance, junction
to board
21 °C/W 4
RθJCtop Thermal
resistance, junction
to case top
12 °C/W 5
ΨJT Thermal
characterization
parameter, junction
3 °C/W 6
10
Thermal attributes
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
86 Freescale Semiconductor, Inc.
Board type Symbol Description 176LQFP Unit Notes
to package top
(natural
convection)
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance
2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Board type Symbol Description 364 MAPBGA Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
45 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
28 °C/W 1, 3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
37 °C/W 1,3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
24 °C/W 1,3
RθJB Thermal
resistance, junction
to board
17 °C/W 4
RθJC Thermal
resistance, junction
to case
10 °C/W 5
ΨJT Thermal
characterization
parameter, junction
to package top
outside center
(natural
convection)
2 °C/W 6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
Thermal attributes
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 87
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Dimensions
11.1 Obtaining package dimensions
Package dimensions are provided in package drawing.
To find a package drawing, go to www.freescale.com and perform a keyword search for
the drawing’s document number:
Package Freescale Document Number
176-pin LQFP 98ASA00452D
364 MAPBGA 98ASA00418D
Pinouts
12.1 Pinouts
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The IOMUX Controller (IOMUXC)
Module is responsible for selecting which ALT functionality is available on each pin.
NOTE
The 176 LQFP parts are not pin compatible between the F-
Series and R-Series families.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
Y2 ADC0SE8 N/
A
ADC0_SE8
W2 ADC0SE9 ADC0_SE9
W3 ADC1SE8 ADC1_SE8
Y3 ADC1SE9 ADC1_SE9
W1 41 VREFH_ADC VREFH_ADC
U3 40 VREFL_ADC VREFL_ADC
11
12
Dimensions
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
88 Freescale Semiconductor, Inc.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
V1 38 VDDA33_
ADC
VDDA33_
ADC
V2 39 VSSA33_
ADC
VSSA33_
ADC
U1 36 DACO0 DACO0
U2 37 DACO1 DACO1
Y4 VADCSE0 VADCSE0
U4 VADCSE1 VADCSE1
W4 VADCSE2 VADCSE2
V5 VADCSE3 VADCSE3
V3 VDDA33_
AFE
VDDA33_
AFE
V4 VSSA33_AFE VSSA33_AFE
T5 VDD12_AFE VDD12_AFE
R5 VSS12_AFE VSS12_AFE
U5 VADC_AFE_
BANDGAP
VADC_AFE_
BANDGAP
Y13 73 EXTAL EXTAL
W13 72 XTAL XTAL
Y12 70 EXTAL32 EXTAL32
W12 71 XTAL32 XTAL32
T4 35 RESETB/
RESET_OUT
RESETB/
RESET_OUT
RESETB/
RESET_OUT
N5 19 PTA6 PTA6 RMII_
CLKOUT
RMII_CLKIN/
MII0_TXCLK
DCU1_
TCON11
DCU1_R2
T3 34 TEST TEST
T1 30 Ext_POR TEST2
V12 69 DECAP_
V11_LDO_
OUT
DECAP_
V11_LDO_
OUT
T11 65 DECAP_
V25_LDO_
OUT
DECAP_
V25_LDO_
OUT
T2 33 BCTRL BCTRL
P5 31 VDDREG VDDREG
T12 68 VDD33_
LDOIN
VDD33_
LDOIN
V11 67 VSS VSS
U11 66 VSS_KEL0 VSS_KEL0
W14 LVDS0P LVDS0P
Y14 LVDS0N LVDS0N
K4 3 JTCLK/
SWCLK
JTCLK/
SWCLK
PTA8 JTCLK/
SWCLK
DCU0_R0 MLBCLK
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 89
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
K2 4 JTDI JTDI PTA9 JTDI RMII_
CLKOUT
RMII_CLKIN/
MII0_TXCLK
DCU0_R1 WDOG_b
K1 5 JTDO JTDO/
TRACESWO
PTA10 JTDO EXT_AUDIO_
MCLK
DCU0_G0 ENET_TS_
CLKIN
MLBSIGNAL
L1 6 JTMS/
SWDIO
JTMS/
SWDIO
PTA11 JTMS/
SWDIO
DCU0_G1 MLBDATA
L3 7 PTA12 PTA12 TRACECK EXT_AUDIO_
MCLK
VIU_DATA13 I2C0_SCL
Y5 43 PTA16 PTA16 TRACED0 USB0_
VBUS_EN
ADC1_SE0 LCD29 SAI2_TX_
BCLK
VIU_DATA14 I2C0_SDA
Y6 44 PTA17 PTA17 TRACED1 USB0_
VBUS_OC
ADC1_SE1 LCD30 USB0_SOF_
PULSE
VIU_DATA15 I2C1_SCL
V6 46 PTA18 PTA18 TRACED2 ADC0_SE0 FTM1_QD_
PHA
LCD31 SAI2_TX_
DATA
VIU_DATA16 I2C1_SDA
U6 47 PTA19 PTA19 TRACED3 ADC0_SE1 FTM1_QD_
PHB
LCD32 SAI2_TX_
SYNC
VIU_DATA17 QSPI1_A_
SCK
B18 143 PTA20 PTA20 TRACED4 LCD33 SCI3_TX DCU1_
HSYNC/
DCU1_
TCON1
D18 145 PTA21 PTA21/
MII0_RXCLK
TRACED5 SAI2_RX_
BCLK
SCI3_RX DCU1_
VSYNC/
DCU1_
TCON2
E17 147 PTA22 PTA22 TRACED6 SAI2_RX_
DATA
I2C2_SCL DCU1_TAG/
DCU1_
TCON0
C17 148 PTA23 PTA23 TRACED7 SAI2_RX_
SYNC
I2C2_SDA DCU1_DE/
DCU1_
TCON3
R16 PTA24 PTA24 TRACED8 USB1_
VBUS_EN
SDHC1_CLK DCU1_
TCON4
R17 PTA25 PTA25 TRACED9 USB1_
VBUS_OC
SDHC1_CMD DCU1_
TCON5
R19 PTA26 PTA26 TRACED10 SAI3_TX_
BCLK
SDHC1_
DAT0
DCU1_
TCON6
R20 PTA27 PTA27 TRACED11 SAI3_RX_
BCLK
SDHC1_
DAT1
DCU1_
TCON7
P20 PTA28 PTA28 TRACED12 SAI3_RX_
DATA
ENET1_
1588_TMR0
SCI4_TX SDHC1_
DAT2
DCU1_
TCON8
P18 PTA29 PTA29 TRACED13 SAI3_TX_
DATA
ENET1_
1588_TMR1
SCI4_RX SDHC1_
DAT3
DCU1_
TCON9
P17 PTA30 PTA30 TRACED14 SAI3_RX_
SYNC
ENET1_
1588_TMR2
SCI4_RTS I2C3_SCL SCI3_TX
P16 PTA31 PTA31 TRACED15 SAI3_TX_
SYNC
ENET1_
1588_TMR3
SCI4_CTS I2C3_SDA SCI3_RX
T6 49 PTB0 PTB0 FTM0_CH0 ADC0_SE2 TRACECTL LCD34 SAI2_RX_
BCLK
VIU_DATA18 QSPI1_A_
CS0
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
90 Freescale Semiconductor, Inc.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
T7 50 PTB1 RCON30 PTB1 FTM0_CH1 ADC0_SE3 RCON30 LCD35 SAI2_RX_
DATA
VIU_DATA19 QSPI1_A_
DATA3
V7 51 PTB2 RCON31 PTB2 FTM0_CH2 ADC1_SE2 RCON31 LCD36 SAI2_RX_
SYNC
VIU_DATA20 QSPI1_A_
DATA2
W7 53 PTB3 PTB3 FTM0_CH3 ADC1_SE3 EXTRIG LCD37 VIU_DATA21 QSPI1_A_
DATA1
Y7 54 PTB4 PTB4 FTM0_CH4 SCI1_TX ADC0_SE4 LCD38 VIU_FID VIU_DATA22 QSPI1_A_
DATA0
Y8 55 PTB5 PTB5 FTM0_CH5 SCI1_RX ADC1_SE4 LCD39 VIU_DE VIU_DATA23 QSPI1_A_
DQS
W8 56 PTB6 PTB6 FTM0_CH6 SCI1_RTS QSPI0_A_
CS1
LCD40 FB_CLKOUT VIU_HSYNC SCI2_TX
D13 166 PTB7 PTB7 FTM0_CH7 SCI1_CTS QSPI0_B_
CS1
LCD41 VIU_VSYNC SCI2_RX
J16 121 PTB8 PTB8 FTM1CH0 FTM1_QD_
PHA
VIU_DE DCU1_R6
J19 123 PTB9 PTB9 FTM1CH1 FTM1_QD_
PHB
DCU1_R7
B15 159 PTB10 PTB10 SCI0_TX DCU0_
TCON4
VIU_DE CKO1 ENET_TS_
CLKIN
D14 164 PTB11 PTB11 SCI0_RX DCU0_
TCON5
SNVS_
ALARM_
OUT_B
CKO2 ENET0_
1588_TMR0
E13 165 PTB12 PTB12 SCI0_RTS SPI0_PCS5 DCU0_
TCON6
FB_AD1 ENET0_
1588_TMR1
D15 156 PTB13 PTB13 SCI0_CTS SPI0_PCS4 DCU0_
TCON7
FB_AD0 TRACECTL
B14 162 PTB14 PTB14 CAN0_RX I2C0_SCL DCU0_
TCON8
DCU1_PCLK
A14 161 PTB15 PTB15 CAN0_TX I2C0_SDA DCU0_
TCON9
VIU_PIX_
CLK
C14 163 PTB16 PTB16 CAN1_RX I2C1_SCL DCU0_
TCON10
A15 160 PTB17 PTB17 CAN1_TX I2C1_SDA DCU0_
TCON11
B12 171 PTB18 PTB18 SPI0_PCS1 EXT_AUDIO_
MCLK
CKO1 VIU_DATA9 CCM_OBS0
C13 167 PTB19 PTB19 SPI0_PCS0 VIU_DATA10 CCM_OBS1
A13 169 PTB20 PTB20 SPI0_SIN LCD42 VIU_DATA11 CCM_OBS2
E12 173 PTB21 PTB21 SPI0_SOUT LCD43 VIU_DATA12 DCU1_PCLK
D12 172 PTB22 PTB22 SPI0_SCK VIU_FID
V10 61 USB0_GND USB0_GND
T10 63 USB0_DP USB0_DP
T9 62 USB0_DM USB0_DM
W11 60 USB0_VBUS USB0_VBUS
Y10 59 USB_DCAP USB_DCAP
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 91
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
Y11 64 USB0_
VBUS_
DETECT
USB0_
VBUS_
DETECT
Y9 USB1_GND USB1_GND
W9 USB1_DP USB1_DP
V9 USB1_DM USB1_DM
W10 USB1_VBUS USB1_VBUS
U9 USB1_
VBUS_
DETECT
USB1_
VBUS_
DETECT
L4 8 PTC0 PTC0 RMII0_MDC/
MII0_MDC
FTM1CH0 SPI0_PCS3 ESAI_SCKT SDHC0_CLK VIU_DATA0 RCON18
L5 9 PTC1 PTC1 RMII0_MDIO/
MII0_MDC
FTM1CH1 SPI0_PCS2 ESAI_FST SDHC0_CMD VIU_DATA1 RCON19
M5 11 PTC2 PTC2 RMII0_CRS_
DV
SCI1_TX ESAI_SDO0 SDHC0_
DAT0
VIU_DATA2 RCON20
M3 12 PTC3 PTC3 RMII0_RXD1/
MII0_RXD[1]
SCI1_RX ESAI_SDO1 SDHC0_
DAT1
VIU_DATA3 DCU0_R0
L2 14 PTC4 PTC4 RMII0_RXD0/
MII0_RXD[0]
SCI1_RTS SPI1_PCS1 ESAI_SDO2/
ESAI_SDI3
SDHC0_
DAT2
VIU_DATA4 DCU0_R1
M1 15 PTC5 PTC5 RMII0_RXER/
MII0_RXER
SCI1_CTS SPI1_PCS0 ESAI_SDO3/
ESAI_SDI2
SDHC0_
DAT3
VIU_DATA5 DCU0_G0
N1 16 PTC6 PTC6 RMII0_TXD1/
MII0_TXD[1]
SPI1_SIN ESAI_SDO5/
ESAI_SDI0
SDHC0_WP VIU_DATA6 DCU0_G1
N2 17 PTC7 PTC7 RMII0_TXD0/
MII0_TXD[0]
SPI1_SOUT ESAI_SDO4/
ESAI_SDI1
VIU_DATA7 DCU0_B0
N4 18 PTC8 PTC8 RMII0_TXEN/
MII0_TXEN
SPI1_SCK VIU_DATA8 DCU0_B1
T15 77 PTC9 PTC9 RMII1_MDC ESAI_SCKT MLBCLK
U15 78 PTC10 PTC10 RMII1_MDIO ESAI_FST MLBSIGNAL
P4 20 PTC11 PTC11 RMII1_CRS_
DV
ESAI_SDO0 MLBDATA
P3 21 PTC12 PTC12 RMII1_RXD1 ESAI_SDO1 SAI2_TX_
BCLK
P1 23 PTC13 PTC13 RMII1_RXD0 ESAI_SDO2/
ESAI_SDI3
SAI2_RX_
BCLK
R1 26 PTC14 PTC14 RMII1_RXER ESAI_SDO3/
ESAI_SDI2
SCI5_TX SAI2_RX_
DATA
ADC0_SE6
P2 27 PTC15 PTC15 RMII1_TXD1 ESAI_SDI0 SCI5_RX SAI2_TX_
DATA
ADC0_SE7
R3 29 PTC16 PTC16 RMII1_TXD0 ESAI_SDO4/
ESAI_SDI1
SCI5_RTS SAI2_RX_
SYNC
ADC1_SE6
R4 28 PTC17 PTC17 RMII1_TXEN ADC1_SE7 SCI5_CTS SAI2_TX_
SYNC
USB1_SOF_
PULSE
B10 DDR_A[15] DDR_A15
D9 DDR_A[14] DDR_A14
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
92 Freescale Semiconductor, Inc.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
A10 DDR_A[13] DDR_A13
C10 DDR_A[12] DDR_A12
D10 DDR_A[11] DDR_A11
D7 DDR_A[10] DDR_A10
B9 DDR_A[9] DDR_A9
A11 DDR_A[8] DDR_A8
A7 DDR_A[7] DDR_A7
A9 DDR_A[6] DDR_A6
B6 DDR_A[5] DDR_A5
A6 DDR_A[4] DDR_A4
B7 DDR_A[3] DDR_A3
A8 DDR_A[2] DDR_A2
C11 DDR_A[1] DDR_A1
C7 DDR_A[0] DDR_A0
D8 DDR_BA[2] DDR_BA2
C9 DDR_BA[1] DDR_BA1
C8 DDR_BA[0] DDR_BA0
B4 DDR_CAS_b DDR_CAS_b
A5 DDR_CKE[0] DDR_CKE0
A2 DDR_CLK[0] DDR_CLK0
B2 DDR_CLK_
b[0]
DDR_CLK_
b0
C5 DDR_CS_
b[0]
DDR_CS_b0
D2 DDR_D[15] DDR_D15
H2 DDR_D[14] DDR_D14
C1 DDR_D[13] DDR_D13
G1 DDR_D[12] DDR_D12
E2 DDR_D[11] DDR_D11
H1 DDR_D[10] DDR_D10
D1 DDR_D[9] DDR_D9
J1 DDR_D[8] DDR_D8
G3 DDR_D[7] DDR_D7
C3 DDR_D[6] DDR_D6
J3 DDR_D[5] DDR_D5
F3 DDR_D[4] DDR_D4
G4 DDR_D[3] DDR_D3
D4 DDR_D[2] DDR_D2
H3 DDR_D[1] DDR_D1
F4 DDR_D[0] DDR_D0
G2 DDR_DQM[1] DDR_DQM1
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 93
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
J4 DDR_DQM[0] DDR_DQM0
E1 DDR_DQS[1] DDR_DQS1
D3 DDR_DQS[0] DDR_DQS0
F1 DDR_DQS_
b[1]
DDR_DQS_
b1
E3 DDR_DQS_
b[0]
DDR_DQS_
b0
A4 DDR_RAS_b DDR_RAS_b
C6 DDR_WE_b DDR_WE_b
C4 DDR_ODT[0] DDR_ODT0
B1 DDR_ODT[1] DDR_ODT1
G5 DDR_VREF DDR_VREF
A3 DDR_ZQ DDR_ZQ
D6 DDR_RESET DDR_RESET
J20 PTD31 PTD31 FB_AD31 NF_IO15 FTM3_CH0 SPI2_PCS1
H20 PTD30 PTD30 FB_AD30 NF_IO14 FTM3_CH1 SPI2_PCS0
H18 PTD29 PTD29 FB_AD29 NF_IO13 FTM3_CH2 SPI2_SIN
H17 PTD28 PTD28 FB_AD28 NF_IO12 I2C2_SCL FTM3_CH3 SPI2_SOUT
H16 PTD27 PTD27 FB_AD27 NF_IO11 I2C2_SDA FTM3_CH4 SPI2_SCK
G16 PTD26 PTD26 FB_AD26 NF_IO10 FTM3_CH5 SDHC1_WP
G18 PTD25 PTD25 FB_AD25 NF_IO9 FTM3_CH6
G19 PTD24 PTD24 FB_AD24 NF_IO8 FTM3_CH7
G20 124 PTD23 PTD23/
MII0_
RXDATA[3]
FB_AD23 NF_IO7 FTM2CH0 ENET0_
1588_TMR0
SDHC0_
DAT4
SCI2_TX DCU1_R3
F20 126 PTD22 PTD22/
MII0_
RXDATA[2]
FB_AD22 NF_IO6 FTM2CH1 ENET0_
1588_TMR1
SDHC0_
DAT5
SCI2_RX DCU1_R4
F19 128 PTD21 PTD21/
MII0_CRS
FB_AD21 NF_IO5 ENET0_
1588_TMR2
SDHC0_
DAT6
SCI2_RTS DCU1_R5
F17 129 PTD20 PTD20/
MII0_COL
FB_AD20 NF_IO4 ENET0_
1588_TMR3
SDHC0_
DAT7
SCI2_CTS DCU1_R0
F16 130 PTD19 PTD19 FB_AD19 NF_IO3 ESAI_SCKR I2C0_SCL FTM2_QD_
PHA
MII0_
TXDATA[3]
DCU1_R1
E18 131 PTD18 PTD18 FB_AD18 NF_IO2 ESAI_FSR I2C0_SDA FTM2_QD_
PHB
MII0_
TXDATA[2]
DCU1_G0
E20 132 PTD17 PTD17 FB_AD17 NF_IO1 ESAI_HCKR I2C1_SCL MII0_TXERR DCU1_G1
D20 133 PTD16 PTD16 FB_AD16 NF_IO0 ESAI_HCKT I2C1_SDA DCU1_G2
Y17 86 PTD0 PTD0 QSPI0_A_
SCK
SCI2_TX FB_AD15 SPDIF_
EXTCLK
Y18 87 PTD1 PTD1 QSPI0_A_
CS0
SCI2_RX FB_AD14 SPDIF_IN1
V18 88 PTD2 PTD2 QSPI0_A_
DATA3
SCI2_RTS SPI1_PCS3 FB_AD13 SPDIF_OUT1
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
94 Freescale Semiconductor, Inc.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
Y19 89 PTD3 PTD3 QSPI0_A_
DATA2
SCI2_CTS SPI1_PCS2 FB_AD12 SPDIF_
PLOCK
W19 90 PTD4 PTD4 QSPI0_A_
DATA1
SPI1_PCS1 FB_AD11 SPDIF_
SRCLK
W20 91 PTD5 PTD5 QSPI0_A_
DATA0
SPI1_PCS0 FB_AD10
V20 92 PTD6 PTD6 QSPI0_A_
DQS
SPI1_SIN FB_AD9
V19 93 PTD7 PTD7 QSPI0_B_
SCK
SPI1_SOUT FB_AD8
U17 94 PTD8 PTD8 QSPI0_B_
CS0
FB_CLKOUT SPI1_SCK FB_AD7
U18 97 PTD9 PTD9 QSPI0_B_
DATA3
SPI3_PCS1 FB_AD6 SAI1_TX_
SYNC
DCU1_B0
U20 98 PTD10 PTD10 QSPI0_B_
DATA2
SPI3_PCS0 FB_AD5 DCU1_B1
T20 99 PTD11 PTD11 QSPI0_B_
DATA1
SPI3_SIN FB_AD4
T19 100 PTD12 PTD12 QSPI0_B_
DATA0
SPI3_SOUT FB_AD3
T18 101 PTD13 PTD13 QSPI0_B_
DQS
SPI3_SCK FB_AD2
A19 141 PTB23 PTB23 SAI0_TX_
BCLK
SCI1_TX FB_MUXED_
ALE
FB_TS_b SCI3_RTS DCU1_G3
A18 142 PTB24 PTB24 SAI0_RX_
BCLK
SCI1_RX FB_MUXED_
TSIZ0
NF_WE_b SCI3_CTS DCU1_G4
B17 149 PTB25 PTB25 SAI0_RX_
DATA
SCI1_RTS FB_CS1_b NF_CE0_b DCU1_G5
A17 150 PTB26 RCON21 PTB26 SAI0_TX_
DATA
SCI1_CTS RCON21 FB_CS0_b NF_CE1_b DCU1_G6
U8 57 PTB27 RCON22 PTB27 SAI0_RX_
SYNC
RCON22 FB_OE_b FB_MUXED_
TBST_b
NF_RE_b DCU1_G7
A16 151 PTB28 RCON23 PTB28 SAI0_TX_
SYNC
RCON23 FB_RW_b DCU1_B6
D16 153 PTC26 RCON24 PTC26 SAI1_TX_
BCLK
SPI0_PCS5 RCON24 FB_TA_b NF_RB_b DCU1_B7
E16 154 PTC27 RCON25 PTC27 SAI1_RX_
BCLK
SPI0_PCS4 RCON25 FB_BE3_b FB_CS3_b NF_ALE DCU1_B2
E15 155 PTC28 RCON26 PTC28 SAI1_RX_
DATA
SPI0_PCS3 RCON26 FB_BE2_b FB_CS2_b NF_CLE DCU1_B3
C16 152 PTC29 RCON27 PTC29 SAI1_TX_
DATA
SPI0_PCS2 RCON27 FB_BE1_b FB_MUXED_
TSIZ1
DCU1_B4
T8 58 PTC30 RCON28 PTC30 SAI1_RX_
SYNC
SPI1_PCS2 RCON28 FB_MUXED_
BE0_b
FB_TSIZ0 ADC0_SE5 DCU1_B5
W5 42 PTC31 RCON29 PTC31 SAI1_TX_
SYNC
RCON29 ADC1_SE5 DCU1_B6
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 95
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
N16 103 PTE0 BOOTMOD1 PTE0 DCU0_
HSYNC/
DCU0_
TCON1
BOOTMOD1 LCD0
N18 104 PTE1 BOOTMOD0 PTE1 DCU0_
VSYNC/
DCU0_
TCON2
BOOTMOD0 LCD1
N19 105 PTE2 PTE2 DCU0_PCLK LCD2
Y15 80 PTE3 PTE3 DCU0_TAG/
DCU0_
TCON0
LCD3
N20 106 PTE4 PTE4 DCU0_DE/
DCU0_
TCON3
LCD4
T16 PTE5 PTE5 DCU0_R0 LCD5
W16 PTE6 PTE6 DCU0_R1 LCD6
M20 109 PTE7 RCON0 PTE7 DCU0_R2 RCON0 LCD7
M19 110 PTE8 RCON1 PTE8 DCU0_R3 RCON1 LCD8
M17 111 PTE9 RCON2 PTE9 DCU0_R4 RCON2 LCD9
M16 112 PTE10 RCON3 PTE10 DCU0_R5 RCON3 LCD10
L16 113 PTE11 RCON4 PTE11 DCU0_R6 RCON4 LCD11
L17 114 PTE12 RCON5 PTE12 DCU0_R7 SPI1_PCS3 RCON5 LCD12 LPT_ALT0
Y16 PTE13 PTE13 DCU0_G0 LCD13
W15 PTE14 PTE14 DCU0_G1 LCD14
L18 115 PTE15 RCON6 PTE15 DCU0_G2 RCON6 LCD15
L20 116 PTE16 RCON7 PTE16 DCU0_G3 RCON7 LCD16
K20 117 PTE17 RCON8 PTE17 DCU0_G4 RCON8 LCD17
K19 118 PTE18 RCON9 PTE18 DCU0_G5 RCON9 LCD18
K18 119 PTE19 RCON10 PTE19 DCU0_G6 RCON10 LCD19 I2C0_SCL
A12 170 PTE20 RCON11 PTE20 DCU0_G7 RCON11 LCD20 I2C0_SDA EWM_in
V16 81 PTE21 PTE21 DCU0_B0 LCD21
W17 84 PTE22 PTE22 DCU0_B1 LCD22
J17 122 PTE23 RCON12 PTE23 DCU0_B2 RCON12 LCD23
D19 134 PTE24 RCON13 PTE24 DCU0_B3 RCON13 LCD24
C19 135 PTE25 RCON14 PTE25 DCU0_B4 RCON14 LCD25
C20 137 PTE26 RCON15 PTE26 DCU0_B5 RCON15 LCD26
B20 138 PTE27 RCON16 PTE27 DCU0_B6 RCON16 LCD27 I2C1_SCL
K16 120 PTE28 RCON17 PTE28 DCU0_B7 RCON17 LCD28 I2C1_SDA EWM_out
V15 79 PTA7 PTA7 VIU_PIX_
CLK
T14 76 EXT_
TAMPER0
EXT_
TAMPER0
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
96 Freescale Semiconductor, Inc.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
U14 74 EXT_
TAMPER1
EXT_
TAMPER1
T13 EXT_
TAMPER2/
EXT_WM0_
TAMPER_IN
EXT_
TAMPER2/
EXT_WM0_
TAMPER_IN
U13 EXT_
TAMPER3/
EXT_WM0_
TAMPER_
OUT
EXT_
TAMPER3/
EXT_WM0_
TAMPER_
OUT
U12 EXT_
TAMPER4/
EXT_WM1_
TAMPER_IN
EXT_
TAMPER4/
EXT_WM1_
TAMPER_IN
U10 EXT_
TAMPER5/
EXT_WM1_
TAMPER_
OUT
EXT_
TAMPER5/
EXT_WM1_
TAMPER_
OUT
G7 2 VDD VDD
J7 VDD VDD
L7 22 VDD VDD
H8 48 VDD VDD
K8 85 VDD VDD
M8 102 VDD VDD
P8 125 VDD VDD
G9 136 VDD VDD
N9 174 VDD VDD
H10 VDD VDD
P10 VDD VDD
G11 VDD VDD
N11 VDD VDD
H12 VDD VDD
P12 VDD VDD
G13 VDD VDD
J13 VDD VDD
L13 VDD VDD
N13 VDD VDD
H14 VDD VDD
K14 VDD VDD
M14 VDD VDD
P14 VDD VDD
A1 1 VSS VSS
A20 13 VSS VSS
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 97
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
B3 24 VSS VSS
B5 32 VSS VSS
B8 VSS VSS
B11 VSS VSS
B13 VSS VSS
B16 VSS VSS
B19 VSS VSS
C2 VSS VSS
D17 VSS VSS
E5 VSS VSS
E8 VSS VSS
E11 VSS VSS
E14 VSS VSS
E19 VSS VSS
F2 VSS VSS
G17 VSS VSS
H4 VSS VSS
J2 VSS VSS
J18 VSS VSS
M2 VSS VSS
M4 VSS VSS
M18 VSS VSS
R2 VSS VSS
R18 VSS VSS
U7 VSS VSS
U19 VSS VSS
V13 VSS VSS
W6 VSS VSS
V17 VSS VSS
Y1 VSS VSS
Y20 VSS VSS
H19 VSS VSS
L19 VSS VSS
P19 VSS VSS
J5 SDRAMC_
VDD2P5
SDRAMC_
VDD2P5
E6 SDRAMC_
VDD2P5
SDRAMC_
VDD2P5
E10 SDRAMC_
VDD2P5
SDRAMC_
VDD2P5
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
98 Freescale Semiconductor, Inc.
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
E4 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
D5 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
F5 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
H5 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
K5 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
E7 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
E9 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
D11 SDRAMC_
VDD1P5
SDRAMC_
VDD1P5
K3 10 VDD33 VDD33
N3 25 VDD33 VDD33
V8 52 VDD33 VDD33
C12 83 VDD33 VDD33
C15 VDD33 VDD33
U16 95 VDD33 VDD33
K17 108 VDD33 VDD33
N17 127 VDD33 VDD33
T17 140 VDD33 VDD33
C18 146 VDD33 VDD33
F18 158 VDD33 VDD33
W18 168 VDD33 VDD33
H7 VSS VSS
K7 45 VSS VSS
M7 82 VSS VSS
P7 VSS VSS
G8 96 VSS VSS
J8 107 VSS VSS
L8 VSS VSS
N8 139 VSS VSS
H9 144 VSS VSS
J9 157 VSS VSS
K9 175 VSS VSS
L9 176 VSS VSS
M9 VSS VSS
P9 VSS VSS
G10 VSS VSS
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 99
364
MAP
BGA
176
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
J10 VSS VSS
K10 VSS VSS
L10 VSS VSS
M10 VSS VSS
N10 VSS VSS
H11 VSS VSS
J11 VSS VSS
K11 VSS VSS
L11 VSS VSS
M11 VSS VSS
P11 VSS VSS
G12 VSS VSS
J12 VSS VSS
K12 VSS VSS
L12 VSS VSS
M12 VSS VSS
N12 VSS VSS
H13 VSS VSS
K13 VSS VSS
M13 VSS VSS
P13 VSS VSS
G14 VSS VSS
J14 VSS VSS
L14 VSS VSS
N14 VSS VSS
N7 FA_VDD FA_VDD
V14 75 VBAT VBAT
FLG VSS VSS
12.2 Pinout diagrams
NOTE
The 176 LQFP parts are not pin compatible between the F and
R series families devices.
NOTE
If tamper detection is not required, the tamper pins must be tied
to ground.
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
100 Freescale Semiconductor, Inc.
1VSS
2VDD
3JTCLK/SWCLK
4JTDI
5JTDO
6JTMS/SWDIO
7PTA12
8PTC0
9PTC1
10VDD33
11PTC2
12PTC3
13VSS
14PTC4
15PTC5
16PTC6
17PTC7
18PTC8
19PTA6
20PTC11
21PTC12
22VDD
23PTC13
24VSS
25VDD33
26PTC14
27PTC15
28PTC17
29PTC16
30Ext_POR
31VDDREG
32VSS
33BCTRL
34TEST
35RESETB/RESET_OUT
36DACO0
37DACO1
38VDDA33_ADC
39VSSA33_ADC
40VREFL_ADC
41VREFH_ADC
42PTC31
43PTA16
44PTA17
45VSS
46PTA18
47PTA19
48VDD
49PTB0
50PTB1
51PTB2
52VDD33
53PTB3
54PTB4
55PTB5
56PTB6
57PTB27
58PTC30
59USB_DCAP
60USB0_VBUS
61USB0_GND
62USB0_DM
63USB0_DP
64USB0_VBUS_DETECT
65DECAP_V25_LDO_OUT
66VSS_KEL0
67VSS
68VDD33_LDOIN
69DECAP_V11_LDO_OUT
70EXTAL32
71XTAL32
72XTAL
73EXTAL
74EXT_TAMPER1
75VBAT
76EXT_TAMPER0
77PTC9
78PTC10
79PTA7
80PTE3
81PTE21
82VSS
83VDD33
84PTE22
85VDD
86PTD0
87PTD1
88PTD2
89 PTD3
90 PTD4
91 PTD5
92 PTD6
93 PTD7
94 PTD8
95 VDD33
96 VSS
97 PTD9
98 PTD10
99 PTD11
100 PTD12
101 PTD13
102 VDD
103 PTE0
104 PTE1
105 PTE2
106 PTE4
107 VSS
108 VDD33
109 PTE7
110 PTE8
111 PTE9
112 PTE10
113 PTE11
114 PTE12
115 PTE15
116 PTE16
117 PTE17
118 PTE18
119 PTE19
120 PTE28
121 PTB8
122 PTE23
123 PTB9
124 PTD23
125 VDD
126 PTD22
127 VDD33
128 PTD21
129 PTD20
130 PTD19
131 PTD18
132 PTD17
133 PTD16
134 PTE24
135 PTE25
136 VDD
137 PTE26
138 PTE27
139 VSS
140 VDD33
141 PTB23
142 PTB24
143 PTA20
144 VSS
145 PTA21
146 VDD33
147 PTA22
148 PTA23
149 PTB25
150 PTB26
151 PTB28
152 PTC29
153 PTC26
154 PTC27
155 PTC28
156 PTB13
157 VSS
158 VDD33
159 PTB10
160 PTB17
161 PTB15
162 PTB14
163 PTB16
164 PTB11
165 PTB12
166 PTB7
167 PTB19
168 VDD33
169 PTB20
170 PTE20
171 PTB18
172 PTB22
173 PTB21
174 VDD
175 VSS
176 VSS
FLG
Figure 58. 176 LQFP Pinout Diagram
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 101
1
A VSS
B DDR_
ODT[1]
C DDR_D[13]
D DDR_D[9]
E DDR_
DQS[1]
F DDR_
DQS_b[1]
G DDR_
D[12]
H DDR_
D[10]
J DDR_D[8]
K JTDO
L JTMS
/SWDIO
M PTC5
N PTC6
P PTC13
R PTC14
T TEST2
U DACO0
V VDDA33_
ADC
W VREFH_
ADC
1
Y VSS
2
DDR_
CLK[0]
DDR_
CLK_b[0]
VSS
DDR_D[15]
DDR_
D[11]
VSS
DDR_
DQM[1]
DDR_
D[14]
VSS
JTDI
PTC4
VSS
PTC7
PTC15
VSS
BCTRL
DACO1
VSSA33_
ADC
ADC0SE9
2
ADC0SE8
3
DDR_ZQ
VSS
DDR_D[6]
DDR_
DQS[0]
DDR_
DQS_b[0]
DDR_D[4]
DDR_
D[7]
DDR_
D[1]
DDR_D[5]
VDD33
PTA12
PTC3
VDD33
PTC12
PTC16
TEST
VREFL_
ADC
VDDA33_
AFE
ADC1SE8
3
ADC1SE9
4
DDR_
RAS_b
DDR_
CAS_b
DDR_
ODT[0]
DDR_
D[2]
SDRAMC_
VDD1P5
DDR_
D[0]
DDR_
D[3]
VSS
DDR_
DQM[0]
JTCLK/
SWCLK
PTC0
VSS
PTC8
PTC11
PTC17
RESETB
/RESET_
OUT
VADCSE1
VSSA33_
AFE
VADCSE2
4
VADCSE0
5
DDR_
CKE[0]
VSS
DDR_
CS_b[0]
SDRAMC_
VDD1P5
VSS
SDRAMC_
VDD1P5
DDR_
VREF
SDRAMC_
VDD1P5
SDRAMC_
VDD2P5
SDRAMC_
VDD1P5
PTC1
PTC2
PTA6
VDDREG
VSS12_
AFE
VDD12_
AFE
VADC_
AFE_
BANDGAP
VADCSE3
PTC31
5
PTA16
6
DDR_A[4]
DDR_A[5]
DDR_
WE_b
DDR_
RESET
SDRAMC_
VDD2P5
PTB0
PTA19
PTA18
VSS
6
PTA17
7
DDR_A[7]
DDR_A[3]
DDR_A[0]
DDR_A[10]
SDRAMC_
VDD1P5
VDD
VSS
VDD
VSS
VDD
VSS
FA_VDD
VSS
PTB1
VSS
PTB2
PTB3
7
PTB4
8
DDR_A[2]
VSS
DDR_BA[0]
DDR_BA[2]
VSS
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
PTC30
PTB27
VDD33
PTB6
8
PTB5
9
DDR_A[6]
DDR_A[9]
DDR_BA[1]
DDR_A[14]
SDRAMC_
VDD1P5
VDD
VSS
VSS
VSS
VSS
VSS
VDD
VSS
USB0_DM
USB1_
VBUS_
DETECT
USB1_DM
USB1_DP
9
USB1_GND
10
DDR_A[13]
DDR_A[15]
DDR_A[12]
DDR_
A[11]
SDRAMC_
VDD2P5
VSS
VDD
VSS
VSS
VSS
VSS
VSS
VDD
USB0_DP
USB0_
GND
USB1_
VBUS
10
USB_
DCAP
11
DDR_A[8]
VSS
DDR_A[1]
SDRAMC_
VDD1P5
VSS
VDD
VSS
VSS
VSS
VSS
VSS
VDD
VSS
VSS_KEL0
VSS
USB0_
VBUS
11
USB0_
VBUS_
DETECT
12
PTE20
PTB18
VDD33
PTB22
PTB21
VSS
VDD
VSS
VSS
VSS
VSS
VSS
VDD
VDD33_
LDOIN
EXT_TAMPER4
/EXT_WM1_
TAMPER_IN
DECAP_
V11_LDO_
OUT
XTAL32
12
EXTAL32
13
PTB20
VSS
PTB19
PTB7
PTB12
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VSS
XTAL
13
EXTAL
14
PTB15
PTB14
PTB16
PTB11
VSS
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
EXT_
TAMPER0
EXT_
TAMPER1
VBAT
LVDS0P
14
LVDS0N
15
PTB17
PTB10
VDD33
PTB13
PTC28
PTC9
PTC10
PTA7
PTE14
15
PTE3
16
PTB28
VSS
PTC29
PTC26
PTC27
PTD19
PTD26
PTD27
PTB8
PTE28
PTE11
PTE10
PTE0
PTA31
PTA24
PTE5
VDD33
PTE21
PTE6
16
PTE13
17
PTB26
PTB25
PTA23
VSS
PTA22
PTD20
VSS
PTD28
PTE23
VDD33
PTE12
PTE9
VDD33
PTA30
PTA25
VDD33
PTD8
VSS
PTE22
17
PTD0
18
PTB24
PTA20
VDD33
PTA21
PTD18
VDD33
PTD25
PTD29
VSS
PTE19
PTE15
VSS
PTE1
PTA29
VSS
PTD13
PTD9
PTD2
VDD33
18
PTD1
19
PTB23
VSS
PTE25
PTE24
VSS
PTD21
PTD24
VSS
PTB9
PTE18
VSS
PTE8
PTE2
VSS
PTA26
PTD12
VSS
PTD7
PTD4
19
PTD3
20
AVSS
BPTE27
CPTE26
DPTD16
EPTD17
FPTD22
GPTD23
HPTD30
JPTD31
KPTE17
LPTE16
MPTE7
NPTE4
PPTA28
RPTA27
TPTD11
UPTD10
VPTD6
WPTD5
20
YVSS
DECAP_
V25_LDO
_OUT
EXT_TAMPER2
/EXT_WM0_
TAMPER_IN
EXT_TAMPER3
/EXT_WM0_
TAMPER_OUT
EXT_TAMPER5
/EXT_WM1_
TAMPER_OUT
Figure 59. 364-pin BGA package ballmap
12.2.1 GPIO Mapping
Table 75. RGPIO versus Pins
RGPIO In GPIO module Corresponding Pin
on the chip
IOMUX register name IOMUX register
address
RGPIO[0] PORT0[0] PTA6 IOMUXC_PTA6 40048000
Table continues on the next page...
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
102 Freescale Semiconductor, Inc.
Table 75. RGPIO versus Pins (continued)
RGPIO In GPIO module Corresponding Pin
on the chip
IOMUX register name IOMUX register
address
RGPIO[1] PORT0[1] PTA8 IOMUXC_PTA8 40048004
RGPIO[2] PORT0[2] PTA9 IOMUXC_PTA9 40048008
RGPIO[3] PORT0[3] PTA10 IOMUXC_PTA10 4004800C
RGPIO[4] PORT0[4] PTA11 IOMUXC_PTA11 40048010
RGPIO[5] PORT0[5] PTA12 IOMUXC_PTA12 40048014
RGPIO[6] PORT0[6] PTA16 IOMUXC_PTA16 40048018
RGPIO[7] PORT0[7] PTA17 IOMUXC_PTA17 4004801C
RGPIO[8] PORT0[8] PTA18 IOMUXC_PTA18 40048020
RGPIO[9] PORT0[9] PTA19 IOMUXC_PTA19 40048024
RGPIO[10] PORT0[10] PTA20 IOMUXC_PTA20 40048028
RGPIO[11] PORT0[11] PTA21 IOMUXC_PTA21 4004802C
RGPIO[12] PORT0[12] PTA22 IOMUXC_PTA22 40048030
RGPIO[13] PORT0[13] PTA23 IOMUXC_PTA23 40048034
RGPIO[14] PORT0[14] PTA24 IOMUXC_PTA24 40048038
RGPIO[15] PORT0[15] PTA25 IOMUXC_PTA25 4004803C
RGPIO[16] PORT0[16] PTA26 IOMUXC_PTA26 40048040
RGPIO[17] PORT0[17] PTA27 IOMUXC_PTA27 40048044
RGPIO[18] PORT0[18] PTA28 IOMUXC_PTA28 40048048
RGPIO[19] PORT0[19] PTA29 IOMUXC_PTA29 4004804C
RGPIO[20] PORT0[20] PTA30 IOMUXC_PTA30 40048050
RGPIO[21] PORT0[21] PTA31 IOMUXC_PTA31 40048054
RGPIO[22] PORT0[22] PTB0 IOMUXC_PTB0 40048058
RGPIO[23] PORT0[23] PTB1 IOMUXC_PTB1 4004805C
RGPIO[24] PORT0[24] PTB2 IOMUXC_PTB2 40048060
RGPIO[25] PORT0[25] PTB3 IOMUXC_PTB3 40048064
RGPIO[26] PORT0[26] PTB4 IOMUXC_PTB4 40048068
RGPIO[27] PORT0[27] PTB5 IOMUXC_PTB5 4004806C
RGPIO[28] PORT0[28] PTB6 IOMUXC_PTB6 40048070
RGPIO[29] PORT0[29] PTB7 IOMUXC_PTB7 40048074
RGPIO[30] PORT0[30] PTB8 IOMUXC_PTB8 40048078
RGPIO[31] PORT0[31] PTB9 IOMUXC_PTB9 4004807C
RGPIO[32] PORT1[0] PTB10 IOMUXC_PTB10 40048080
RGPIO[33] PORT1[1] PTB11 IOMUXC_PTB11 40048084
RGPIO[34] PORT1[2] PTB12 IOMUXC_PTB12 40048088
RGPIO[35] PORT1[3] PTB13 IOMUXC_PTB13 4004808C
RGPIO[36] PORT1[4] PTB14 IOMUXC_PTB14 40048090
RGPIO[37] PORT1[5] PTB15 IOMUXC_PTB15 40048094
RGPIO[38] PORT1[6] PTB16 IOMUXC_PTB16 40048098
RGPIO[39] PORT1[7] PTB17 IOMUXC_PTB17 4004809C
Table continues on the next page...
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 103
Table 75. RGPIO versus Pins (continued)
RGPIO In GPIO module Corresponding Pin
on the chip
IOMUX register name IOMUX register
address
RGPIO[40] PORT1[8] PTB18 IOMUXC_PTB18 400480A0
RGPIO[41] PORT1[9] PTB19 IOMUXC_PTB19 400480A4
RGPIO[42] PORT1[10] PTB20 IOMUXC_PTB20 400480A8
RGPIO[43] PORT1[11] PTB21 IOMUXC_PTB21 400480AC
RGPIO[44] PORT1[12] PTB22 IOMUXC_PTB22 400480B0
RGPIO[45] PORT1[13] PTC0 IOMUXC_PTC0 400480B4
RGPIO[46] PORT1[14] PTC1 IOMUXC_PTC1 400480B8
RGPIO[47] PORT1[15] PTC2 IOMUXC_PTC2 400480BC
RGPIO[48] PORT1[16] PTC3 IOMUXC_PTC3 400480C0
RGPIO[49] PORT1[17] PTC4 IOMUXC_PTC4 400480C4
RGPIO[50] PORT1[18] PTC5 IOMUXC_PTC5 400480C8
RGPIO[51] PORT1[19] PTC6 IOMUXC_PTC6 400480CC
RGPIO[52] PORT1[20] PTC7 IOMUXC_PTC7 400480D0
RGPIO[53] PORT1[21] PTC8 IOMUXC_PTC8 400480D4
RGPIO[54] PORT1[22] PTC9 IOMUXC_PTC9 400480D8
RGPIO[55] PORT1[23] PTC10 IOMUXC_PTC10 400480DC
RGPIO[56] PORT1[24] PTC11 IOMUXC_PTC11 400480E0
RGPIO[57] PORT1[25] PTC12 IOMUXC_PTC12 400480E4
RGPIO[58] PORT1[26] PTC13 IOMUXC_PTC13 400480E8
RGPIO[59] PORT1[27] PTC14 IOMUXC_PTC14 400480EC
RGPIO[60] PORT1[28] PTC15 IOMUXC_PTC15 400480F0
RGPIO[61] PORT1[29] PTC16 IOMUXC_PTC16 400480F4
RGPIO[62] PORT1[30] PTC17 IOMUXC_PTC17 400480F8
RGPIO[63] PORT1[31] PTD31 IOMUXC_PTD31 400480FC
RGPIO[64] PORT2[0] PTD30 IOMUXC_PTD30 40048100
RGPIO[65] PORT2[1] PTD29 IOMUXC_PTD29 40048104
RGPIO[66] PORT2[2] PTD28 IOMUXC_PTD28 40048108
RGPIO[67] PORT2[3] PTD27 IOMUXC_PTD27 4004810C
RGPIO[68] PORT2[4] PTD26 IOMUXC_PTD26 40048110
RGPIO[69] PORT2[5] PTD25 IOMUXC_PTD25 40048114
RGPIO[70] PORT2[6] PTD24 IOMUXC_PTD24 40048118
RGPIO[71] PORT2[7] PTD23 IOMUXC_PTD23 4004811C
RGPIO[72] PORT2[8] PTD22 IOMUXC_PTD22 40048120
RGPIO[73] PORT2[9] PTD21 IOMUXC_PTD21 40048124
RGPIO[74] PORT2[10] PTD20 IOMUXC_PTD20 40048128
RGPIO[75] PORT2[11] PTD19 IOMUXC_PTD19 4004812C
RGPIO[76] PORT2[12] PTD18 IOMUXC_PTD18 40048130
RGPIO[77] PORT2[13] PTD17 IOMUXC_PTD17 40048134
RGPIO[78] PORT2[14] PTD16 IOMUXC_PTD16 40048138
Table continues on the next page...
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
104 Freescale Semiconductor, Inc.
Table 75. RGPIO versus Pins (continued)
RGPIO In GPIO module Corresponding Pin
on the chip
IOMUX register name IOMUX register
address
RGPIO[79] PORT2[15] PTD0 IOMUXC_PTD0 4004813C
RGPIO[80] PORT2[16] PTD1 IOMUXC_PTD1 40048140
RGPIO[81] PORT2[17] PTD2 IOMUXC_PTD2 40048144
RGPIO[82] PORT2[18] PTD3 IOMUXC_PTD3 40048148
RGPIO[83] PORT2[19] PTD4 IOMUXC_PTD4 4004814C
RGPIO[84] PORT2[20] PTD5 IOMUXC_PTD5 40048150
RGPIO[85] PORT2[21] PTD6 IOMUXC_PTD6 40048154
RGPIO[86] PORT2[22] PTD7 IOMUXC_PTD7 40048158
RGPIO[87] PORT2[23] PTD8 IOMUXC_PTD8 4004815C
RGPIO[88] PORT2[24] PTD9 IOMUXC_PTD9 40048160
RGPIO[89] PORT2[25] PTD10 IOMUXC_PTD10 40048164
RGPIO[90] PORT2[26] PTD11 IOMUXC_PTD11 40048168
RGPIO[91] PORT2[27] PTD12 IOMUXC_PTD12 4004816C
RGPIO[92] PORT2[28] PTD13 IOMUXC_PTD13 40048170
RGPIO[93] PORT2[29] PTB23 IOMUXC_PTB23 40048174
RGPIO[94] PORT2[30] PTB24 IOMUXC_PTB24 40048178
RGPIO[95] PORT2[31] PTB25 IOMUXC_PTB25 4004817C
RGPIO[96] PORT3[0] PTB26 IOMUXC_PTB26 40048180
RGPIO[97] PORT3[1] PTB27 IOMUXC_PTB27 40048184
RGPIO[98] PORT3[2] PTB28 IOMUXC_PTB28 40048188
RGPIO[99] PORT3[3] PTC26 IOMUXC_PTC26 4004818C
RGPIO[100] PORT3[4] PTC27 IOMUXC_PTC27 40048190
RGPIO[101] PORT3[5] PTC28 IOMUXC_PTC28 40048194
RGPIO[102] PORT3[6] PTC29 IOMUXC_PTC29 40048198
RGPIO[103] PORT3[7] PTC30 IOMUXC_PTC30 4004819C
RGPIO[104] PORT3[8] PTC31 IOMUXC_PTC31 400481A0
RGPIO[105] PORT3[9] PTE0 IOMUXC_PTE0 400481A4
RGPIO[106] PORT3[10] PTE1 IOMUXC_PTE1 400481A8
RGPIO[107] PORT3[11] PTE2 IOMUXC_PTE2 400481AC
RGPIO[108] PORT3[12] PTE3 IOMUXC_PTE3 400481B0
RGPIO[109] PORT3[13] PTE4 IOMUXC_PTE4 400481B4
RGPIO[110] PORT3[14] PTE5 IOMUXC_PTE5 400481B8
RGPIO[111] PORT3[15] PTE6 IOMUXC_PTE6 400481BC
RGPIO[112] PORT3[16] PTE7 IOMUXC_PTE7 400481C0
RGPIO[113] PORT3[17] PTE8 IOMUXC_PTE8 400481C4
RGPIO[114] PORT3[18] PTE9 IOMUXC_PTE9 400481C8
RGPIO[115] PORT3[19] PTE10 IOMUXC_PTE10 400481CC
RGPIO[116] PORT3[20] PTE11 IOMUXC_PTE11 400481D0
RGPIO[117] PORT3[21] PTE12 IOMUXC_PTE12 400481D4
Table continues on the next page...
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 105
Table 75. RGPIO versus Pins (continued)
RGPIO In GPIO module Corresponding Pin
on the chip
IOMUX register name IOMUX register
address
RGPIO[118] PORT3[22] PTE13 IOMUXC_PTE13 400481D8
RGPIO[119] PORT3[23] PTE14 IOMUXC_PTE14 400481DC
RGPIO[120] PORT3[24] PTE15 IOMUXC_PTE15 400481E0
RGPIO[121] PORT3[25] PTE16 IOMUXC_PTE16 400481E4
RGPIO[122] PORT3[26] PTE17 IOMUXC_PTE17 400481E8
RGPIO[123] PORT3[27] PTE18 IOMUXC_PTE18 400481EC
RGPIO[124] PORT3[28] PTE19 IOMUXC_PTE19 400481F0
RGPIO[125] PORT3[29] PTE20 IOMUXC_PTE20 400481F4
RGPIO[126] PORT3[30] PTE21 IOMUXC_PTE21 400481F8
RGPIO[127] PORT3[31] PTE22 IOMUXC_PTE22 400481FC
RGPIO[128] PORT4[0] PTE23 IOMUXC_PTE23 40048200
RGPIO[129] PORT4[1] PTE24 IOMUXC_PTE24 40048204
RGPIO[130] PORT4[2] PTE25 IOMUXC_PTE25 40048208
RGPIO[131] PORT4[3] PTE26 IOMUXC_PTE26 4004820C
RGPIO[132] PORT4[4] PTE27 IOMUXC_PTE27 40048210
RGPIO[133] PORT4[5] PTE28 IOMUXC_PTE28 40048214
RGPIO[134] PORT4[6] PTA7 IOMUXC_PTA7 40048218
12.2.2 Special Signal
Table 76. Special Signal Considerations
Special Signal Comments
DDR_VREF When using DDR_VREF with DDR I/O, the nominal reference
voltage must be half of the SDRAMC_VDD1P5 supply. The
user must tie DDR_VREF to a precision external resistor
divider. Shunt each resistor with a closely-mounted 0.1 μF
capacitor.
DDR_ZQ DRAM calibration resistor 240 Ω 1% used as reference during
DRAM output buffer driver calibration should be connected
between this pad and GND
DECAP_V25_LDO_OUT DCAP_V25_LDO_OUT can be tied to SDRAMC_VDD2P5 to
provide the predriver supply for the DDR I/O segment.
SDRAMC_VDD1P5 requires an external regulated supply. If
SDRAMC_VDD2P5 uses an external 2.5V supply, do NOT tie
it to DCAP_V25_LDO_OUT.
EXT_POR, TEST Factory use only, tie to ground..
EXT_TAMPER0, EXT_TAMPER1, EXT_TAMPER2,
EXT_TAMPER3, EXT_TAMPER4, EXT_TAMPER5
Security related tamper detection inputs, if not in use they
must be tied to ground.
FA_VDD Factory use only, tie to VDD.
Table continues on the next page...
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
106 Freescale Semiconductor, Inc.
Table 76. Special Signal Considerations (continued)
Special Signal Comments
JTCLK, JTDI, JTDO, JTMS For JTAG the use of external resistors is unnecessary.
However, if external resistors are used, the user must ensure
that the on-chip pull-up/down configuration is matched. For
example, do not use an external pull down on an input that
has on-chip pull-up. JTDO is configured with a keeper circuit
such that the floating condition is eliminated if an external pull
resistor is not present. An external pull resistor on JTDO is
detrimental and should be avoided.
LVDS0N, LVDS0P Not recommended for application use, intended for clock
observation purposes during debug only.
RESETB/RESET_OUT Active low input used to generate a system wide reset (except
the SRTC). A glitch filter is include to help prevent
unexpected resets, a minimum pulse width of 125 nsecs is
required to guarantee a reset is detected.
XTAL, EXTAL A 24.0 MHz fundamental mode crystal should be connected
between XTAL and EXTAL. The crystal must be rated for a
drive level of 250 μW or higher. An ESR (equivalent series
resistance) of 80 Ω or less is recommended. This clock is
used as a reference for USB, so there are strict frequency
tolerance and jitter requirements. The crystal can be
eliminated if an external 24 MHz oscillator is available in the
system. In this case, XTAL must be directly driven by the
external oscillator and EXTAL floated. The XTAL signal level
must swing from ~0.8 x DECAP_V11_ LDO_OUT to ~0.2 V.
XTAL32, EXTAL32 If the user wishes to configure XTAL32 and EXTAL32 as an
RTC oscillator, a 32.768 kHz crystal, (≤50 kΩ ESR, 10 pF
load) should be connected between XTAL32 and EXTAL32.
Keep in mind the capacitors implemented on either side of the
crystal are about twice the crystal load capacitor. To hit the
exact oscillation frequency, the board capacitors need to be
reduced to account for board and chip parasitics. The
integrated oscillation amplifier is self biasing, but relatively
weak. Care must be taken to limit parasitic leakage from
XTAL32 and EXTAL32 to either power or ground (>100 MΩ).
This will debias the amplifier and cause a reduction of startup
margin. Typically XTAL32 and EXTAL32 should bias to
approximately 0.5 V. If it is desired to feed an external low
frequency clock into XTAL32 the EXTAL32 pin should be left
floating or driven with a complimentary signal. The logic level
of this forcing clock should not exceed DECAP_V11_
LDO_OUT level and the frequency should be <100 kHz under
typical conditions. In the case where the SIRC is used, it is
recommended to connect XTAL32 to ground and leave
EXTAL32 floating.
Pinouts
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 107
Power Supply Pins
13.1 Power Supply Pins
Table 77. Power Supply Pins
Supply Rail Name 364 MAP BGA 176 LQFP (F-series ONLY) Comment
DECAP_V11_ LDO_OUT V12 69 On-chip 1.1V LDO output
DECAP_V25_ LDO_OUT T11 65 On-chip 2.5V LDO output
(Intended to supply DRAM IO
when required)
FA_VDD N7 Factory Use Only (Connect to
VDD, internally bonded in
LQFP)
SDRAMC_ VDD1P5 D5, D11, E4, E7, E9, F5, H5,
K5
DRAM not supported in LQFP 1.5V DDR3 DRAM Supply
(1.2V for LPDDR2)
SDRAMC_ VDD2P5 E6, E10, J5 DRAM not supported in LQFP 2.5V DRAM Supply
USB_DCAP Y10 59 On-chip 3V LDO output
(Intended to be fed by
external USB VBUS supply)
USB0_GND V10 61
USB1_GND Y9 USB1 not supported in LQFP
VADC_AFE_ BANDGAP U5 Video ADC not supported in
LQFP
Video ADC Bandgap Output
VBAT V14 75 On-chip SNVS regulator
battery back-up supply option
VDD G7, G9, G11, G13, H8, H10,
H12, H14, J7, J13, K8, K14,
L7, L13, M8, M14, N9, N11,
N13, P8, P10, P12, P14
2, 22, 48, 85, 102, 125, 136,
174
1.2V Core Supply (Internally
Regulated)
VDD33 C12, C15, C18, F18, K3, K17,
N3, N17, T17, U16, V8, W18
10, 25, 52, 83, 95, 108, 127,
140, 146, 158, 168
3.3V IO Supply
VDDA33_ADC V1 38 3.3V Analog To Digital
convertor supply
VDD12_AFE T5 Video ADC not supported in
LQFP
1.2V Analog Front End supply
for Video ADC
VDDA33_AFE V3 Video ADC not supported in
LQFP
3.3V Analog Front End supply
for Video ADC
VDD33_ LDOIN T12 68 On-chip 2.5V LDO, 1.1V LDO
and SNVS regulators input
supply
VDDREG P5 31 On-chip HPREG, LPREG,
WBREG and ULPREG
regulators input supply
VREFH_ADC W1 41 ATD High Voltage Reference
VREFL_ADC U3 40 ATD Low Voltage Reference
Table continues on the next page...
13
Power Supply Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
108 Freescale Semiconductor, Inc.
Table 77. Power Supply Pins (continued)
Supply Rail Name 364 MAP BGA 176 LQFP (F-series ONLY) Comment
VSS A1, A20, B3, B5, B8, B11,
B13, B16, B19, C2, D17, E5,
E8, E11, E14, E19, F2, G8,
G10, G12, G14, G17, H4, H7,
H9, H11, H13, H19, J2, J8,
J9, J10, J11, J12, J14, J18,
K7, K9, K10, K11, K12, K13,
L8, L9, L10, L11, L12, L14,
L19, M2, M4, M7, M9, M10,
M11, M12, M13, M18, N8,
N10, N12, N14, P7, P9, P11,
P13, P19, R2, R18, U7, U19,
V11, V13, V17, W6, Y1, Y20
1, 13, 24, 32, 45, 67, 82, 96,
107, 139, 144, 157, 175, 176,
FLG
Ground—connect "Flag pad
(FLG)" to the internal GND
plane with numerous vias, for
both electrical and thermal
purposes.
VSSA33_ADC V2 39 ATD Ground
VSS12_AFE R5 Video ADC not supported in
LQFP
Video ADC Ground
VSSA33_AFE V4 Video ADC not supported in
LQFP
Video ADC Ground
VSS_KEL0 U11 66 Ground (VSS and VSS_KEL0
are NOT connected internally)
Functional Assignment Pins
14.1 Functional Assignment Pins
Table 78. Functional Assignment Pins
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
ADC0SE8 Y2 VDDA33_A
DC
Analog ADC0SE8
ADC0SE9 W2 VDDA33_A
DC
Analog ADC0SE9
ADC1SE8 W3 VDDA33_A
DC
Analog ADC1SE8
ADC1SE9 Y3 VDDA33_A
DC
Analog ADC1SE9
BCTRL T2 33 VDDREG Analog BCTRL
DACO0 U1 36 VDDA33_A
DC
Analog DACO0
DACO1 U2 37 VDDA33_A
DC
Analog DACO1
Table continues on the next page...
14
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 109
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
DDR_A[0] C7 SDRAMC_
VDD2P5
DDR DDR_A[0]
DDR_A[1] C11 SDRAMC_
VDD2P5
DDR DDR_A[1]
DDR_A[2] A8 SDRAMC_
VDD2P5
DDR DDR_A[2]
DDR_A[3] B7 SDRAMC_
VDD2P5
DDR DDR_A[3]
DDR_A[4] A6 SDRAMC_
VDD2P5
DDR DDR_A[4]
DDR_A[5] B6 SDRAMC_
VDD2P5
DDR DDR_A[5]
DDR_A[6] A9 SDRAMC_
VDD2P5
DDR DDR_A[6]
DDR_A[7] A7 SDRAMC_
VDD2P5
DDR DDR_A[7]
DDR_A[8] A11 SDRAMC_
VDD2P5
DDR DDR_A[8]
DDR_A[9] B9 SDRAMC_
VDD2P5
DDR DDR_A[9]
DDR_A[10] D7 SDRAMC_
VDD2P5
DDR DDR_A[10]
DDR_A[11] D10 SDRAMC_
VDD2P5
DDR DDR_A[11]
DDR_A[12] C10 SDRAMC_
VDD2P5
DDR DDR_A[12]
DDR_A[13] A10 SDRAMC_
VDD2P5
DDR DDR_A[13]
DDR_A[14] D9 SDRAMC_
VDD2P5
DDR DDR_A[14]
DDR_A[15] B10 SDRAMC_
VDD2P5
DDR DDR_A[15]
DDR_BA[0] C8 SDRAMC_
VDD2P5
DDR DDR_BA[0]
DDR_BA[1] C9 SDRAMC_
VDD2P5
DDR DDR_BA[1]
DDR_BA[2] D8 SDRAMC_
VDD2P5
DDR DDR_BA[2]
DDR_CAS_
b
B4 SDRAMC_
VDD2P5
DDR DDR_CAS_
b
DDR_CKE[0
]
A5 SDRAMC_
VDD2P5
DDR DDR_CKE[0
]
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
110 Freescale Semiconductor, Inc.
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
DDR_CLK[0
]
A2 SDRAMC_
VDD2P5
DDR DDR_CLK[0
]
DDR_CLK_
b[0]
B2 SDRAMC_
VDD2P5
DDR DDR_CLK_
b[0]
DDR_CS_b[
0]
C5 SDRAMC_
VDD2P5
DDR DDR_CS_b[
0]
DDR_D[0] F4 SDRAMC_
VDD2P5
DDR DDR_D[0]
DDR_D[1] H3 SDRAMC_
VDD2P5
DDR DDR_D[1]
DDR_D[2] D4 SDRAMC_
VDD2P5
DDR DDR_D[2]
DDR_D[3] G4 SDRAMC_
VDD2P5
DDR DDR_D[3]
DDR_D[4] F3 SDRAMC_
VDD2P5
DDR DDR_D[4]
DDR_D[5] J3 SDRAMC_
VDD2P5
DDR DDR_D[5]
DDR_D[6] C3 SDRAMC_
VDD2P5
DDR DDR_D[6]
DDR_D[7] G3 SDRAMC_
VDD2P5
DDR DDR_D[7]
DDR_D[8] J1 SDRAMC_
VDD2P5
DDR DDR_D[8]
DDR_D[9] D1 SDRAMC_
VDD2P5
DDR DDR_D[9]
DDR_D[10] H1 SDRAMC_
VDD2P5
DDR DDR_D[10]
DDR_D[11] E2 SDRAMC_
VDD2P5
DDR DDR_D[11]
DDR_D[12] G1 SDRAMC_
VDD2P5
DDR DDR_D[12]
DDR_D[13] C1 SDRAMC_
VDD2P5
DDR DDR_D[13]
DDR_D[14] H2 SDRAMC_
VDD2P5
DDR DDR_D[14]
DDR_D[15] D2 SDRAMC_
VDD2P5
DDR DDR_D[15]
DDR_DQM[
0]
J4 SDRAMC_
VDD2P5
DDR DDR_DQM[
0]
DDR_DQM[
1]
G2 SDRAMC_
VDD2P5
DDR DDR_DQM[
1]
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 111
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
DDR_DQS[
0]
D3 SDRAMC_
VDD2P5
DDR DDR_DQS[
0]
DDR_DQS_
b[0]
E3 SDRAMC_
VDD2P5
DDR DDR_DQS_
b[0]
DDR_DQS[
1]
E1 SDRAMC_
VDD2P5
DDR DDR_DQS[
1]
DDR_DQS_
b[1]
F1 SDRAMC_
VDD2P5
DDR DDR_DQS_
b[1]
DDR_ODT[0
]
C4 SDRAMC_
VDD2P5
DDR DDR_ODT[0
]
DDR_ODT[1
]
B1 SDRAMC_
VDD2P5
DDR DDR_ODT[1
]
DDR_RAS_
b
A4 SDRAMC_
VDD2P5
DDR DDR_RAS_
b
DDR_RESE
T
D6 SDRAMC_
VDD2P5
DDR DDR_RESE
T
DDR_VREF G5 SDRAMC_
VDD2P5
DDR DDR_VREF
DDR_WE_b C6 SDRAMC_
VDD2P5
DDR DDR_WE_b
DDR_ZQ A3 SDRAMC_
VDD2P5
DDR DDR_ZQ
EXT_POR T1 30 VDD33 GPIO EXT_POR
EXT_TAMP
ER0
T14 76 VBAT Analog EXT_TAMP
ER0
EXT_TAMP
ER1
U14 74 VBAT Analog EXT_TAMP
ER1
EXT_TAMP
ER2/
EXT_WM0_
TAMPER_I
N
T13 VBAT Analog EXT_TAMP
ER2/
EXT_WM0_
TAMPER_I
N
EXT_TAMP
ER3/
EXT_WM0_
TAMPER_
OUT
U13 VBAT Analog EXT_TAMP
ER3/
EXT_WM0_
TAMPER_
OUT
EXT_TAMP
ER4/
EXT_WM1_
TAMPER_I
N
U12 VBAT Analog EXT_TAMP
ER4/
EXT_WM1_
TAMPER_I
N
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
112 Freescale Semiconductor, Inc.
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
EXT_TAMP
ER5/
EXT_WM1_
TAMPER_
OUT
U10 VBAT Analog EXT_TAMP
ER5/
EXT_WM1_
TAMPER_
OUT
EXTAL Y13 73 DECAP_V1
1_
LDO_OUT
Analog EXTAL
EXTAL32 Y12 70 DECAP_V1
1_
LDO_OUT
Analog EXTAL32
JTCLK/
SWCLK
K4 3 VDD33 GPIO ALT1 JTAG Input 100K PU
JTDI K2 4 VDD33 GPIO ALT1 JTAG Input 100K PU
JTDO K1 5 VDD33 GPIO ALT1 JTAG Disabled
JTMS/
SWDIO
L1 6 VDD33 GPIO ALT1 JTAG Input 100K PU
LVDS0P W14 DECAP_V2
5_
LDO_OUT
Analog LVDS0P
LVDS0N Y14 DECAP_V2
5_
LDO_OUT
Analog LVDS0N
PTA6 N5 19 VDD33 GPIO ALT0 GPIO Disabled
PTA7 V15 79 VDD33 GPIO ALT0 GPIO Disabled
PTA12 L3 7 VDD33 GPIO ALT0 GPIO Disabled
PTA16 Y5 43 VDD33 GPIO ALT0 GPIO Disabled
PTA17 Y6 44 VDD33 GPIO ALT0 GPIO Disabled
PTA18 V6 46 VDD33 GPIO ALT0 GPIO Disabled
PTA19 U6 47 VDD33 GPIO ALT0 GPIO Disabled
PTA20 B18 143 VDD33 GPIO ALT0 GPIO Disabled
PTA21 D18 145 VDD33 GPIO ALT0 GPIO Disabled
PTA22 E17 147 VDD33 GPIO ALT0 GPIO Disabled
PTA23 C17 148 VDD33 GPIO ALT0 GPIO Disabled
PTA24 R16 VDD33 GPIO ALT0 GPIO Disabled
PTA25 R17 VDD33 GPIO ALT0 GPIO Disabled
PTA26 R19 VDD33 GPIO ALT0 GPIO Disabled
PTA27 R20 VDD33 GPIO ALT0 GPIO Disabled
PTA28 P20 VDD33 GPIO ALT0 GPIO Disabled
PTA29 P18 VDD33 GPIO ALT0 GPIO Disabled
PTA30 P17 VDD33 GPIO ALT0 GPIO Disabled
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 113
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
PTA31 P16 VDD33 GPIO ALT0 GPIO Disabled
PTB0 T6 49 VDD33 GPIO ALT0 GPIO Disabled
PTB1 T7 50 VDD33 GPIO ALT3 RCON30 Input Disabled
PTB2 V7 51 VDD33 GPIO ALT3 RCON31 Input Disabled
PTB3 W7 53 VDD33 GPIO ALT0 GPIO Disabled
PTB4 Y7 54 VDD33 GPIO ALT0 GPIO Disabled
PTB5 Y8 55 VDD33 GPIO ALT0 GPIO Disabled
PTB6 W8 56 VDD33 GPIO ALT0 GPIO Disabled
PTB7 D13 166 VDD33 GPIO ALT0 GPIO Disabled
PTB8 J16 121 VDD33 GPIO ALT0 GPIO Disabled
PTB9 J19 123 VDD33 GPIO ALT0 GPIO Disabled
PTB10 B15 159 VDD33 GPIO ALT0 GPIO Disabled
PTB11 D14 164 VDD33 GPIO ALT0 GPIO Disabled
PTB12 E13 165 VDD33 GPIO ALT0 GPIO Disabled
PTB13 D15 156 VDD33 GPIO ALT0 GPIO Disabled
PTB14 B14 162 VDD33 GPIO ALT0 GPIO Disabled
PTB15 A14 161 VDD33 GPIO ALT0 GPIO Disabled
PTB16 C14 163 VDD33 GPIO ALT0 GPIO Disabled
PTB17 A15 160 VDD33 GPIO ALT0 GPIO Disabled
PTB18 B12 171 VDD33 GPIO ALT0 GPIO Input Disabled
PTB19 C13 167 VDD33 GPIO ALT0 GPIO Input Disabled
PTB20 A13 169 VDD33 GPIO ALT0 GPIO Disabled
PTB21 E12 173 VDD33 GPIO ALT0 GPIO Disabled
PTB22 D12 172 VDD33 GPIO ALT0 GPIO Disabled
PTB23 A19 141 VDD33 GPIO ALT3 GPIO Disabled
PTB24 A18 142 VDD33 GPIO ALT3 GPIO Disabled
PTB25 B17 149 VDD33 GPIO ALT3 GPIO Disabled
PTB26 A17 150 VDD33 GPIO ALT3 RCON21 Input Disabled
PTB27 U8 57 VDD33 GPIO ALT3 RCON22 Input Disabled
PTB28 A16 151 VDD33 GPIO ALT3 RCON23 Input Disabled
PTC0 L4 8 VDD33 GPIO ALT7 RCON18 Input Disabled
PTC1 L5 9 VDD33 GPIO ALT7 RCON19 Input Disabled
PTC2 M5 11 VDD33 GPIO ALT7 RCON20 Input Disabled
PTC3 M3 12 VDD33 GPIO ALT0 GPIO Disabled
PTC4 L2 14 VDD33 GPIO ALT0 GPIO Disabled
PTC5 M1 15 VDD33 GPIO ALT0 GPIO Disabled
PTC6 N1 16 VDD33 GPIO ALT0 GPIO Disabled
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
114 Freescale Semiconductor, Inc.
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
PTC7 N2 17 VDD33 GPIO ALT0 GPIO Disabled
PTC8 N4 18 VDD33 GPIO ALT0 GPIO Disabled
PTC9 T15 77 VDD33 GPIO ALT0 GPIO Disabled
PTC10 U15 78 VDD33 GPIO ALT0 GPIO Disabled
PTC11 P4 20 VDD33 GPIO ALT0 GPIO Disabled
PTC12 P3 21 VDD33 GPIO ALT0 GPIO Disabled
PTC13 P1 23 VDD33 GPIO ALT0 GPIO Disabled
PTC14 R1 26 VDD33 GPIO ALT0 GPIO Disabled
PTC15 P2 27 VDD33 GPIO ALT0 GPIO Disabled
PTC16 R3 29 VDD33 GPIO ALT0 GPIO Disabled
PTC17 R4 28 VDD33 GPIO ALT0 GPIO Disabled
PTC26 D16 153 VDD33 GPIO ALT3 RCON24 Input Disabled
PTC27 E16 154 VDD33 GPIO ALT3 RCON25 Input Disabled
PTC28 E15 155 VDD33 GPIO ALT3 RCON26 Input Disabled
PTC29 C16 152 VDD33 GPIO ALT3 RCON27 Input Disabled
PTC30 T8 58 VDD33 GPIO ALT3 RCON28 Input Disabled
PTC31 W5 42 VDD33 GPIO ALT3 RCON29 Input Disabled
PTD0 Y17 86 VDD33 GPIO ALT0 GPIO Disabled
PTD1 Y18 87 VDD33 GPIO ALT0 GPIO Disabled
PTD2 V18 88 VDD33 GPIO ALT0 GPIO Disabled
PTD3 Y19 89 VDD33 GPIO ALT0 GPIO Disabled
PTD4 W19 90 VDD33 GPIO ALT0 GPIO Disabled
PTD5 W20 91 VDD33 GPIO ALT0 GPIO Disabled
PTD6 V20 92 VDD33 GPIO ALT0 GPIO Disabled
PTD7 V19 93 VDD33 GPIO ALT0 GPIO Disabled
PTD8 U17 94 VDD33 GPIO ALT0 GPIO Disabled
PTD9 U18 97 VDD33 GPIO ALT0 GPIO Disabled
PTD10 U20 98 VDD33 GPIO ALT0 GPIO Disabled
PTD11 T20 99 VDD33 GPIO ALT0 GPIO Disabled
PTD12 T19 100 VDD33 GPIO ALT0 GPIO Disabled
PTD13 T18 101 VDD33 GPIO ALT0 GPIO Disabled
PTD16 D20 133 VDD33 GPIO ALT0 GPIO Disabled
PTD17 E20 132 VDD33 GPIO ALT0 GPIO Disabled
PTD18 E18 131 VDD33 GPIO ALT0 GPIO Disabled
PTD19 F16 130 VDD33 GPIO ALT0 GPIO Disabled
PTD20 F17 129 VDD33 GPIO ALT0 GPIO Disabled
PTD21 F19 128 VDD33 GPIO ALT0 GPIO Disabled
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 115
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
PTD22 F20 126 VDD33 GPIO ALT0 GPIO Disabled
PTD23 G20 124 VDD33 GPIO ALT0 GPIO Disabled
PTD24 G19 VDD33 GPIO ALT0 GPIO Disabled
PTD25 G18 VDD33 GPIO ALT0 GPIO Disabled
PTD26 G16 VDD33 GPIO ALT0 GPIO Disabled
PTD27 H16 VDD33 GPIO ALT0 GPIO Disabled
PTD28 H17 VDD33 GPIO ALT0 GPIO Disabled
PTD29 H18 VDD33 GPIO ALT0 GPIO Disabled
PTD30 H20 VDD33 GPIO ALT0 GPIO Disabled
PTD31 J20 VDD33 GPIO ALT0 GPIO Disabled
PTE0 N16 103 VDD33 GPIO ALT2 BMODE1 Input Disabled
PTE1 N18 104 VDD33 GPIO ALT2 BMODE0 Input Disabled
PTE2 N19 105 VDD33 GPIO ALT0 GPIO Disabled
PTE3 Y15 80 VDD33 GPIO ALT0 GPIO Disabled
PTE4 N20 106 VDD33 GPIO ALT0 GPIO Disabled
PTE5 T16 VDD33 GPIO ALT0 GPIO Disabled
PTE6 W16 VDD33 GPIO ALT0 GPIO Disabled
PTE7 M20 109 VDD33 GPIO ALT3 RCON0 Input Disabled
PTE8 M19 110 VDD33 GPIO ALT3 RCON1 Input Disabled
PTE9 M17 111 VDD33 GPIO ALT3 RCON2 Input Disabled
PTE10 M16 112 VDD33 GPIO ALT3 RCON3 Input Disabled
PTE11 L16 113 VDD33 GPIO ALT3 RCON4 Input Disabled
PTE12 L17 114 VDD33 GPIO ALT3 RCON5 Input Disabled
PTE13 Y16 VDD33 GPIO ALT0 GPIO Disabled
PTE14 W15 VDD33 GPIO ALT0 GPIO Disabled
PTE15 L18 115 VDD33 GPIO ALT3 RCON6 Input Disabled
PTE16 L20 116 VDD33 GPIO ALT3 RCON7 Input Disabled
PTE17 K20 117 VDD33 GPIO ALT3 RCON8 Input Disabled
PTE18 K19 118 VDD33 GPIO ALT3 RCON9 Input Disabled
PTE19 K18 119 VDD33 GPIO ALT3 RCON10 Input Disabled
PTE20 A12 170 VDD33 GPIO ALT3 RCON11 Input Disabled
PTE21 V16 81 VDD33 GPIO ALT0 GPIO Disabled
PTE22 W17 84 VDD33 GPIO ALT0 GPIO Disabled
PTE23 J17 122 VDD33 GPIO ALT3 RCON12 Input Disabled
PTE24 D19 134 VDD33 GPIO ALT3 RCON13 Input Disabled
PTE25 C19 135 VDD33 GPIO ALT3 RCON14 Input Disabled
PTE26 C20 137 VDD33 GPIO ALT3 RCON15 Input Disabled
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
116 Freescale Semiconductor, Inc.
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
PTE27 B20 138 VDD33 GPIO ALT3 RCON16 Input Disabled
PTE28 K16 120 VDD33 GPIO ALT3 RCON17 Input Disabled
RESETB/
RESET_OU
T
T4 35 VDD33 GPIO RESETB/
RESET_OU
T
TEST T3 34 VDD33 GPIO TEST
USB0_DM T9 62 USB_DCAP Analog USB0_DM
USB0_DP T10 63 USB_DCAP Analog USB0_DP
USB0_VBU
S
W11 60 USB_DCAP Analog USB0_VBU
S
USB0_VBU
S_ DETECT
Y11 64 USB_DCAP Analog USB0_VBU
S_ DETECT
USB1_DM V9 USB_DCAP Analog USB1_DM
USB1_DP W9 USB_DCAP Analog USB1_DP
USB1_VBU
S
W10 USB_DCAP Analog USB1_VBU
S
USB1_VBU
S_ DETECT
U9 USB_DCAP Analog USB1_VBU
S_ DETECT
VADCSE0 Y4 VDDA33_A
DC /
VDD12_AF
E /
VADC_AFE
_BANDGAP
?
Analog VADCSE0
VADCSE1 U4 VDDA33_A
DC /
VDD12_AF
E /
VADC_AFE
_BANDGAP
?
Analog VADCSE1
VADCSE2 W4 VDDA33_A
DC /
VDD12_AF
E /
VADC_AFE
_BANDGAP
?
Analog VADCSE2
VADCSE3 V5 VDDA33_A
DC /
VDD12_AF
E /
VADC_AFE
_BANDGAP
?
Analog VADCSE3
Table continues on the next page...
Functional Assignment Pins
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 117
Table 78. Functional Assignment Pins
(continued)
Signal
Name
364 MAP
BGA
176 LQFP
(F-series
ONLY)
Power
Group
Pad Type Default
Mode
(Reset)
Default
Function
Input/
Output
Value
XTAL W13 72 DECAP_V1
1_
LDO_OUT
Analog XTAL
XTAL32 W12 71 DECAP_V1
1_
LDO_OUT
Analog XTAL32
15 Revision History
The following table provides a revision history for this document.
Table 79. Revision History
Rev. No. Date Substantial Changes
Rev1 12/2011 Initial release
Rev2 02/2012 Updated feature list
Updated VREG electrical specifications
Updated LDO_1P1, LDO2P5 tables
Updated DDR IO parameters
Added DDR memory controller
parameters
Updated Power sequencing table
Added Power supply diagram
Updated Recommended operating
conditions
Replaced DryIce Tamper Electrical
Specifications with Voltage and
temperature monitor electrical
specifications
Updated VideoADC electricals. Updated
VideoADC supply scheme diagram.
Added VideoADC supply_decoupling
diagram
Added QuadSPI DDR mode electrical
specifications
Updated Fast internal RC oscillator table
Updated Slow internal RC oscillator
table
Updated Pinouts section
Table continues on the next page...
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
118 Freescale Semiconductor, Inc.
Table 79. Revision History (continued)
Rev. No. Date Substantial Changes
Rev3 04/2012 Updated device name throughout the
document
Minor editorial updates in the feature list
Updated VREG electrical specifications
Updated LDO electrical specifications
Updated Power consumption operating
behaviors table
Added USB PHY Current Consumption
table
Updated GPIO parameters
Updated DDR parameters
Updated Power sequencing
Updated Power supply figure
Updated Recommended operating
conditions table
Removed Reset specifications
Updated 12-bit DAC operating
requirements
Added a note in 12-bit ADC operating
conditions section
Updated VideoADC Specifications table
Updated LCD driver specifications table
QuadSPI timing- Replaced VDDE with
VDD33
Added notes in DDR3 Timing
Parameters and LPDD2 Timing
Parameters sections.
Updated 24MHz external oscillator
electrical characteristics table
Updated OSC32K Main Characteristics
table
Updated Freescale Document Number
for 144-pin LQFP
Changed pin-name from EXT_POR to
TEST2
Updated Pinouts section
Updated GPIO Mapping
Rev4 08/2012 Updated Part identification
Editorial changes in USB PHY Current
Consumption in Normal Mode, GPIO AC
Electrical Characteristics (3.3V power
mode)
Updated Power sequencing table
Table continues on the next page...
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 119
Table 79. Revision History (continued)
Rev. No. Date Substantial Changes
Updated Power supply diagram
Updated AC electrical specification of
following modules: DCU, 12-bit DAC,
Ethernet, Enhanced Serial Audio
Interface (ESAI), SAI/I2S, Flexbus, MLB,
DSPI, 24MHz External Oscillator, JTAG,
Debug, ESAI, QSPI
Updated Thermal Attributes for 364
MAPBGA
Updated Freescale document number
for 176-pin LQFP and 364 MAPBGA
Updated VREG specifications
Added WBREG specifications
Updated Recommended operating
conditions table
Updated DAC INL and DNL charts
Updated Pinouts
Rev 4.1 12/2012 Editorial updates: Removed instances of
VF7xx and VF4xx.
Rev 5 April 2013 Removed references to VF1xxR
and refernces to F100 and 144
LQFP and 256 MAPBGA
Replaced references to Auto and
IMM by R-series and F-series
respectively
In the feature list, the ARM Core
frequency changed to 500 MHz for
F-series
In the feature list, changed the
DRAM controller frequency
Updated Part Nummbering format
Clarified the Fields table as per
Marketing
Sample numbers updated
From the VREG electrical
specifications tables, deleted pre-
trimming rows and comments
.In the HPREG electrical
characteristics table, add footnote
on maximum Output Current
Capacity
In the ULPREG electrical
characteristics table, clarified max
value of Output voltage @ no load
and min value of Output voltage @
full load
In the WBREG electrical
characteristics table, clarified max
value of Output voltage @ no load
and min value of Output voltage @
full load
Table continues on the next page...
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
120 Freescale Semiconductor, Inc.
Table 79. Revision History (continued)
Rev. No. Date Substantial Changes
In the LVD electrical specifications
table, added typ. values of Upper
voltage threshold (value @27oC)
and Lower voltage threshold
(value @27oC)
In the LVD DIG electrical
specifications table, removed
pretrimming values and clarified
other values
Updated LVD DIG electrical
specifications values
Updated LDO_1P1 tables
Updated LDO_2P5 table
Updated Power consumption
operating behaviors tables
Updated Absolute maximum
ratings table
Removed Temperature Voltage
Monitor section to security RM
Updated VideoADC Specifications
table
Rev 5 April 2013 Updated pin muxing table with the
following changes:
Added MII0 including M
AC0.TXDATA[2],
MAC0.TXDATA[3],
MAC0.RXDATA[2],
MAC0.RXDATA[3] ,
MAC0.TXERR, MAC0.TXCLK,
MAC0.RXCLK, MAC0.COL,
MAC0.CRS
Following signals muxed on same
RMII0 Pins : MII0_MDC,
MII0_MDC, MII0_RXD[1],
MII0_RXD[0], MII0_RXER,
MII0_TXD[1], MII0_TXD[0],
MII0_TXEN
Replaced FB_ALE with
FB_MUXED_ALE, FB_CS4_b with
FB_MUXED_TSIZ0, FB_TSIZ1
with FB_MUXED_TSIZ1,
FB_TBST_b with
FB_MUXED_TBST_b, FB_BE0_b
with FB_MUXED_BE0_b
Removed RCON18,19,20
Replaced ESAI_SDO2 with
ESAI_SDO2/ESAI_SDI3 Replaced
ESAI_SDO3 with ESAI_SDO3/
ESAI_SDI2 Replaced ESAI_SDI0
with ESAI_SDO5/ESAI_SDI0
Replaced ESAI_SDI1 with
ESAU_SDO4/ESAI_SDI1
CKO1 additionally muxed at
PAD40
Rev 5 May 2013 In the Features, minor editorial updates
Table continues on the next page...
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 121
Table 79. Revision History
Rev. No. Date Substantial Changes
Added Part Number Format figure
Updated the Fields table as per the
device part numbers
Added Part Numbers table
Added External NPN Ballast section
In the LVD Dig Electrical Specs,
minimum value of Upper Voltage
Threshold and Lower Voltage threshold
In the FlexBus timing specifications
table, clarified the Frequency of
operation
In the Power consumption, filled TBDs.
Updated footnotes
Rewritten the EMC radiated emissions
operating behaviors table
In the GPIO DC Electrical characteristics
table:
Vhys test condition changed
Added R_Keeper row
In the DDR operating conditions,
changed the Vddi Min and Max values
In the Power sequencing table,
rremoved some rows
In the Power Supply section, removed
LVDS and removed the note
In the Recommended operating
conditions table, updated min and max
of VDD12_AFE and FA_VDD. Updated
Min, Max, and Typ for VDD
Added the Recommended Connections
for Unused Analog Interfaces table
In the 12-bit ADC Characteristics table,
updated the typ and max values of TUE,
DNL. INL, ZSE, FSE
Added Receive and Transmit signal
timing specifications for MII interfaces
In the DSPI table, clarified the TBDs
In PLL 4, PLL 5, PLL 6 electrical
characteristics tables, added footnotes
In the JTAG electrical table, clarified the
TBDs
In the pinouts section, added Special
Signal table
Added Power Supply pins section
Added Functional Assignment section
Table continues on the next page...
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
122 Freescale Semiconductor, Inc.
Table 79. Revision History (continued)
Rev. No. Date Substantial Changes
Rev 6 Jan 2014 Added QuadSPI electricals
Changed VBB references to VBAT
In the feature list, clarified that
ECC supported for 8-bit mode
only, not 16-bit.
Revised the part number format
Revised the field table
Added Absolute Maximum Rating
table, which was madde non_cust
in the previous version
In the Power Consumption
Operating Behavior table, Revised
min and max value of IDD_LPS3
and IDD_LPS2. Removed
IDD_LPS1 row
In the USB PHY Current
Consumption table, removed the
Normal Mode
In the Power Sequence table,
revised the Power UP/ Down
Order column for USB0_VBUs and
USB1_VBUS
In the Recommended operating
conditions table, revised the min
value of VBAT. Revised the min
value of VREFH_ADC Revised the
min and max values of
SDRAMC_VDD1P5
In the Recommended Connections
for Unused Analog Interfaces
section, added the notes. Revised
the Recommendation if Unused
column
In the 12-bit ADC operating
conditions, revised Conditions for
Ground voltage. Revised min Ref
High Voltage
In the 12-bit DAC operating
requirements, revised the min and
max value of VREFH_ADC
In the SDHC switching
specifications, revised the max
value of SD6
In the 24MHz external oscillator
electrical characteristics table,
revised the min value of VIH and
max value of VIL
Rev 7 April 2014 Updated Note in "Power supply"
section.
Updated Absolute maximum
ratings section: solute maximum
ratings Table - FA_VDD row: Min
and Max column
Updated figure "12-bit ADC Input
Impedance Equivalency Diagram"
Table continues on the next page...
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 123
Table 79. Revision History (continued)
Rev. No. Date Substantial Changes
in 12-bit ADC operating conditions
section
Updated figures for clarity in "12-
bit DAC operating behaviors"
section
Updated figure "VideoADC supply
scheme" in "VideoADC
Specifications" section
Editorial updates thorughout
Rev 8 November 2014 In "Part number format" figure,
updated explanation for '1'.
In "Fields" table, updated definition
of 'R'.
In "External NPN ballast" section,
updated recommendations for
transistor selection.
In "DDR parameters" section,
updated table footnotes regarding
typical condition.
In "Power sequencing" table,
added comment regarding
SDRAMC_VDD1P5: "In case the
Ballast transistor’s collector is
connected to the 1.5 V DRAM
supply (instead of the 3.3 V
supply), turn this 1.5 V supply on
before turning on the 3.3V."
In "VideoADC specifications" table,
added supply current values.
In "Receive and Transmit signal
timing specifications," added the
following note: "See the most
current errata document when
using the internally generated
RXCLK and TXCLK clocks."
Updated "QuadSPI timing" section,
presenting data based on a
negative edge data launch from
the device and a negative edge
data capture; updated the figure,
"QuadSPI Input/Read timing (SDR
mode)"; updated the table,
"QuadSPI Input/Read timing (SDR
mode)."
For the "SDHC switching
specifcations" table, added the
statement, "A load of 50 pF is
assumed"; updated max value for
SD6, SDHC output delay (output
valid).
In the "24 MHz oscillator
specifications" section, added the
statement, "The crystal must be
rated for a drive level of 250 μW or
higher. An ESR (equivalent series
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
124 Freescale Semiconductor, Inc.
Table 79. Revision History
Rev. No. Date Substantial Changes
resistance) of 80 Ω or less is
recommended to achieve a gain
margin of 5."
In "Pinouts" section, for the
176LQFP package, added
information about exposed pad on
the bottom side.
In "Special Signal Considerations"
table, added that a "fundamental-
mode" crystal should be
connected between XTAL and
EXTAL; updated maximum drive
level of crystal rating to 250 μW.
Revision History
VF6xx, VF5xx, VF3xx, Rev8, 11/2014.
Freescale Semiconductor, Inc. 125
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Vybrid is a trademark of
Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. ARM and Cortex are registered
trademarks of ARM Limited. NEON is the trademark of ARM Limited.
© 2012–2013 Freescale Semiconductor, Inc.
Document Number VYBRIDFSERIESEC
Revision 8, 11/2014