74HC/HCT9114 MS} SUPERSEDES DATA OF MARCH 1988 NINE WIDE SCHMITT TRIGGER BUFFER; OPEN DRAIN OUTPUTS; INVERTING FEATURES i | TYPICAL | @ Schmitt trigger action on all data | SYMBOL PARAMETER CONDITIONS - UNIT inputs | | [He | HcT | rane capability: standard {open HL propagation delay Cu = 18 F | 12 | 13 ns Icg category: MSI | PLZ An to Yq _| Yee =5V | C input capacitance | 3.5 | 35 | pF GENERAL DESCRIPTION + The 74HC/HCT91 14 are high-speed Cpp power dissipation notes 1 and 2 5 5 | pF Si-gate CMOS devices and are pin capacitance per buffer compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT9114 are nine wide Schmitt trigger inverting buffer with open drain outputs and Schmitt trigger inputs. The Schmitt trigger action in the data inputs transform siowly changing input signals into sharply defined jitter-free output signals. The 74HC/HCT9114 have open-drain N-transistor outputs, which are not clamped by a diode connected to Vcc. In the OF F-state, i.e. when one input is LOW, the output may be pulled to any voltage between GNO and VQmax: This allows the device to be used as a LOW-to-HiGH or HIGH-to-LOW level shifter. For digital operation and OR-tied output applications, these devices must have a pull-up resistor to establish a logic HIGH level. The 9114 is identical to the 9115 but has inverting outputs. GND = 0 V: Tamb = 25 C: ty = t = 6 ns Notes 1. CPp is used to determine the dynamic power dissipation (Pp in uW): Pp =Cpp x Vcc x fit 5 (CL x VCC? x fo) where: fi = input frequency in MHz fo = output frequency in MHz CL vec supply voltage in V Z(C_ x Voc? x fy) = sum of outputs 2, For HC the condition is Vj = GND to Vcc For HCT the condition is Vj = GND ta Vcc ~ 1.5 V PACKAGE OUTLINES SEE PACKAGE INFORMATION SECTION PIN DESCRIPTION output load capacitance in pF | PIN NO. | SYMBOL NAME AND FUNCTION | 5 2 . a 9 | Ag to Ag | data inputs 10 GND | ground {0 V} ; 19, 18, 17, 16, 15, 14, 13,12 | qto Yg 11 20 Vee data outputs positive supply voltage | | sO] OU [20] Yce | Ay a [19] Yo | Ag CG ol vy og | as 5] ie] 3 sal 2" fae 46 (7 a] 5 ec fa % | 8 ha %, | sno [io] maa 7222224 Fig. 1 Pin configuration. > > G o > oS eS > kn 5 > ln o 6 as G & > lo x| ISTCSTEST ESTES] (ST LS] ES] 8] Mesos: Fig. 2 Lagic diagram. ' | 2 9 2 [ 7 18 3 | 7 B " 4 | 2 Fp 18 5 | 2 15 | -7}. 7 { 7 fh 3 Tp 3 | 7b " wana Fig. 3 IEC logic diagram. December 1990 134774HC/HCT9114 MSI i is T aie Yo Z | . F pe GNO aig MBAQ21 a a 1222336 Fig. 5 Lagic diagram Fig. 4 Functional diagram. (one Schmitt trigger). FUNCTION TABLE INPUTS OUTPUTS An Yn L i Z H | L H = HIGH voltage jevei L = LOW voltage level Z = high impedance OF F -state 1348 June 1989Nine wide Schmitt trigger buffer; open drain outputs; inverting 74HC/HCT9114 MSI DC CHARACTERISTICS FOR 74HC For the OC characteristics see chapter HCMOS family characteristics, section Family specifications. Transter characteristics are given below. Output capability: standard Ic category: MSI TRANSFER CHARACTERISTICS FOR 74HC Voltages are refered to GND (ground = 0 V) : Tamb (C) | | TEST CONDITIONS | 74HC | | SYMBOL | PARAMETER UNIT | Voc | WAVEFORMS | | +25 40 to +85 | 4010 +125 v | ' | min. | tye. | max min. | max. | min. | max, : | j 7 t 7 j | |.0.70| 1.13] 1.50 0.70) 1.50 0.70 | 1.50 2.0 | | i VT+ positive-going threshold 11,.7512.37(3.15 | 1.753.158 | 1.75 | 3.15 | Vv 45 | Fig. 6 i | | 2.30} 3.11} 4.20 | 2.30] 4.20 | 2.30 | 4.20 16.0 | ! 9.30) 0.70/ 4.10 | 0.30] 1.10 | 0.30 | 1.10 20 | Vre negative-going threshold 1,35] 1.80/ 2.40 | 1.35] 2.40 | 1.35 2.40 | Vv 45 Fig. 6 | | 1.80 | 243/330 | 1.80|3.30 | 1.80 | 3.30 6.0 | | + ; 4 | (0.2 |0.43!080 | 0.18/0.80 | 0.15 | 0.80 | 2.0 Vy | hysteresis (Vt+Vqz_) | 0.4 |.0.571 1.00 | 0.40] 1.00 | 0.40 | 1.00 | v 45 | Fig.6 05 |0.68/1.10 | 0.80/ 1.10 | 0.50 / 1.10 6.0 | AC CHARACTERISTICS FOR 74HC GND =OV; t= te = 6 ns; CL = 50 pF | | Tamb (C) TEST CONDITIONS : | 74HC | SYMBOL } PARAMETER ! | UNIT | Vee | WAVEFORMS | | +25 40 to +85 ~40 to +125 Vv | i | min. typ. | max. | min. | max. | min. | max | . i | it 36 | 110 140 | 168 2.0 TPHL/ | Propagation delay 13, | 22 28 33 | ns 45 | Fig? PLZ | An Yn 10 | 19 24 28 6.0 | | 19 175 95 | 110 | 2.0 tTHL output transition time 7 15 19 | 22 ns ; 4.5 Fig. 7 | 6 1/13 16 | 19 | 6.0 June 1989 134974HC/HCT9114 MSt DC CHARACTERISTICS FOR 74HCT For the DC characteristics see chapter HCMOS family characteristics, section Family specifications. Transfer characteristics are given below. Output capability: standard loc category: MSI Note to HCT types The value of additional quiescent supply current (Alcc) for a unit load of 1 is given in the family specifications. To determine Aicg per input, multiply this value by the unit load coefficient shown in the table below. UNIT LOAD COEFFICIENT TRANSFER CHARACTERISTICS FOR 74HCT Voltages are refered to GND (ground = 0 V) [ | | Tamb (C) | | TEST CONDITIONS ! 74HCT SYMBOL PARAMETER " UNIT | Veco | WAVEFORMS ' : | +25 40 to +85 | 40 to +125 Vv | min | eve. | max. | emin. | max, | min. | max. | jo9 150/20 )09 120 109 20. las Vite : positive-going threshold | 12 | 1.70 24 1.2 | 21 | 12 | 24 v 55 Fig. 6 | ia | ! | | VT j Deastivesoing threshold (08 | 13 0 oe 3 ag x iV a Fig. 6 . 0.2 10.44/08 02/08 j}02 | 0. 4.5 . Va | hysteresis (Vt+VT_] 195 loasias [o2 08 |o2 |os | 5.5 | Pia 6 , . . . : . AC CHARACTERISTICS FOR 74HCT GND = QV; t, = t=6 ns; Cy = 50 pF { 3 Tamb (C) TEST CONDITIONS J4HCT an | SYMBOL : PARAMETER t T UNIT | Vcc | WAVEFORMS i | +25 40 to +85 | -40 to +125 Vv i [min typ. | pax. | min.| max. | min. ) max. | T tPHL? propagation delay i tpLZ A, to V, | 7 31 39 47 as 45 Fig. 7 r / | tTHL Output transition time | | 7 15 | 19 222 jj ns 45 Fig. 7 1350 June 1989Nine wide Schmitt trigger buffer; open drain outputs; inverting 74HC/HCT9114 TRANSFER CHARACTERISTIC WAVEFORMS Yo | YH fe v v T= T+ #292338 Fig. 6 Transfer characteristic. AC WAVEFORMS 10% Aq INPUT , OUTPUT MBAG24 "THE t | | Fig. 7 Waveforms showing the input (Ap} to output (Y,) | propagation delays and the output transition times. Note to AC waveforms (1) HE = Vyy = 50%; V; = GND to Vcc. HCT: Vu = 1.3V; V) = GND to 3V. June 1989 1351