Features
•  Easy to use
•  Interfaces directly with microprocessors
•  0.15” character  height  in  4,  8,  and  16  (2x8)  character 
packages
•  0.20”character height in 4 and 8 character packages
•  Rugged X- and Y-stackable package
•  Serial input
•  Convenient brightness controls
•  Wave solderable
•  Oered in ve colors
•  Low power CMOS technology
•  TTL compatible
Applications
•  Telecommunications equipment
•  Portable data entry  devices
•  Computer peripherals
•  Medical equipment
•  Test  equipment
•  Business machines
•  Avionics
•  Industrial  controls
Device Selection Guide
AlGaAs HER Orange Yellow Green Package
Description HCMS- HCMS- HCMS- HCMS- HCMS- Drawing
1 x 4 0.15” Character  2905  2902  2904  2901  2903  A
1 x 8 0.15” Character  2915  2912  2914  2911  2913  B
2 x 8 0.15” Character  2925  2922  2924  2921  2923  C
1 x 4 0.20” Character  2965  2962  2964  2961  2963  D
1 x 8 0.20” Character  2975  2972  2974  2971  2973  E
ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO AVOID STATIC DISCHARGE.
Description
The  HCMS-29xx  series  are  high  performance,  easy
to use dot matrix displays driven by on-board CMOS ICs. 
Each displaycan be directly interfaced with a microproces-
sor, thus eliminating the need for cumbersome interface 
components. The serial IC interface allows higher charac-
ter count information displays with a minimum of data 
lines.  A variety  of  colors,  font  heights,  and  character 
counts gives designers a wide range of product choices 
for their specic applications and the easy to read 5 x 7 
pixel format allows the display of uppercase, lower case, 
Katakana, and custom user-dened characters. These dis-
plays  are  stackable  in  the  x-  and  y-  directions,  making 
them ideal for high  character count  displays.
HCMS-29xx Series
High Performance CMOS 5 x 7 Alphanumeric Displays
Data Sheet
2
HCMS-291x
HCMS-290x
NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.
X Z
COO
2.11 (0.083) TYP.
0.25
(0.010)
7.62
(0.300)
PIN # 1 IDENTIFIER
4321
17.78 (0.700) MAX.
3.71 (0.146) TYP.
4.45 (0.175) TYP.
2.22 (0.087) SYM.
10.16 (0.400) MAX.
PIN # 1
LIGHT INTENSITY CATEGORY
DATE CODE
COLOR BIN
COUNTRY OF ORIGIN
PART NUMBER
5.08
(0.200)
2.54
(0.100)SYM.
TYP.
0.51 ± 0.13
(0.020 ± 0.005)
2.54 ± 0.13
(0.100 ± 0.005)
(NON ACCUM.)
TYP.
4.32
(0.170)TYP.
1.27
(0.050)SYM.
1
12
0.51 (0.020)
DATA OUT
OSC
V LED
DATA IN
RS
CLK
CE
BLANK
GND
SEL
V LOGIC
RESET
PIN FUNCTION
ASSIGNMENT TABLE
1
2
3
4
5
6
7
8
9
10
11
12
PIN # FUNCTION
HCMS-290X
YYWW
NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.
2.54 ± 0.13
(0.100 ± 0.005)
(NON ACCUM.)
TYP.
35.56 (1.400) MAX.
76543210
0.25
(0.010)
7.62
(0.300)
PIN # 1 IDENTIFIER
X Z
COO
INTENSITY CATEGORY
DATE CODE (YEAR, WEEK)
COLOR BIN
COUNTRY OF ORIGIN
PART NUMBER
5.08 (0.200)
2.54
(0.100) SYM.
0.51
(0.020)
TYP.
0.51 ± 0.13
(0.020 ± 0.005)
2.22 (0.087) SYM.
10.16 (0.400) MAX.
2.11 (0.083) TYP.
4.32
(0.170)TYP.
1.27
(0.050)SYM.
4.45
(0.175)TYP.
3.71
(0.146)
TYP. NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
GND LED
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
DATA IN
RS
NO PIN
CLOCK
CE
BLANK
GND LOGIC
SEL
V LOGIC
NO PIN
RESET
OSC
DATA OUT
PIN FUNCTION
ASSIGNMENT TABLE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
PIN # FUNCTION
3
26
HCMS-291X
YYWW
3
HCMS-292x
HCMS-296x
NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.
3210
PIN # 1 IDENTIFIER
PART NUMBER
5.31
(0.209)
4.28
(0.169) SYM.
TYP.
0.51 ± 0.13
(0.020 ± 0.005)
2.54 ± 0.13
(0.100 ± 0.005)TYP.
2.67 (0.105) SYM.
2.54 (0.100) TYP.
11.43 (0.450) MAX.
5.36 (0.211) TYP.
0.25
(0.010)
7.62
(0.300)
3.71
(0.146)TYP.
1.83
(0.072)SYM.
4.57
(0.180)TYP.
X Z
COO
INTENSITY CATEGORY
DATE CODE (YEAR, WEEK)
COLOR BIN
COUNTRY OF ORIGIN
21.46 (0.845) MAX.
0.50
(0.020)
DATA OUT
OSC
V LED
DATA IN
RS
CLK
CE
BLANK
GND
SEL
V LOGIC
RESET
1
2
3
4
5
6
7
8
9
10
11
12
PIN FUNCTION
ASSIGNMENT TABLE
PIN # FUNCTION
HCMS-296X
YYWW
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
GND LED
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
DATA IN
RS
NO PIN
CLOCK
CE
BLANK
GND LOGIC
SEL
V LOGIC
NO PIN
RESET
OSC
DATA OUT
PIN FUNCTION ASSIGNMENT TABLE
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
GND LED
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
DATA IN
RS
NO PIN
CLOCK
CE
BLANK
GND LOGIC
SEL
V LOGIC
NO PIN
RESET
OSC
DATA OUT
1A
2A
3A
4A
5A
6A
7A
8A
9A
10A
11A
12A
13A
14A
15A
16A
17A
18A
19A
20A
21A
22A
23A
24A
25A
26A
PIN # FUNCTION
NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.
15141312111098
76543210
1.27
(0.050)
0.25
(0.010)
7.62
(0.300)
2.03
(0.080)
4.83
(0.190)
PIN # 1 IDENTIFIER
ROW A
ROW B
35.56 (1.400) MAX.
3.71 (0.146) TYP.
2.22 (0.088) SYM.
4.45 (0.175) MAX.
19.81 (0.780) MAX.
9.65 (0.380)
X Z
COO
INTENSITY CATEGORY
DATE CODE (YEAR, WEEK)
COLOR BIN
COUNTRY OF ORIGIN
PART NUMBER
5.08 (0.200)
2.54
(0.100) SYM.
0.51
(0.020)
0.51 ± 0.13
(0.020 ± 0.005)TYP.
2.54 ± 0.13
(0.100 ± 0.005)
(NON ACCUM.)
TYP.
3A
26A
3B
26B
2.11 (0.083) TYP.
1B
2B
3B
4B
5B
6B
7B
8B
9B
10B
11B
12B
13B
14B
15B
16B
17B
18B
19B
20B
21B
22B
23B
24B
25B
26B
PIN # FUNCTION
HCMS-292X
YYWW
4
Absolute Maximum Ratings
Logic Supply Voltage, VLOGIC to GNDLOGIC   -0.3 V to 7.0 V
LED Supply Voltage, VLED to GNDLED   -0.3 V to 5.5 V
Input Voltage, Any Pin to GND   -0.3 V to VLOGIC +0.3 V
Free Air Operating Temperature Range TA[1]   -40°C to +85°C
Relative Humidity (noncondensing)  85%
Storage Temperature, TS   -55°C to 100°C
Soldering Temperature [1.59 mm (0.063 in.) Below Body] 
Solder Dipping  260°C for 5 secs 
Wave Soldering   250°C for 3 secs
ESD Protection @ 1.5 kΩ, 100 pF (each pin)   Class 1, 0-1999 V
TOTAL Package Power Dissipation at TA = 25°C[2]
4 Character   1.2 W 
8 Character   2.4 W 
16 Character   4.8 W
Note:
1. For operation in high ambient temperatures, see Appendix A, Thermal Considerations.
HCMS-297x
Recommended Operating Conditions Over Temperature Range (-40°C to +85°C)
Parameter Symbol Min. Typ. Max. Units
Logic Supply Voltage  VLOGIC 3.0  5.0  5.5  V
LED Supply Voltage  VLED 4.0  5.0  5.5  V
GNDLED to GNDLOGIC –  -0.3  0  +0.3  V
PIN FUNCTION
ASSIGNMENT TABLE
NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.
87654321
X Z
COO
PIN # 1 IDENTIFIER
INTENSITY CATEGORY
DATE CODE (YEAR, WEEK)
COLOR BIN
COUNTRY OF ORIGIN
PART NUMBER
5.31
(0.209)
6.22
(0.245) SYM.
0.51
(0.020)
TYP.
0.51 ± 0.13
(0.020 ± 0.005)
2.54 ± 0.13
(0.100 ± 0.005)
(NON ACCUM.)
TYP.
42.93 (1.690) MAX.
2.67 (0.105) SYM.
5.36 (0.211) TYP.
11.43 (0.450) MAX.
2.54 (0.100) TYP.
0.25
(0.010)
7.62
(0.300)
3.71
(0.146)TYP.
1.90
(0.075)SYM.
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
GND LED
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
DATA IN
RS
NO PIN
CLOCK
CE
BLANK
GND LOGIC
SEL
V LOGIC
NO PIN
RESET
OSC
DATA OUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
PIN # FUNCTION4.57
(0.180)TYP.
3
26
HCMS-297X
YYWW
5
Electrical Characteristics Over Operating Temperature Range (-40°C to +85°C)
TA = 25°C -40°C < TA < 85°C
VLOGIC = 5.0 V 3.0 V < VLOGIC < 5.5 V
Parameter Symbol Typ. Max. Min. Max. Units Test Conditions
Input Leakage Current  II µA  VIN = 0 V to VLOGIC
HCMS-290X/296X (4 char)  +7.5  -2.5  +50 
HCMS-291X/297X (8 char)  +15  -5.0  +100 
HCMS-292X (16 char)  +15  -5.0  +100
ILOGIC OPERATING  ILOGIC(OPT)  mA  VIN = VLOGIC
HCMS-290X/296X (4 char)  0.4  2.5  5 
HCMS-291X/297X (8 char)  0.8  5  10 
HCMS-292X (16 char)  0.8  5  10
ILOGIC SLEEP[1] ILOGIC(SLP)  µA  VIN = VLOGIC
HCMS-290X/296X (4 char)  5  15  25 
HCMS-291X/297X (8 char)  10  30  50 
HCMS-292X (16 char)  10  30  50
ILED BLANK  ILED(BL)  mA  BL = 0 V 
HMCS-290X/296X (4 char)  2.0  4  4.0 
HCMS-291X/297X (8 char)  4.0  8  8 
HCMS-292X (16 char)  4.0  8  8
ILED SLEEP[1] ILED(SLP)  µA 
HCMS-290X/296X (4 char)  1  3  50 
HCMS 291X/297X (8 char)  2  6  100 
HCMS-292X (16 char)  2  6  100
Peak Pixel Current[2] IPIXEL VLED = 5.5 V 
HCMS-29X5 (AlGaAs)  15.4  17.1  18.7  mA  All pixels ON, 
HCMS-29XX (Other Colors)  14.0  15.9  17.1  mA  Average value per 
pixel
HIGH Level Input Voltage  Vih 2.0  V  4.5 V < VLOGIC < 5.5 V
0.8 VLOGIC V  3.0 V < VLOGIC < 4.5 V
LOW Level Input Voltage  Vil 0.8  V  4.5 V < VLOGIC < 5.5 V
0.2 VLOGIC V  3.0 V < VLOGIC < 4.5 V
HIGH Level Output Voltage  Voh 2.0  V  VLOGIC = 4.5 V, 
Ioh = -40 µA
0.8 VLOGIC V  3.0 V < VLOGIC < 4.5 V
LOW Level Output Voltage  Vol 0.4  V  VLOGIC = 5.5 V, 
Iol = 1.6 mA[3]
0.2 VLOGIC V  3.0 V < VLOGIC < 4.5 V
Thermal Resistance  RqJ-P 70  °C/W  IC junction to pin
Notes:
1.  In SLEEP mode, the internal oscillator and reference current for LED drivers are o.
2.  Average peak pixel current is measured at the maximum drive current set by Control Register 0. Individual pixels may exceed this value.
3.  For the Oscillator Output, Iol = 40 µA.
6
Electrical Description
Pin Function Description
RESET (RST)  Sets Control Register bits to logic low. The Dot Register contents are unaected by 
the Reset pin. (logic low = reset; logic high = normal operation).
DATA IN (DIN)  Serial Data input for Dot or Control Register data. Data is entered on the rising edge 
of the Clock input.
DATA OUT (DOUT)  Serial Data output for Dot or Control Register  data. This pin is used for cascading 
multiple displays.
CLOCK (CLK)  Clock input for writing Dot or Control Register data. When Chip Enable is logic low, 
data is entered on the rising Clock edge.
REGISTER SELECT (RS)  Selects Dot Register (RS = logic low) or Control Register (RS = logic high) as the  des-
tination for serial data entry. The logic level of RS is latched on the falling edge of the 
Chip Enable input.
CHIP ENABLE (CE)  This input must be a logic low to write data to the display. When CE returns to logic 
high and CLK is logic low, data is latched to either the LED output drivers or a Control 
Register.
OSCILLATOR SELECT (SEL)  Selects either an internal or external display oscillator source. (logic low = External 
Display Oscillator; logic high = Internal Display Oscillator).
OSCILLATOR (OSC)  Output for the Internal Display Oscillator (SEL = logic high) or input for an External 
Display Oscillator (SEL = logic low).
BLANK (BL)  Blanks the display when logic high. May be modulated for brightness control.
GNDLED Ground for LED drivers.
GNDLOGIC Ground for logic.
VLED   Positive supply for LED drivers.
VLOGIC   Positive supply for logic.
Optical Characteristics at 25°C[1]
VLED = 5.0 V, 50% Peak Current, 100% Pulse Width
Peak Dominant
Luminous Intensity per LED[2] Wavelength Wavelength
Character Average (µcd) lPeak (nm) ld[3] (nm)
Display Color Part Number Min. Typ. Typ. Typ.
AlGaAs Red   HCMS-29X5  95  230  645  637
High Eciency Red  HCMS-29X2  29  64  635  626
Orange  HCMS-29X4  29  64  600  602
Yellow  HCMS-29X1  29  64  583  585
Green  HCMS-29X3  57  114  568  574
Notes:
1.  Refers to the initial case temperature of the device immediately prior to measurement.
2.  Measured with all LEDs illuminated.
3.  Dominant wavelength, ld, is derived from the CIE chromaticity diagram and represents the single wavelength which denes the perceived 
LED color. 
7
AC Timing Characteristics Over Temperature Range (-40°C to +85°C)
Timing
Diagram Ref. 4.5 V < VLOGIC <5.5 V VLOGIC = 3 V
Number Description Symbol Min. Max. Min. Max. Units
1  Register Select Setup Time to Chip Enable  trss 10  10  ns
2  Register Select Hold Time to Chip Enable  trsh 10  10  ns
3  Rising Clock Edge to Falling  tclkce 20  20  ns 
Chip Enable Edge
4  Chip Enable Setup Time to Rising Clock Edge  tces 35  55  ns
5  Chip Enable Hold Time to Rising Clock Edge  tceh 20  20  ns
6  Data Setup Time to Rising Clock Edge  tds 10  10  ns
7  Data Hold Time after Rising Clock Edge  tdh 10  10  ns
8  Rising Clock Edge to DOUT[1] tdout 10  40  10  65  ns
9  Propagation Delay DIN to DOUT   tdoutp 18  30  ns 
Simultaneous Mode for One IC[1,2]
10  CE Falling Edge to DOUTValid  tcedo 25  45  ns
11  Clock High Time  tclkh 80  100  ns
12  Clock Low Time  tclkl 80  100  ns
Reset Low Time  trstl 50  50  ns
Clock Frequency   Fcyc 5  4  MHz
Internal Display Oscillator Frequency  Finosc 80  210  80  210  KHz
Internal Refresh Frequency  Frf 150  410  150  400  Hz
External Display Oscillator  Frequency  Fexosc
Prescaler = 1  51.2  1000  51.2  1000  KHz
Prescaler = 8  410  8000  410  8000  KHz
Notes:
1. Timing specications increase 0.3 ns per pf of capacitive loading above 15 pF.
2. This parameter is valid for Simultaneous Mode data entry of the Control Register.
8
Display Overview
The HCMS-29xx series is a family of LED displays driven 
by on-board CMOS ICs. The LEDs are congured as 5 x 7 
font characters and are driven in groups of 4 characters 
per IC. Each IC consists of a 160-bit shift register (the Dot 
Register), two 7-bit Control Words, and refresh circuitry. 
The Dot Register contents are mapped on a one-to-one 
basis to the display. Thus, an individual Dot Register bit 
uniquely controls a  single  LED.
8-character displays have two ICs that are cascaded. The 
Data  Out  line  of  the  rst  IC  is  internally  connected  to 
the Data In line of the second IC forming a 320-bit Dot 
Register. The displays other control and power lines are 
connected directly to both ICs. In 16-character displays, 
each row functions as an independent 8-character display 
with its own 320-bit  Dot Register.
Reset
Reset  initializes  the  Control  Registers  (sets  all  Control 
Register bits to logic low) and places the display in the 
sleep mode. The Reset pin should be connected to the 
system power-on reset circuit. The Dot Registers are not 
cleared upon power-on or by Reset. After power-on, the 
Dot  Register  contents  are  random;  however,  Reset  will 
put  the  display  in  sleep  mode,  thereby  blanking  the 
LEDs.  The  Control  Register  and  the  Control  Words  are 
cleared to  all  zeros by Reset.
To  operate  the  display  after  being  Reset,  load  the  Dot 
Register with logic lows. Then load Control Word 0 with 
the desired brightness level and set the sleep mode bit 
to logic high.
Dot Register
The  Dot  Register  holds  the  pattern  to  be  displayed  by 
the LEDs. Data is loaded into the Dot Register according 
to the  procedure shown in Table 1 and the Write Cycle 
Timing Diagram.
First  RS  is  brought  low,  then  CE  is  brought  low.  Next, 
each  successive  rising  CLK  edge  will  shift  in  the  data 
at  the  DIN pin.  Loading  a  logic  high  will  turn  the  cor-
responding LED on; a logic low turns the LED o. When 
all 160 bits have been  loaded  (or  320  bits  in  an  8-digit 
display), CE  is  brought to logic high.
When  CLK  is  next  brought  to  logic  low,  new  data  is 
latched  into  the  display  dot  drivers.  Loading  data  into 
the Dot Register takes place while the previous data is 
displayed and eliminates the need to blank the display 
while loading data.
Pixel Map
In a 4-character display, the 160-bits are arranged as 20 
columns by 8 rows. This array can be conceptualized as 
four 5  x 8  dot  matrix  character locations, but  only 7  of 
the  8  rows  have  LEDs  (see  Figures  1  &  2). The  bottom 
row  (row  0)  is  not  used. Thus,  latch  location  0  is  never 
displayed. Column 0 controls the left-most column. Data 
from Dot Latch locations 0-7 determine whether or not 
pixels in Column 0 are turned-on or turned-o. Therefore, 
the  lower  left  pixel  is  turned-on  when  a  logic  high  is 
stored  in  Dot  Latch  location  1.  Characters  are  loaded 
in  serially,  with  the left-most character  being  loaded 
rst and  the right-most character being  loaded last. By 
loading  one  character  at  a  time  and  latching  the  data 
before loading the next character, the gures will appear 
to scroll from right to left.
Table 1. Register Truth Table
Function CLK CE RS
Select Dot Register  Not Rising  L
Load Dot Register 
  DIN = HIGH   LED = “ON” L  X 
  DIN = LOW    LED = “OFF”
Copy Data from Dot Register to Dot Latch  L  H  X
Select Control Register  Not Rising  H
Load Control Register[1,3] L  X
Latch Data toControl Word[2] L  X
Notes:
1.  BIT D0 of Control Word 1 must have been previously set to Low for serial mode or High for simultane-
ous mode.
2.  Selection of Control Word 1 or Control Word 0 is set by D7 of the Control Shift Register. The unselect-
ed control word retains its previous value.
3.  Control Word data is loaded Most Signicant Bit (D7) rst.
9
HCMS-29xx Write Cycle Diagram
NOTE:
1. DATA IS COPIED TO THE CONTROL REGISTER OR THE DOT LATCH AND LED OUTPUTS WHEN CE IS HIGH AND CLK IS LOW.
T
RSS RSH
T
T
CLKCE CES
T
CLKH
T
CLKL
T
CEH
T
DS
T
DH
T
CEDO
T
DOUT
T
DOUTP
T
PREVIOUS DATA NEW DATA
NEW DATA LATCHED HERE
[1]
CE
RS
CLK
D
IN
LED OUTPUTS,
CONTROL
REGISTERS
(SIMULTANEOUS)
OUT
D
D (SERIAL)
OUT
2
1
3 4
11 12
67
8
10
9
5
Control Word 0
Loading  the  Control  Register  with  D7 =  Logic  low  se-
lects Control Word 0 (see Table 2). Bits D0-D3adjust the 
display  brightness  by  pulse  width  modulating  the  LED 
on-time, while Bits  D4-D5 adjust  the  display  brightness 
by changing the peak pixel current. Bit D6 selects normal 
operation or  sleep  mode.
Sleep mode (Control Word 0, bit D6= Low) turns o the 
Internal Display Oscillator and the LED pixel drivers. This 
mode is used when the IC needs to be powered up, but 
does not need to be active. Current draw in sleep mode 
is nearly zero. Data in the Dot Register and Control Words 
are retained  during  sleep  mode.
Control Register
The Control Register allows software modication of the 
IC’s  operation  and  consists  of  two  independent  7-bit 
control words. Bit D7in the shift register selects one of 
the  two  7-bit  control  words.  Control Word  0  performs 
pulse  width  modulation  brightness  control,  peak  pixel 
current brightness control, and sleep mode. Control Word 
1 sets serial/simultaneous data out mode, and external 
oscillator  prescaler.  Each  function  is  independent  of 
the others. 
Control Register Data Loading
Data  is  loaded  into  the  Control  Register,  MSB  rst,  ac-
cording  to the procedure shown  in Table  1  and  the 
Write Cycle Timing Diagram. First, RS is brought to logic 
high  and  then  CE  is  brought  to  logic  low.  Next,  each 
successive rising  CLK edge will shift  in  the  data  on the 
DIN pin.  Finally,  when  8  bits  have  been  loaded,  the  CE 
line  is  brought  to  logic  high.  When  CLK  goes  to  logic 
low, new data is copied into the selected control word. 
Loading data into the Control Register takes place while 
the previous control word congures the display.
10
Figure 2.
Figure 1.
ROW 0
(NOT USED)
DATA TO
NEXT
CHARACTER
PIXEL
DATA FROM
PREVIOUS
CHARACTER
ROW 7
ROW 6
ROW 5
ROW 4
ROW 3
ROW 2
ROW 1
11
Control Word 1
Loading the Control Register with D7= logic high selects 
Control Word  1. This  Control Word  performs  two  func-
tions:  serial/simultaneous  data  out  mode  and  external 
oscillator prescale  select  (see Table  2).
Serial/Simultaneous Data Output D0
Bit D0of control word 1 is used to switch the  mode  of 
DOUT between serial and simultaneous data entry during 
Control Register writes. The default mode (logic  low) is 
the serial DOUTmode. In serial mode, DOUTis connected 
to the last bit (D7) of the Control  Shift Register.
Storing a logic high to bit D0changes DOUTto simulta-
neous mode which aects the Control Register only. In 
simultaneous mode, DOUTis logically connected to DIN. 
This arrangement allows multiple ICs to have their Control 
Registers written to simultaneously.  For example, for N 
ICs in the serial mode, N * 8 clock pulses are needed to 
load the same data in all Control Registers. In the simul-
taneous  mode,  N  ICs  only  need  8  clock  pulses  to  load 
the same data in all Control Registers. The propagation 
delay from  the  rst  IC  to the last is N * tDOUTP
.
External Oscillator Prescaler Bit D1
Bit D1of Control Word 1 is used to scale the frequency 
of  an  external  Display  Oscillator.  When  this  bit  is  logic 
low, the external Display Oscillator directly sets the inter-
nal display clock  rate. When this bit is a logic  high,  the 
external oscillator is divided by 8. This scaled frequency 
then  sets  the  internal  display  clock  rate.  It  takes  512 
cycles of  the  display  clock  (or  8  x  512  = 4096 cycles of 
an external clock with the divide by 8 prescaler) to com-
pletely refresh the display once. Using the prescaler bit 
allows  the  designer  to  use  a  higher  external  oscillator 
frequency without extra  circuitry.
This  bit  has  no  aect  on  the  internal  Display  Oscillator 
Frequency.
Bits D2-D6
These bits  must  always be programmed to  logic low.
Cascaded ICs
Figure  3  shows  how  two  ICs  are  connected  within  an 
HCMS-29XX display. The rst IC controls the four left-most 
characters and the second IC controls the four right-most 
characters. The Dot Registers are connected in series to 
form a 320-bit dot shift register. The location of  pixel 0 
has not changed. However, Dot Shift Register bit 0 of IC2 
becomes bit 160 of the 320-bit dot shift register.
The  Control  Registers  of  the  two  ICs  are  independent 
of  each  other.  This  means  that  to  adjust  the  display
brightness  the same  control  word must  be  entered 
into  both  ICs,  unless  the  Control  Registers  are  set  to 
simultaneous mode.
Longer character string systems can be built by cascad-
ing multiple  displays together. This is accomplished by 
creating  a  ve  line  bus.  This  bus  consists  of  CE,  RS,  BL, 
Reset,  and  CLK.  The  display  pins  are  connected  to  the 
corresponding bus line. Thus, all CE pins are connected to 
the CE bus line. Similarly, bus lines for RS, BL, Reset, and 
CLK are created. Then DIN is connected to the right-most 
display. DOUTfrom this display is connected to the next 
display.  The  left-most  display  receives  its  DIN from  the 
DOUTof the display to its right. DOUTfrom the left-most 
display is  not  used.
Each display may be set to use its internal oscillator, or 
the  displays  may  be  synchronized  by  setting  up  one 
display as the master and the others as slaves. The slaves 
are set to receive their oscillator input from the masters 
oscillator output.
12
Table 2. Control Shift Register
Bit D7On-Time Duty Relative
Set Low PWM Brightness Oscillator Factor Brightness
to Select Control Cycles (%) (%)
Control
Word 0 L L L L 0 0 0
L L L H 1 0.2 1.7
L L H L 2 0.4 3.3
L L H H 3 0.6 5.0
L H L L 4 0.8 6.7
L H L H 5 1.0 8.3
L H H L 7 1.4 11.7
L H H H 9 1.8 15
H L L L 11 2.1 18
H L L H 14 2.7 23
H L H L 18 3.5 30
H L H H 22 4.3 37
H H L L 28 5.5 47
H H L H 36 7.0 60
H H H L 48 9.4 80
H H H H 60 11.7 100
CONTROL WORD 0
L D6D5D4D3D2D1D0
Peak Current Typical Peak Relative Full
Brightness Pixel Current Scale Current
Control (mA) (Relative Brightness, %)
H L 4.0 31
L H 6.4 50
L L 9.3 73 (Default at Power Up)
H H 12.8 100
SLEEP MODE L DISABLES INTERNAL OSCILLATOR-DISPLAY BLANK
H NORMAL OPERATION
Serial/Simultaneous Data Out
L Dout holds contents of Bit D7
H Dout is functionally tied to Din
External Display Oscillator Prescaler
L Oscillator Freq 1
H Oscillator Freq 8
Bit D7
Set High
to Select
Control
Word 1
Reserved for Future
Use (Bits D2-D6
must be set Low)
CONTROL WORD 1
HLLLLLD1D0
13
Figure 3. Cascaded ICs.
CE
IC2
BITS 160-319
CHARACTERS 4-7
RS
BL
SEL
OSC
CLK
D
OUT
D
IN
IC1
BITS 0-159
CHARACTERS 0-3
D
IN
RS
BL
SEL
OSC
CLK
D
OUT
CE
RESET
RESET
RS
BL
SEL
OSC
CLK
D
OUT
CE
RESET
D
IN
14
Appendix A. Thermal Considerations
The display IC has a maximum junction temperature of 
150°C.  The  IC  junction  temperature  can  be  calculated 
with Equation 1  below.
A typical value for RqJAis 100°C/W. This value is typical 
for  a  display  mounted  in  a  socket  and  covered  with  a 
plastic lter. The socket is soldered to a .062 in. thick PCB 
with .020 inch wide, one  ounce  copper traces.
PDcan be calculated as  Equation  2  below.
Figure 4 shows how to derate the power of one IC versus 
ambient  temperature.  Operation  at  high  ambient  tem-
peratures may require the power per IC to be reduced. 
The  power  consumption  can  be  reduced  by  changing 
either the N, IPIXEL, Osc cyc or VLED. Changing VLOGIChas 
very  little  impact on the power consumption.
Appendix B. Electrical Considerations
Equation 1:
TJMAX = T
A + PD * RqJA
Where:
TJMAX = maximum IC junction temperature
TA= ambient temperature surrounding the display
RqJA= thermal resistance from the IC junction to ambient
PD= power dissipated by the IC
Equation 2:
PD = (N * IPIXEL * Duty Factor * V
LED) + ILOGIC * VLOGIC
Where:
PD= total power dissipation
N = number of pixels on (maximum 4 char * 5 * 7 = 140)  
IPIXEL= peak pixel current.
Duty Factor = 1/8 * Osccyc/64
Osc cyc = number of ON oscillator cycles per row
ILOGIC= IC logic current
V
LOGIC= logic supply voltage
Equation 3:
IPEAK = M * 20 * IPIXEL
Where:
IPEAK= maximum instantaneous peak current for the display
M = number of ICs in the system
20 = maximum number of LEDs on per IC
IPIXEL= peak current for one LED
Equation 4:
ILED(AVG) = N * IPIXEL * 1/8 * (oscillator cycles)/64
(see Variable Denitions above)
Figure 4.
P
D
MAX – MAXIMUM POWER
DISSIPATION PER IC – W
0
25
T
A
– AMBIENT TEMPERATURE – °C
0.7
0.6
0.5
0.4
0.3
0.2
0.1
60555045403530
0.8
0.9
1.0
1.1
1.2
8580757065 90
1.3
R = 100°C/W
J-A
θ
15
Current Calculations
The peak and average display current requirements have 
a  signicant  impact  on  power  supply  selection.  The 
maximum peak current is  calculated  with  Equation 3.
The  average  current  required  by  the  display  can  be 
calculated with  Equation  4.
The  power  supply  has  to  be  able  to  supply  IPEAK tran-
sients and supply ILED(AVG) continuously. The range on 
VLED allows  noise  on  this  supply  without  signicantly 
changing the display brightness.
VLOGIC and VLED Considerations
The  display  uses  two  independent  electrical  systems. 
One system is used to power the displays logic and the 
other  to  power  the  displays  LEDs. These  two  systems 
keep the logic supply clean.
Separate  electrical  systems  allow  the  voltage  applied 
to  VLED and  VLOGIC to  be  varied  independently.  Thus, 
VLED can  vary  from  0  to  5.5 V  without  aecting  either 
the  Dot  or  the  Control  Registers.  VLED can  be  varied 
between 4.0 to 5.5 V without any noticeable variation in 
light output. However, operating VLEDbelow 4.0 V may 
cause objectionable mismatch between the pixels and is 
not recommended. Dimming the display by pulse width 
modulating VLEDis  also  not  recommended.
VLOGIC can vary from 3.0 to 5.5 V without aecting either 
the displayed message or the display intensity. However, 
operation below 4.5 V will change the timing and logic 
levels and operation below 3 V may cause the Dot and 
Control Registers to be  altered.
The  logic  ground  is  internally  connected  to  the  LED 
ground  by  a  substrate  diode. This  diode  becomes  for-
ward biased and conducts when the logic ground is 0.4 
V  greater  than  the  LED  ground.  The  LED  ground  and 
the  logic  ground  should  be  connected  to  a  common 
ground which can withstand the current introduced by 
the switching LED  drivers. When separate ground con-
nections  are  used,  the  LED  ground  can  vary  from  -0.3 
V  to  +0.3 V  with  respect  to  the  logic  ground. Voltages 
below  -0.3 V  can  cause  all  the  dots  to  be  ON.  Voltage 
above +0.3 V can cause dimming and dot mismatch. The 
LED ground for the LED drivers can be routed separately 
from  the  logic  ground  until  an  appropriate  ground
plane  is  available.  On  long  interconnections  between 
the display and  the  host  system, voltage drops on  the 
analog  ground  can  be  kept  from  aecting  the  display 
logic levels by isolating the two grounds.
Electrostatic Discharge
The  inputs  to  the  ICs  are  protected  against  static  dis-
charge  and input  current latchup.  However, for  best 
results,  standard  CMOS  handling  precautions  should 
be  used.  Before  use,  the  HCMS-29XX  should  be  stored 
in  antistatic  tubes  or in  conductive  material. During 
assembly, a grounded conductive work area should be 
used  and  assembly  personnel  should  wear  conductive 
wrist straps. Lab coats made of synthetic material should 
be  avoided  since  they  are  prone  to  static  buildup.  In-
put  current  latchup  is  caused  when  the  CMOS  inputs 
are  subjected  to  either  a  voltage  below  ground  (VIN < 
ground) or to a voltage higher than VLOGIC (VIN > VLOGIC) 
and  when  a  high  current  is  forced  into  the  input.  To 
prevent input current latchup and ESD damage, unused 
inputs should be connected to either ground or VLOGIC. 
Voltages should not be applied to the inputs until VLOGIC
has been applied to the display.
Appendix C. Oscillator
The oscillator provides the internal refresh circuitry with 
a  signal  that  is  used  to  synchronize  the  columns  and 
rows. This ensures that the right data is in the dot driv-
ers for that row. This signal can be supplied from either 
an external source or  the  internal  source.
A display refresh rate of 100 Hz or faster ensures 
icker-free  operation.  Thus  for  an  external  oscillator 
the  frequency  should  be  greater  than  or  equal  to  512 
x  100  Hz  =  51.2  kHz.  Operation  above  1  MHz  without 
the  prescaler  or  8  MHz  with  the  prescaler  may  cause 
noticeable pixel to pixel mismatch.
Appendix D. Refresh Circuitry
This  display  driver  consists  of  20  one-of-eight  column 
decoders and 20 constant current sources, 1 one-of-eight 
row decoder and eight row sinks, a pulse width modula-
tion control block, a peak current control block, and the 
circuit to refresh the LEDs. The refresh counters and oscil-
lator are  used  to synchronize the  columns  and  rows.
The 160 bits are organized as 20 columns by 8 rows. The 
IC illuminates the display by sequentially turning ON each 
of  the  8  row-drivers. To  refresh  the  display  once  takes 
512 oscillator  cycles. Because there are eight  row driv-
ers, each row driver is selected for 64 (512/8) oscillator 
cycles. Four cycles are used to briey blank the display 
before the following row is switched on. Thus, each row 
is  ON  for  60  oscillator  cycles  out  of  a  possible  64. This 
corresponds to  the  maximum  LED  on  time.
Appendix E. Display Brightness
Two  ways  have  been  shown  to  control  the  brightness 
of this LED display: setting the peak current and setting 
the  duty  factor.  Both  values  are  set  in  Control Word  0. 
To compute the resulting display brightness when both 
PWM  and  peak  current  control  are  used,  simply  multi-
ply  the  two  relative  brightness  factors.  For  example,  if 
Control  Register  0  holds  the  word  1001101,  the  peak 
current is 73% of  full scale (BIT D5= L, BIT D4= L) and 
the  PWM  is  set  to  60%  duty  factor  (BIT  D3 =  H,  BIT  D2
= H, BIT D1= L, BIT D0= H). The resulting brightness is 
44% (.73 x .60 = .44) of full scale. 
The temperature of  the  display will also aect  the LED 
brightness as shown in  Figure 5.
Appendix F. Reference Material
Application Note  1027:  Soldering LED Components
Application Note 1015: Contrast Enhancement Techniques
for LED Displays
Figure 5.
RELATIVE LUMINOUS INTENSITY
(NORMALIZED TO 1 AT 25°C)
YELLOW
HER/ORANGE
0.2
-55
T
A
– AMBIENT TEMPERATURE – °C
3.0
2.6
2.2
1.8
1.4
1.0
0.6
856545255-15-35
GREEN
AlGaAs
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-3181EN
AV02-0699EN - September 18, 2007