(3) MOTOROLA Rail-to-Rail Operational Amplifiers The MC33201/2/4 family of operational amplifiers provide railtorail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (+ 0.9 V) yet can operate with a supply of up to +12V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications. Low Voltage, Single Supply Operation {+1.8 V and Ground to +12 V and Ground) input Voltage Range Includes both Supply Rails Output Voltage Swings within 50 mV of both Rails No Phase Reversal on the Output for Overdriven Input Signals High Output Current (Ig = 80 mA, Typ) Low Supply Current (Ip = 0.9 mA, Typ) 600 Q Output Drive Capability Extended Operating Temperature Ranges {(-40 to +105C and S5 to +125C) @ Typical Gain Bandwidth Product = 2.2 MHz Offered in New TSSOP Package Including Standard SOIC and DIP Packages ORDERING INFORMATION Operating Operational Temperature Amplifier Function Device Range Package MG33201D sO-8 Ta= 40 to +405C MC33201P Plastic DIP Single MC33201VD Ta =-55 to SO-8 MC33201VP +125C Plastic DIP MC33202D SO-8 Ta=40 to +105C MC33202P Plastic DIP Dual McC33202VD Ta =-55to $0-8 MC33202VP +125C Plastic DIP MC33204D S0-14 MC33204DTB-| Ta=-40to +105C | TSSOP14 MC33204P Ptastic DIP Quad MC33204VD 80-14 Ta =55 to MC33204VDTB #125C TSSOP-14 MC33204VP Plastic DIP 2-218 M@ 6367253 0100528 740 MC33201 MC33202 MC33204 LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS P SUFFIX PLASTIC PACKAGE CASE 626 (Single, Top View) La Output 1 (1 | le | Vcc & 1 E> Output 2 psurrix "Pus! e re] PLASTIC PACKAGE te | Output [7 | 18 | Outputs (Quad, Top View) MOTOROLA ANALOG IC DEVICE DATAMC33201 MC33202 MC33204 DC ELECTRICAL CHARACTERISTICS (Ta = 25C) Characteristic Vec=2.0V Veo =33V Voc =5.0V Unit Input Offset Voltage mV Vio (max) MC33201 +8.0 +6.0 +60 MC33202 +10 +10 +8.0 MC33204 +1 +10 Output Valtage Swing Vou (Rr = 10 k&) 1.9 3.15 4.85 Vin Vac (Ri = 10 kQ) 0.10 0.15 0.15 Vmax Power Supply Current mA per Amplifier (Ip) 1.125 1.125 1.125 Specitications at Voc = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. Veg = Gnd. MAXIMUM RATINGS Rating Symbol Value Unit Supply Voltage (Voc to VEE) Vs +13 Vv Input Differential Voltage Range VIDR (Note 1) Vv Common Made Input Voltage Range (Note 2) Vom Vec + 0.5 V to Vv VEE -O0.5V Output Short Circuit Duration ts (Note 3) sec Maximum Junction Temperature Ty +150 0) Storage Temperature Tstg 65 to +150 C Maximum Power Dissipation Po (Note 3) mw NOTES: 1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins. 2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rait by more than 500 mV. 3. Power dissipation must be considered to ensure maximum junction temperature (Ty) is nat exceeded. (See Figure 2} DC ELECTRICAL CHARACTERISTICS (Vcc = + 5.0 V, Vee = Ground, Ta = 25C, unless otherwise noted.) Characteristic Figure Symbol Min Typ Max Unit Input Offset Voltage (Von 0 V to 0.5 V, Voy 1.0 V to 5.0 V) 3 Ivio | mv MC33201: Ta = + 25C - - 6.0 Ta = 40 to +105C - - 9.0 Ta = 5 to +125C - - 13 MC33202: Ta = + 25C - - 8.0 Ta = 40 to +105C - - 14 Ta = 55 to +125C - - 14 MC33204: Ta = + 25C ~ - 10 Ta = 40 to +105C - - 13 Ta = 55 to +125C - - 17 Input Offset Voltage Temperature Coefficient (Rg = 50 Q) 4 AVIO/AT LVS Ta = 40 to +105C - 2.0 - Ta = 55 to +125C - 2.0 - input Bias Current (Vojy = 0 V to 0.5 V, Very = 1.0 V to 5.0 V) 5,6 lhe | nA Ta = + 25C ~ 80 200 Ta = 40 to +105C - 100 250 Ta = 55 to +125C - - 500 Input Offset Current (VoM = 0 V to 0.5 V, Voy = 1.0 V to 5.0 V) - Itio| nA Ta = + 25C ~ 5.0 50 Ta = 40 to +105C - 10 100 Ta = 55 to +125C - ~ 200 Common Mode Input Voltage Range - VICR VEE - Voc Vv MOTOROLA ANALOG IC DEVICE DATA ME 6367253 0100529 687 2-219MC33201 MC33202 MC33204 DC ELECTRICAL CHARACTERISTICS (continued) (Vcc = + 5.0 V, Veg = Ground, Ta = 25C, unless otherwise noted.) Characteristic Figure Symbol Min Typ Max Unit Large Signal Voltage Gain (Vcc = + 5.0 V, Vee =5.0 ) 7 AVOL kViV RL = 10 kQ 50 300 - Ry = 600 Q 25 250 - Output Voltage Swing (Vip = + 0.2 V} 8,9, 10 Vv RL = 10 kQ VOH 4.85 4.95 - RL = 10 kQ VOL - 0.05 0.15 Ry = 600 2 VOH 4.75 4.85 - Rl = 600 Q VOL - 0.15 0.25 Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR 60 90 - dB Power Supply Rejaction Ratio 12 PSRR pVviVv Voc/Ver = 5.0 V/Gnd to 3.0 V/Gnd 500 25 - Output Short Circuit Current (Source and Sink) 13, 14 Isc 50 80 - mA Power Supply Current per Amplifier (Vo = 0 V) 15 Ip mA Ta = 40 to +105C - 0.9 1.125, Ta = 55 to +425C - 0.9 1,125 AC ELECTRICAL CHARACTERISTICS (Voc =+ 5.0 V, Vee = Ground, Ta = 25C, unless otherwise noted.) Characteristic Figure Symbo! Min Typ Max Unit Slew Rate 16, 26 SR Vins (Vg =+2.5V, Vg=~2.0V to+2.0V, RL = 2.0 kQ, Ay = +1.0) 0.5 1.0 - Gain Bandwidth Product (f = 100 kHz) 17 GBwW - 2.2 - MHz Gain Margin (RL = 600 Q, CL = 0 pF) 20, 21, 22 AM - 12 - dB Phase Margin (RL = 600 2, CL = 0 pF) 20, 21, 22 OM - 65 - Deg Channel Separation (f = 1.0 Hz to 20 kHz, Ay = 100) 23 cs - 90 - dB Power Bandwidth (VQ = 4.0 Vpp, AL = 600 , THD < 1 %) BWp - 28 - kHz Total Harmonic Distortion (RL_ = 600 , Vo = 1.0 Vpp, Ay = 1.0) 24 THD % f= 1.0 kHz - 0.002 - f = 10 kHz ~ 0.008 - Open Loop Output Impedance IZo | Q (Vo =0V, f =2.0 MHz, Ay = 10) - 100 - Differential Input Resistance (Vcpy = 0 V) Rin - 200 - kQ Differential Input Capacitance (Voy = 0 V) . Cin - 8.0 - pF Equivalent Input Noise Voltage (Rg = 100 Q) 25 en nv/ f=10Hz - 25 - YHz f= 1.0 kHz - 20 - He Equivalent Input Noise Current 25 in pA/ f=10Hz - 0.8 - THe f= 1.0 kHz - 0.2 - z Mi 6367253 0100530 375 2-220 MOTOROLA ANALOG IC DEVICE DATAMC33201 MC33202 MC33204 Figure 1. Circuit Schematic (Each Amplifier) ee yee oe Po + A KR N K Vee @ G Vout t|{f O Voc = | et L Y ia he ops $ VEE This device contains 70 active transistors (each amplifier). MB 6367253 0100531 235 MOTOROLA ANALOG IC DEVICE DATA 2-221MC33201 MC33202 MC33204 Figure 2. Maximum Power Dissipation _ versus Temperature = 2500 J | z 2 8 and 14 Pin DIP Pkg < i & 2000 8 a TSSOP-14 Pkg & 1500 = $0-14 Pkg & = 1000 = <| x $0-8Pkg ~-,] 2 = 00 = o 2 ao =55 -40 -25 0 25 50 85 125 Ta, AMBIENT TEMPERATURE (C) Figure 4. Input Offset Voltage Temperature Coefficient Distribution 50 7 7 T ~ 360 amplifiers tested from se 3 (MC33204) wafer lots 2 40 Voc =+5.0V wu Veg = Gnd + Ta = 25C = 4 DIP Package << iv a 20 oS =< = a & 10 oi a =| | at 0 ~50 -40 -30 -20 -10 0 10 20 30 40 50 TCViy INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (uV/C) Figure 6. input Bias Current versus Common Mode Voltage 150 & & 50 lu & 0 > oO @ -50 a 5 ~100 S =_ 7150 Voo=12V 2 Vee = Gnd ~ 200 Tax 25C - 250 0 2.0 4.0 6.0 8.0 10 12 Vom. (NPUT COMMON MODE VOLTAGE (V) MH 6367253 010053e 2-222 Figure 3. Input Offset Voltage Distribution 40 360 amplifiers tested 35 3 (MC33204) wafer lots Voc =+5.0V 30 Vee = Gnd 96 Ta = 26C DIP Package 20 15 10 5.0 PERCENTAGE OF AMPLIFIERS (%) 0 -10 -80 -60 -40 -20 0 20 40 60 80 10 Vio. INPUT OFFSET VOLTAGE (mV) Figure 5. Input Bias Current versus Temperature 200 _ Voc =+5.0V < VEE = Gnd E 160 = lu 2 120 & =O0VIc0.5V = a i 80 S Vom> 1.0V a 40 0 -55 -40 -25 0 25 70 85 125 Ta, AMBIENT TEMPERATURE (C) Figure 7. Open Loop Voltage Gain versus Temperature = 300 =z = 260 =< a o . poe! c _ e220 S a 5 180 i Voc =+5.0 3 tap VEE = Gnd ar Ry, = 6002 2 AV = 0.5 V to4.5V * 400 || | +65 -40 -25 0 25 70 85 105) 125 | Ta, AMBIENT TEMPERATURE (C) | 17] = MOTOROLA ANALOG IC DEVICE DATA |Vo, OUTPUT VOLTAGE (Vpp) Vo, OUTPUT VOLTAGE (Vpp) PSR, POWER SUPPLY REJECTION (dB) MC33201 MC33202 MC33204 Figure 8. Output Voltage Swing versus Supply Voltage 12 T Ay = 600 2 A io TA=28C P 8.0 a a | ks 4 20 0 +10 +20 +30 +40 +5.0 +60 Voc. [Vee | SUPPLY VOLTAGE (V) Figure 10. Output Voltage versus Frequency 12 9.0 N 6.0 Voo=+6.0V \ | VEE=-6.0V 3.0 RL =600 2 Ay =+1.0 \ Ty = 25C NJ 0 LL oh 1.0k 10k 100k {, FREQUENCY (Hz) Figure 12. Power Supply Rejection versus Frequency 120 100 80 60 40 20 9 Voc=+6.0V VEE =~6.0V Ta = 55 to +125C 10 100 1.0k 10k {, FREQUENCY (Hz) 100 k 1.0M MOTOROLA ANALOG IC DEVICE DATA Vea: OUTPUT SATURATION VOLTAGE (V) CMR, COMMON MODE REJECTION (dB} | sc], OUTPUT SHORT CIRCUIT CURRENT (mA) 100 80 60 40 20 2 Figure 9, Output Saturation Voltage versus Load Current TTT J = Or Ta = 125C Vee-02V Veco -0.4V Veg +O4V Vege + 0.2V VEE 0 5.0 10 15 20 \_, LOAD CURRENT (mA) Figure 11. Common Mode Rejection versus Frequency Pad | hh Na ny hl Voc =+6.0V Ms L VeE=-6.0V Ta = - 55 to 4125C q IMM EU in 10 100 1.0k 10k 100k 10M f, FREQUENCY (Hz) Figure 13. Output Short Circuit Current versus Output Voltage Source 0 1.0 2.0 | Vout |, QUTPUT VOLTAGE (V) 3.0 4.0 ME 6367253 0100533 006 a Voc =+6.0 Vee =-6.0V Ta = 25C 5.0 6.0 2-223MC33201 MC33202 MC33204 Figure 14. Output Short Circuit Current versus Temperature on oa Voc =+5.0V = Mm a _ Qo oS a a rn on 0 |! gg] OUTPUT SHORT CIRCUIT CURRENT (mA} ot -55 - 40 -25 0 25 70 85 =6105 = 125 Ta, AMBIENT TEMPERATURE (C) Figure 16. Slew Rate versus Temperature 2.0 T T Voo=+25V Vep=-2.5V Vo=t2.0V els a = wl +Slew Rate | = 10 ana ee & Laem Lee Slew Rate 7) a 05 Le wm ae 0 -55 -40 -25 0 25 70 85 105 = 125 Tg, AMBIENT TEMPERATURE (C) Figure 18. Voltage Gain and Phase versus Frequency 70 40 a Vg=+6.0V z= Ta = 25C _ = 50 AL = 600.2 80 if w c 3 o = 30 1208 > 2 x 8 10 160 = ai 1A- Phase, CL = 0 pF is S _49 L_ 18 - Gain, C= 0 pF 200 % a 2A - Phase, C_ = 300 pF s < 2B - Gain, CL = 300 pF a) 240 10k 100k 1.0M 10M {, FREQUENCY (Hz) MB 6367253 0100534 2-224 GBW, GAIN BANDWIDTH PRODUCT (MHz) loc: SUPPLY CURRENT PER AMPLIFIER (mA) Avon OPEN LOOP VOLTAGE GAIN (dB) Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load 2.0 16 Ta = 125C 1.2 Ta = 0.8 0.4 0 +0 +1.0 +20 +30 +40 +5.0 +6.0 Voc, [Vee |, SUPPLY VOLTAGE (V) Figure 17. Gain Bandwidth Product versus Temperature 4.0 Voc =+2.6V Veg =-25V f= 100 kHz 3.0 2.0 1.0 0 -55 -40 - 25 0 25 70 85 105 125 Ta, AMBIENT TEMPERATURE (C) Figure 19. Voltage Gain and Phase versus Frequency 70 40 Ta = 25C 50 Ri = 600 O 80 30 120 10 160 1A Phase, Vg =+6.0V -10 1B Gain, Vg = 6.0V 200 2A Phase, Vg = + 1.0V 2B - Gain, Vg = + 1.0V -3 240 10k 100 k 1.0M 10M f, FREQUENCY (Hz) THY i @, EXCESS PHASE (DEGREES) MOTOROLA ANALOG IC DEVICE DATAMC33201 MC33202 MC33204 Figure 20. Gain and Phase Margin versus Temperature Phase Margin Voc =+6.0V Vee =-6.0V RL = 600 Q y PHASE MARGIN (DEGREES) Gain Margin -55 -40 -25 0 25 70 85 = 105 Tg, AMBIENT TEMPERATURE (C) Figure 22. Gain and Phase Margin versus Capacitive Load a Oo Voc =+6.0V Vee =-6.0V Phase Ry, = 600.0 o x o 3 Ay=100 Gain Margin Ta = 25C oa oOo Oy: PHASE MARGIN (DEGREES) oa 8 8 B&B 10 100 CL, CAPACITIVE LOAD (pF} Figure 24. Total Harmonic Distortion versus Frequency 10 Voc =+5.0V Vee=-5.0V Ta = 26C Ri = 600Q Vo =2.0V, = 1000 04 =1 THD, TOTAL HARMONIC DISTORTION (%) 0.001 10 100 1.0k 10k {, FREQUENCY (Hz} MOTOROLA ANALOG IC DEVICE DATA Figure 21. Gain and Phase Margin versus Differential Source Resistance 70 1 1 17 T 5 Phase Margin 60 n a id 60 Ps 60 80 & 5 IN a z= 2 gl Vec=+6.0V N = = 45 45 2 0 z VER =-6.0V N o =< & A= 25C N = = < mM 30 i = Zz = Ww 30 = = z 20 oo Pt & a = 10 < = 15 Gain Margin 4 6 < 0 0 LH 0 125 10 100 1.0k 10k 100 k Ry, DIFFERENTIAL SOURCE RESISTANCE (Q) Figure 23. Channel Separation versus Frequency 16 150 4 = Ay = 100 12 120 + pn & 6 ra 10 Z gp go -_ aoe & TT = i Ay =10 PL 2 od 6 6.0 s wy & = Veo =+6.0V 40 2 5 go | VEE=-6.0V ; Vo = 8.0V, a 0 20 & | taeasec? 0 | 4 1.0k 100 1.0k 10k f, FREQUENCY (Hz) Figure 25. Equivatent input Noise Voltage H and Current versus Frequency = = Voc =+6.0V Zz oa VEE =- 6.0 V 5 << = DRO & Ty = 25C @ S g tu oO 2 % 2 3 Ee = z a z & ir. 2 # = 5 3 Noise Current a w o 100k a 10 100 1.0k 10k 100k = f, FREQUENCY (Hz) M 6367253 0100535 4380 2-225MC33201 MC33202 MC33204 General Information The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground. Since the common mode input voltage range extends fram Vac to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings. Figure 26. Noninverting Amplifier Slew Rate Vo: OUTPUT VOLTAGE (2.0 mV/DIV) {, TIME (5.0 ps/DIV) Circuit Information Rail-torail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than Veg, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Crosscoupling techniques have been used to keep this change to a minimum. In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 Q loads. Because of this high output current capability, care should be taken not to exceed the 150C maximum junction temperature. Figure 27. Smali Signal Transient Response Voc = + 6.0 Vee =-6.0V R_ = 600 Q CL= 100 pF Ta = 25C Yo: OUTPUT VOLTAGE (50 mV/DIV) 1, TIME (10 ps/DIV) Figure 28. Large Signal Transient Response V.., OUTPUT VOLTAGE (2.0 V/DIV) t, TIME (10 us/DIV) MM 6367e53 0100536 417 2-226 MOTOROLA ANALOG IC DEVICE DATA a