For pricing delivery, and ordering information please contact Maxim Direct! at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
________________General Description
The MAX4581/MAX4582/MAX4583 are low-voltage,
CMOS analog ICs configured as an 8-channel multiplexer
(MAX4581), two 4-channel multiplexers (MAX4582), and
three single-pole/double-throw (SPDT) switches
(MAX4583).
These CMOS devices can operate continuously with
±2V to ±6V dual power supplies or a +2V to +12V sin-
gle supply. Each switch can handle rail-to-rail analog
signals. The off-leakage current is only 1nA at +25°C or
5nA at +85°C.
All digital inputs have 0.8V to 2.4V logic thresholds,
ensuring TTL/CMOS-logic compatibility when using a
single +5V or dual ±5V supplies.
________________________Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
Automotive
____________________________Features
oMAX4582 Available in AEC-Q100 Qualified
Version
oOffered in Automotive Temperature Range
(-40°C to +125°C)
oGuaranteed On-Resistance
80Ω with ±5V Supplies
150with Single +5V Supply
oGuaranteed On-Resistance Match Between
Channels
oGuaranteed Low Off-Leakage Current
1nA at +25°C
oGuaranteed Low On-Leakage Current
1nA at +25°C
o+2V to +12V Single-Supply Operation
±2V to ±6V Dual-Supply Operation
oTTL/CMOS-Logic Compatible
oLow Distortion: < 0.02% (600Ω)
oLow Crosstalk: < -96dB (50Ω, MAX4582)
oHigh Off-Isolation: < -74dB (50Ω)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
________________________________________________________________
Maxim Integrated Products
1
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
VCC
X2
X1
X0
X3
A
B
C
X4
X6
X
X7
X5
ENABLE
VEE
GND
TOP VIEW
MAX4581
PDIP/SO/QSOP/TSSOP
LOGIC
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
VCC
Y
X
X1
X0
A
B
C
Y1
Y0
Z1
Z
Z0
ENABLE
VEE
GND
MAX4583
PDIP/SO/QSOP/TSSOP
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
VCC
X2
X1
X
X0
X3
A
B
Y0
Y2
Y
Y3
Y1
ENABLE
VEE
GND
MAX4582
PDIP/SO/QSOP/TSSOP
LOGIC
++ +
____________________________________Pin Configurations/Functional Diagrams
19-1328; Rev 6; 3/12
Ordering Information continued at end of data sheet.
PART TEMP RANGE PIN-
PACKAGE
TOP
MARK
MAX4581CPE+ 0°C to +70°C 16 PDIP
MAX4581CSE+ 0°C to +70°C 16 Narrow SO
MAX4581CUE+ 0°C to +70°C 16 TSSOP
Ordering Information
Pin Configurations continued at end of data sheet.
+
Denotes a lead(Pb)-free/RoHS-compliant package.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—Dual Supplies
(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA= TMIN to TMAX, unless otherwise noted. Typical values are at
TA= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Voltages Referenced to VEE
VCC.........................................................................-0.3V to 13V
Voltage into Any Terminal (Note 1) ...(VEE - 0.3V) to (VCC + 0.3V)
Continuous Current into Any Terminal..............................±20mA
Peak Current, X_, Y_, Z_
(pulsed at 1ms, 10% duty cycle) ...................................±40mA
ESD per Method 3015.7 ..................................................>2000V
Continuous Power Dissipation (TA= +70°C)
16-Pin PDIP (derate 10.53mW/°C above +70°C).............842mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) .....696mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)...............667mW
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .............755mW
16-Pin TQFN (derate 14.7mW/°C above +70°C) ...........1177mW
Operating Temperature Ranges
MAX458_C_ .........................................................0°C to +70°C
MAX458_E_ ......................................................-40°C to +85°C
MAX458_A_.....................................................-40°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
+25°C
VC, E, AVX, VY, VZ
Analog-Signal Range
C, E, A
RON
Switch On-Resistance VCC = 4.5V; VEE = -4.5V;
IX, IY, IZ = 1mA; VX, VY, VZ= 3.5V
VCC = 4.5V; VEE = -4.5V;
IX, IY, IZ= 1mA; VX, VY, VZ= 3.5V
+25°C
C, E, A
RON
Switch On-Resistance
Match Between
Channels (Note 3)
VCC = 5.5V; VEE = -5.5V;
VX_, VY_, VZ_ = ±4.5V;
VX, VY, VZ= 4.5V
MAX4581
nA
IX(OFF),
IY(OFF),
IZ(OFF)
X, Y, Z Off-Leakage
(Note 5) MAX4582
MAX4583
+25°C
VCC = 5V; VEE = -5V; IX, IY, IZ= 1mA;
VX, VY, VZ= 3V, 0V, -3V
+25°C
RFLAT(ON)
Switch On-Resistance
Flatness (Note 4)
+25°C
Note 1: Voltages exceeding VCC or VEE on any signal terminal are clamped by internal diodes. Limit forward-diode current to maxi-
mum current rating.
14
6
50 80
VEE VCC
-1 +1
100
410
-2 +2
C, E, A -10 +10
-1 +1
VCC = 5.5V; VEE = -5.5V;
VX_, VY_, VZ_ = ±4.5V; VX, VY, VZ= 4.5V nA
+25°C
IX_(OFF),
IY_(OFF),
IZ_(OFF)
X_, Y_, Z_ Off-Leakage
(Note 5)
CONDITIONS MIN TYP MAX
(Note 2) UNITSTEMPSYMBOLPARAMETER
C, E, A -100 +100
C, E, A -50 +50
C, E, A
-1 +1
-2 +2
C, E, A -100 +100
-50 +50
VCC = 5.5V; VEE = -5.5V;
VX, VY, VZ= ±4.5V
MAX4581
nA
IX(ON),
IY(ON),
IZ(ON)
X, Y, Z On-Leakage
(Note 5) MAX4582
MAX4583
+25°C
+25°C
C, E, A 12
±
±
C, E, A 1.5 2.4 V
VAH, VBH,
VCH
Logic Input Logic
Threshold High
V
VAL, VBL,
VCL C, E, A 0.8 1.5
Logic Input Logic
Threshold Low
ANALOG SWITCH
DIGITAL I/O
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA= TMIN to TMAX, unless otherwise noted. Typical values are at
TA= +25°C.)
C, E, A 200
TA= +25°C
Address Transition Time tTRANS ns
VX_, VY_, VZ_ = ±3V; RL= 300; CL= 35pF;
Figure 2
90 200
C, E, A 150
TA= +25°C
Inhibit Turn-Off Time t(OFF) ns
VX_, VY_, VZ_ = 3V; RL= 300; CL= 35pF;
Figure 3
40 100
C, E, A -10 +10
C, E, A
TA= +25°C
200
TA= +25°C
Inhibit Turn-On Time t(ON) ns
VX_, VY_, VZ_ = 3V; RL= 300; CL= 35pF;
Figure 3
100 200
Power-Supply Current ICC, IEE µA
VCC = 5.5V, VEE = -5.5V,
VA, VB, VC, VEnable = V+ or 0V
-1 +1
PARAMETER SYMBOL TEMP UNITS
MIN TYP MAX
(Note 2)
CONDITIONS
TA= +25°CBreak-Before-Make Time
tBBM ns
VX_, VY_, VZ_ = 3V; RL= 300; CL= 35pF;
Figure 4 420
Charge Injection (Note 6)
QpC
TA= +25°C
C = 1nF, RS = 0, VS= 0V 0.5 5
pF
Output Off-Capacitance
CX(OFF),
CY(OFF),
CZ(OFF)
TA= +25°C
VX_, VY_, VZ_ = 0V; f = 1MHz;
Figure 7
18
pF
Output On-Capacitance
CX(ON),
CY(ON),
CZ(ON)
TA= +25°C
VX_, VY_, VZ_ = 0V; f = 1MHz;
Figure 7
25
MAX4581
MAX4581
dB
Off-Isolation
VISO
TA= +25°C
-74
10MAX4582
6MAX4583
17
12.5MAX4583
MAX4582
pF
Channel-to-Channel
Crosstalk
VCT
TA= +25°C
RL= 50, f = 1MHz, Figure 6 -96
MAX4582 dB
TA= +25°C
-78MAX4581
TA= +25°C
MAX4583
RL= 50, f = 1MHz, Figure 6
%
Total Harmonic
Distortion
THD
TA= +25°C
RL= 600, 5Vp-p, f = 20Hz to 20kHz 0.02
-73
VPower-Supply Range VCC, VEE C, E, A ±2 ±6
C, E, AInput-Current High IAH, IBH,
ICH µAVA, VB, VC= 2.4V -1 +1
C, E, AInput-Current Low IAL, IBL,
ICL µAVA, VB, VC= 0.8V -1 +1
Input Off-Capacitance
CX_(OFF),
CY_(OFF),
CZ_(OFF)
pF
TA= +25°C
VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 4
POWER SUPPLY
SWITCH DYNAMIC CHARACTERISTICS
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS—Single +5V Supply
(VCC = 4.5V to 5.5V, VEE = 0V, V_H = 2.4V, V_L = 0.8V, TA= TMIN to TMAX, unless otherwise noted. Typical values are at TA= +25°C.)
CONDITIONS MIN TYP MAX
(Note 2) UNITS
C, E, A 200
90 150
VCC = 4.5V; IX, IY, IZ= 1mA;
VX, VY, VZ= 3.5V
C, E, A
TEMPSYMBOL
TA= +25°C
RON
VEE VCC
PARAMETER
Switch On-Resistance
-1 +1
V
VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V;
VX, VY, VZ= 4.5V, 1V nA
TA= +25°C
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VX_, VY_, VZ_,
VX, VY, VZ
Analog-Signal Range
X_, Y_, Z Off-Leakage
(Note 5)
-2 +2
28
VCC = 5.5V;
VX_, VY_, VZ_ = 1V, 4.5V;
VX, VY, VZ= 4.5V, 1V
MAX4581
nA
IX(OFF),
IY(OFF),
IZ(OFF)
X, Y, Z Off-Leakage
(Note 5)
VCC = 4.5V; IX, IY, IZ= 1mA;
VX, VY, VZ= 3.5V
TA= +25°C
TA= +25°C
RON
Switch On-Resistance
Match Between
Channels (Note 3) 10C, E, A
-100 +100C, E, A
C, E, A -10 +10
-1 +1
TA= +25°C
-50 +50C, E, A
-1 +1
TA= +25°C
-50 +50C, E, A
-2 +2
VCC = 5.5V;
VX, VY, VZ= 4.5V, 1V
MAX4581
nA
IX(ON),
IY(ON),
IZ(ON)
X, Y, Z On-Leakage
(Note 5)
TA= +25°C
-100 +100C, E, A
-1 +1VAL, VBL, VCL, VEnableL = 0.8V µA
IAL, IBL, ICL,
IENABLEL
Input-Current Low C, E, A
0.8 1.5 V
VAL, VBL, VCL,
VENABLEL
Logic Input Logic
Threshold Low C, E, A
1.5 2.4 V
VAH, VBH, VCH,
VENABLEH
Logic Input Logic
Threshold High C, E, A
-1 +1VAL, VBL, VCL, VEnableL = 2.4V µA
IAH, IBH, ICH,
IENABLEH
Input-Current High C, E, A
100 200
VX_, VY_, VZ_ = 3V, RL= 300, CL= 35pF,
Figure 3 nst(ON)
Enable Turn-On Time TA= +25°C
250C, E, A
10 30
VX_, VY_, VZ_ = 3V, RL= 300, CL= 35pF,
Figure 4 nstBBM
Break-Before-Make
Time TA= +25°C
0.8 5C = 1nF, RS= 0, VS= 2.5V pCQ
Charge Injection (Note 6)
TA= +25°C
40 100
VX_, VY_, VZ_ = 3V, RL= 300, CL= 35pF,
Figure 3 nst(OFF)
Enable Turn-Off Time TA= +25°C
150C, E, A
80 200
VX_, VY_, VZ_ = 3V/0V, RL= 300,
CL= 35pF, Figure 2 nstTRANS
Address Transition
Time
TA= +25°C
250C, E, A
Power-Supply Range VCC, VEE V212C, E, A
Power-Supply Current ICC, IEE µA
-1 +1
TA= +25°C
VCC = 3.6V;
VA, VB, VC, VEnable = V+ or 0V -10 +10C, E, A
ANALOG SWITCH
DIGITAL I/O
SWITCH DYNAMIC CHARACTERISTICS
MAX4582
MAX4583
MAX4582
MAX4583
POWER SUPPLY
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICS—Single +3V Supply
(VCC = 2.7V to 3.6V, VEE = 0V, V_H = 2.0V, V_L = 0.5V, TA= TMIN to TMAX, unless otherwise noted. Typical values are at TA= +25°C.)
SWITCH DYNAMIC CHARACTERISTICS
C, E, A 400
TA= +25°C
Address Transition
Time tTRANS ns
VX_, VY_, VZ_ = 1.5V/0V; RL= 300;
CL= 35pF; Figure 2
130 300
C, E, A 300
TA= +25°C
Enable Turn-Off Time t(OFF) ns
VX_, VY_, VZ_ = 1.5V; RL= 300;
CL= 35pF; Figure 3
50 200
C, E, A
TA= +25°C
-10 +10
Break-Before-Make Time
tBBM ns
C, E, A
VX_, VY_, VZ_ = 1.5V; RL= 300; CL= 35pF 15 40
C, E, A
TA= +25°C
400
C, E, A
Logic Input Logic
Threshold High
VAH, VBH, VCH,
VENABLEH V1.0 2.0
C, E, AInput-Current High IAH, IBH, ICH,
IENABLEH µAVA, VB, VC= VEnable = 2.0V
-100 +100
-1 +1
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL, VCL,
VENABLEL V0.5 1.0
TA= +25°C
Enable Turn-On Time t(ON) ns
VX_, VY_, VZ_ = 1.5V; RL= 300;
CL= 35pF; Figure 3
170 300
C, E, A
C, E, AInput-Current Low
TA= +25°C
IAL, IBL, ICL,
IENABLEL
X, Y, Z Off-Leakage
(Note 6)
IX(OFF),
IY(OFF),
IZ(OFF)
nA
MAX4581
µA
VCC = 3.6V;
VX_, VY_, VZ_ = 1V, 3.0V;
VX, VY, VZ= 3.0V, 1V
VA, VB, VC= VEnable = 0.5V
-100 +100
TA= +25°C
-2 +2
X, Y, Z On-Leakage
(Note 6)
IX(ON),
IY(ON),
IZ(ON)
nA
MAX4581
VCC = 3.6V;
VX, VY, VZ= 3.0V, 1V
-2 +2
C, E, A
C, E, A
X_, Y_, Z_ Off-Leakage
(Note 5)
-50 +50
IX_(OFF),
IY_(OFF),
IZ_(OFF)
TA= +25°C
nA
VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3V;
VX, VY, VZ= 3V, 1V
Power-Supply Current ICC, IEE µA
-1 +1
TA= +25°C
-50 +50
TA= +25°C
-1 +1
Switch On-Resistance
-1 +1
-1 +1
VCC = 3.6V,
VA, VB, VC, VEnable = V+ or 0V
-1 +1
-10 +10
PARAMETER
RON
TA= +25°C
SYMBOL TEMP
VCC = 2.7V; IX, IY, IZ= 0.1mA;
VX, VY, VZ= 1.5V
190 450
C, E, A
550C, E, A
UNITS
MIN TYP MAX
(Note 2)
CONDITIONS
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, VZ
VVEE VCC
C, E, A
MAX4582
MAX4583
MAX4582
MAX4583
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA= +25°C.
Note 6: Guaranteed by design, not production tested.
ANALOG SWITCH
DIGITAL I/O
SWITCH DYNAMIC CHARACTERISTICS (Note 6)
POWER SUPPLY
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
6 _______________________________________________________________________________________
1000
10
-5 01234-4 -3 -2 -1 5
ON-RESISTANCE vs. VX, VY, VZ
(DUAL SUPPLIES)
MAX4581/2/3 toc01
VX, VY, VZ (V)
RON ()
100
VCC = 2.7V,
VEE = -2.7V
VCC = 2V,
VEE = -2V
VCC = 5V,
VEE = -5V
VCC = 3.3V,
VEE = -3.3V
VCC = 1.2V,
VEE = -1.2V
5
35
25
15
45
55
65
-5 -1-2-4-3 012345
ON-RESISTANCE
vs. VX, VY, VZ AND TEMPERATURE
(DUAL SUPPLIES)
MAX4581toc02
VX, VY, VZ (V)
RON ()
TA = -40°C
TA = +25°C
TA = 0°C
TA = +70°C
TA = +85°C
10,000
10
010234567891
ON-RESISTANCE vs. VX, VY, VZ
(SINGLE SUPPLY)
100
1000
MAX4581 toc03
VX, VY, VZ (V)
RON ()
VCC = 10V
VCC = 7.5V
VCC = 5V
VCC = 3.3V
VCC = 2.7V
VCC = 2V
VCC = 1.2V
10
70
50
30
90
110
130
02.01.50.5 1.0 2.5 3.0 3.5 4.0 4.5 5.0
ON-RESISTANCE
vs. VX, VY, VZ AND TEMPERATURE
(SINGLE SUPPLY)
MAX4581toc04
VX, VY, VZ (V)
RON ()
TA = +85°CTA = +70°C
TA = +25°C
TA = -40°CTA = 0°C
0.01
OFF-LEAKAGE
vs. TEMPERATURE
100
MAX4581/2/3-05
TEMPERATURE (°C)
OFF LEAKAGE (nA)
1
0.1
10
-50 12525-25 0 7550 100
VCC = 5.5V
VEE = -5.5V
IX, IY, IZ
IX_, IY_, IZ_
1
ON-LEAKAGE
vs. TEMPERATURE
10,000
100,000
MAX4581/2/3-toc-6
TEMPERATURE (°C)
ON LEAKAGE (pA)
100
10
1000
-50 12525-25 0 7550 100
VCC = 5.5V
VEE = -5.5V
-2.5
-1.5
-2.0
-1.0
0.5
1.0
0
-0.5
1.5
-5 -3 -2 -1 0-4 12345
CHARGE INJECTION vs. VX, VY, VZ
MAX4581-07
VX, VY, VZ (V)
Q (pC)
VCC = 5V
VEE = -5V
VCC = 5V
VEE = 0V
Typical Operating Characteristics
(VCC = 5V, VEE = -5V, VGND = 0V, TA= +25°C, unless otherwise noted.)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________
7
0.01
SUPPLY CURRENT
vs. TEMPERATURE
100
MAX4581/2/3-08
TEMPERATURE (°C)
ICC, IEE (nA)
10
1
0.1
-50 12525-25 0 7550 100
ICC
IEE
VCC = 5V
VEE = -5V
VA, VB,VC,VENABLE = 0V, 5V
0
-120
-110
-100
0.1 10 1001
FREQUENCY RESPONSE
-90
-80
MAX4581-09
FREQUENCY (MHz)
LOSS (dB)
PHASE (DEGREES)
-60
-50
-70
-30
-20
-10
-40
120
-120
-110
-80
-60
-40
0
20
-20
60
80
100
40
ON-LOSS
OFF-LOSS
ON-PHASE
100
0.01
10 1k 10k100 100k
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
0.1
MAX4581-10
FREQUENCY (Hz)
THD (%)
1
10
600 IN AND OUT
1
10-1
10-2
VCC = 12V
VCC = 5V
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
02314657891110 12
VCC CURRENT vs. LOGIC LEVEL
(VA, VB, VC, VENABLE)
MAX4581-11
VA, VB, VC, VENABLE
ICC (A)
0
1.0
0.5
2.0
1.5
2.5
3.0
0 2341576 8 9 101112
LOGIC-LEVEL THRESHOLD vs. VCC
MAX4581toc12
VCC (V)
VA, VB, VC, VENABLE (V)
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = -5V, VGND = 0V, TA= +25°C, unless otherwise noted.)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
8 _______________________________________________________________________________________
__________Applications Information
Power-Supply Considerations
Overview
The MAX4581/MAX4582/MAX4583 construction is typi-
cal of most CMOS analog switches. They have three
supply pins: VCC, VEE, and GND. VCC and VEE are used
to drive the internal CMOS switches and set the limits of
the analog voltage on any switch. Reverse ESD-
protection diodes are internally connected between
each analog-signal pin and both VCC and VEE. If any
analog signal exceeds VCC or VEE, one of these diodes
Pin Description
Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well
in both directions.
PIN
MAX4581 MAX4582 MAX4583
PDIP, SO,
TSSOP TQFN-EP PDIP, SO,
TSSOP TQFN-EP PDIP, SO,
TSSOP TQFN-EP
NAME FUNCTION
13, 14,
15, 12,
1, 5, 2, 4
11, 12,
13, 10,
15, 3,
16, 2
X0–X7 Analog Switch Inputs 0–7
3 1 13 11 14 12 X Analog Switch “X” Output
——
12, 14,
15, 11
10, 12,
13, 9 ——
X0, X1,
X2, X3 Analog Switch “X” Inputs 0–3
——
1, 5, 2,
4
15, 3,
16, 2 ——
Y0, Y1,
Y2, Y3 Analog Switch “Y” Inputs 0–3
3 1 15 13 Y Analog Switch “Y” Output
13 11 X1 Analog Switch “X” Normally Open Input
12 10 X0 Analog Switch “X” Normally Closed Input
1 15 Y1 Analog Switch “Y” Normally Open Input
2 16 Y0 Analog Switch “Y” Normally Open Input
3 1 Z1 Analog Switch “Z” Normally Open Input
5 3 Z0 Analog Switch “Z” Normally Open Input
4 2 Z Analog Switch “Z” Output
16 14 16 14 16 14 VCC Positive Analog and Digital Supply-Voltage
Input
11 9 10 8 11 9 A Digital Address “A” Input
10 8 9 7 10 8 B Digital Address “B” Input
9 7 9 7 C Digital Address “C” Input
868686GND
Ground. Connect to digital ground. (Analog
signals have no ground reference; they are
limited to VCC and VEE.)
757575V
EE
Negative Analog Supply-Voltage Input.
Connect to GND for
single-supply operation.
6 4 6 4 6 4 ENABLE Digital Enable Input. Normally connected to
GND.
——————EPE xp osed P ad ( TQ FN onl y) . C onnect E P to V
C C
.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 9
XH
Table 1. Truth Table/Switch Programming
X X All switches open All switches open All switches open
L L X–X0 X–X0,
Y–Y0
X–X0,
Y–Y0,
Z–Z0
LL
L H X–X1 X–X1,
Y–Y1
X–X1,
Y–Y0,
Z–Z0
LL
H H X–X3 X–X3,
Y–Y3
X–X1,
Y–Y1,
Z–Z0
H L X–X2 X–X2,
Y–Y2
X–X0,
Y–Y1,
Z–Z0
LL
LL
L H X–X5 X–X1,
Y–Y1
X–X1,
Y–Y0,
Z–Z1
L L X–X4 X–X0,
Y–Y0
X–X0,
Y–Y0,
Z–Z1
HL
HL
H H X–X7 X–X3,
Y–Y3
X–X1,
Y–Y1,
Z–Z1
H L X–X6 X–X2,
Y–Y2
X–X0,
Y–Y1,
Z–Z1
HL
HL
X = Don’t care
*
C not present on MAX4582.
Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally
well in either direction.
ON SWITCHESSELECT INPUTS
B A MAX4581 MAX4582 MAX4583C*
ENABLE
INPUT
will conduct. During normal operation, these and other
reverse-biased ESD diodes leak, forming the only cur-
rent drawn from VCC or VEE.
Virtually all the analog leakage current comes from the
ESD diodes. Although the ESD diodes on a given sig-
nal pin are identical and therefore fairly well balanced,
they are reverse biased differently. Each is biased by
either VCC or VEE and the analog signal. This means
their leakages will vary as the signal varies. The
differ-
ence
in the two diode leakages to the VCC and VEE
pins constitutes the analog-signal-path leakage current.
All analog leakage current flows between each pin and
one of the supply terminals, not to the other switch ter-
minal. This is why both sides of a given switch can
show leakage currents of either the same or opposite
polarity.
There is no connection between the analog-signal
paths and GND.
VCC and GND power the internal logic and logic-level
translators, and set the input logic limits. The logic-level
translators convert the logic levels into switched VCC
and VEE signals to drive the gates of the analog sig-
nals. This drive signal is the only connection between
the logic supplies and signals and the analog supplies.
VCC and VEE have ESD-protection diodes to GND.
The logic-level thresholds are TTL/CMOS compatible
when VCC is +5V. As VCC rises, the threshold increases
MAX4581/MAX4582/MAX4583
slightly, so when VCC reaches +12V the threshold is
about 3.1V (above the TTL-guaranteed high-level mini-
mum of 2.8V, but still compatible with CMOS outputs).
Bipolar Supplies
These devices operate with bipolar supplies between
±2V and ±5V. The VCC and VEE supplies need not be
symmetrical, but their sum cannot exceed the +13V
absolute maximum rating
Single Supply
These devices operate from a single supply between
+2V and +12V when VEE is connected to GND. All of
the bipolar precautions must be observed. At room
temperature, they actually “work” with a single supply
near or below +1.7V, although as supply voltage
decreases, switch on-resistance and switching times
become very high.
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maxi-
mum ratings because stresses beyond the listed rat-
ings can cause permanent damage to the devices.
Always sequence VCC on first, then VEE, followed by
the logic inputs and analog signals. If power-supply
sequencing is not possible, add two small signal diodes
(D1, D2) in series with the supply pins for overvoltage
protection (Figure 1).
Adding diodes reduces the analog-signal range to one
diode drop below VCC and one diode drop above VEE,
but does not affect the devices’ low switch resistance
and low leakage characteristics. Device operation is
unchanged, and the difference between VCC and VEE
should not exceed 13V. These protection diodes are
not recommended when using a single supply if signal
levels must extend to ground.
High-Frequency Performance
In 50systems, signal response is reasonably flat up
to 50MHz (see
Typical Operating Characteristics
).
Above 20MHz, the on response has several minor
peaks which are highly layout dependent. The problem
is not turning the switch on, but turning it off. The off-
state switch acts like a capacitor and passes higher
frequencies with less attenuation. At 10MHz, off isola-
tion is about -50dB in 50systems, becoming worse
(approximately 20dB per decade) as frequency in-
creases. Higher circuit impedances also degrade off
isolation. Adjacent channel attenuation is about 3dB
above that of a bare IC socket and is entirely due to
capacitive coupling.
Pin Nomenclature
The MAX4581/MAX4582/MAX4583 are pin-compatible
with the industry-standard 74HC4051/74HC4052/
74HC4053 and the MAX4051/MAX4052/MAX4053.
They function identically and have identical logic dia-
grams, although these parts differ electrically.
The pin designations and logic diagrams in this data
sheet conform to the original 1972 specifications pub-
lished by RCA for the CD4051/CD4052/CD4053. These
designations differ from the standard Maxim switch and
mux designations as found all other Maxim data sheets
(including the MAX4051/MAX4052/MAX4053) and may
cause confusion. Designers who feel more comfortable
with Maxim’s standard designations are advised that
the pin designations and logic diagrams on the
MAX4051/MAX4052/MAX4053 data sheet may be freely
applied to the MAX4581/MAX4582/MAX4583.
Low-Voltage, CMOS Analog
Multiplexers/Switches
10 ______________________________________________________________________________________
X, Y, Z X_, Y_, Z_
VEE
VCC
*INTERNAL PROTECTION DIODES
D2
EXTERNAL
BLOCKING DIODE
D1
EXTERNAL
BLOCKING DIODE
VEE
VCC
MAX4581
MAX4582
MAX4583
*
*
*
*
Figure 1. Overvoltage Protection Using External Blocking
Diodes
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 11
50%
tTRANS
VCC
0V
VX0
VOUT
VA, VB, VC
0V
VX7
90%
90%
tTRANS
50%
tTRANS
VCC
0V
VX0,
VY0
VOUT
VA, VB
0V
VX3,
VY3
90%
90%
tTRANS
50%
tTRANS
VCC
0V
VX0,
VY0,
VZ0
VOUT
VA, VB, VC
0V
VX1,
VY1,
VZ1
90%
90%
tTRANS
VCC
VOUT
VA, VB, VC
VA, VB
VEE
GND
VCC
B
VEE
A
C
ENABLE
X0
X1–X6
X7
X
VCC
VEE
MAX4581
300
50
35pF
VCC
VOUT
VEE
GND
VCC
B
VEE
A
ENABLE
X0, Y0
X1, X2, Y1, Y2
X3, Y3
X, Y
VCC
VEE
MAX4582
300
50
35pF
VCC
VOUT
VEE
GND
VCC
VEE
A, B, C
VA, VB, VC
ENABLE
X1, Y1, Z1
X2, Y2, Z2
X, Y, Z
VEE
VCC
MAX4583
300
50
35pF
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
Figure 2. Address Transition Times
______________________________________________Test Circuits/Timing Diagrams
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
12 ______________________________________________________________________________________
50%
tOFF
VCC
0V
VX0
VOUT
VEnable
0V
90%
90%
tON
50%
tOFF
VCC
0V
VX0,
VY0
VOUT
VEnable
0V
90%
90%
tON
50%
tOFF
VCC
0V
VX0,
VY0,
VZ0
VOUT
VEnable
VX1,
VY1,
VZ1
90%
90%
tON
VCC
VOUT
VENABLE
VENABLE
VENABLE
VEE
GND
VCC
B
VEE
A
C
ENABLE
X0
X1–X7
X
VCC
MAX4581
300
5035pF
VCC
VOUT
VEE
GND
VCC
B
VEE
A
ENABLE
X0, Y0
X1–X3, Y1–Y3
X, Y
VCC
MAX4582
300
5035pF
VCC
VOUT
VEE
GND
VCC
VEE
A
B
C
ENABLE
X1, Y1, Z1
X0, Y0, Z0
X, Y, Z
VCC
VEE
MAX4583
300
35pF
50
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
Figure 3. Inhibit Switching Times
_________________________________Test Circuits/Timing Diagrams (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 13
50%
V+
0V
VX, VY, VZ
VOUT
VA, VB, VC
0V
80%
tBBM
VCC
VOUT
VA, VB, VCVA, VB
VA, VB, VC
VEE
GND
VCC
B
VEE
A
C
ENABLE
X0–X7
X
VCC
MAX4581
300
50
35pF
VCC
VOUT
VEE
GND
VCC
B
VEE
A
ENABLE
X0–X3,
Y0–Y3
X, Y
VCC
MAX4582
300
35pF
VCC
VOUT
VEE
GND
VCC
VEE
A, B, C
ENABLE
X0, X1, Y0,
Y1, Z0, Z1
X, Y, Z
VCC
MAX4583
300
35pF
50
50
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
tR < 20ns
tF < 20ns
Figure 4. Break-Before-Make Interval
0V
VCC
VEnable
VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
VOUT
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY. Q = VOUT X CL
VOUT
VCC
VOUT
VENABLE
VEE
GND
VCC
B
VEE
A
CHANNEL
SELECT
C
ENABLE
X_, Y_, Z_
X, Y, Z
MAX4581
MAX4582
MAX4583
50CL = 1000pF
Figure 5. Charge Injection
_________________________________Test Circuits/Timing Diagrams (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
14 ______________________________________________________________________________________
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.
CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
VCC
VOUT
VIN
VEE
GND
VCC
VIN
VOUT MEAS.
NETWORK
ANALYZER
5050
50OFF-ISOLATION = 20log
ON-LOSS = 20log
CROSSTALK = 20log
50
REF.
B
VEE
VOUT
VIN
VOUT
VIN
A
CHANNEL
SELECT
C
ENABLE
X_, Y_, Z_
X, Y, Z
10nF
10nF
MAX4581
MAX4582
MAX4583
Figure 6. Off Isolation, On Loss, and Crosstalk
VCC
VEE
GND
VCC
B
VEE
A
CHANNEL
SELECT
1MHz
CAPACITANCE
ANALYZER
C
ENABLE
X_, Y_, Z_
X, Y, Z
MAX4581
MAX4582
MAX4583
Figure 7. Capacitance
_________________________________Test Circuits/Timing Diagrams (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 15
PART TEMP RANGE PIN-
PACKAGE
TOP
MARK
MAX4581CEE+ 0°C to +70°C 16 QSOP
MAX4581EPE+ -40°C to +85°C 16 PDIP
MAX4581ESE+ -40°C to +85°C 16 Narrow SO
MAX4581EUE+ -40°C to +85°C 16 TSSOP
MAX4581EEE+ -40°C to +85°C 16 QSOP
MAX4581ETE+ -40°C to +85°C 16 TQFN-EP* AGH
MAX4581ASE+ -40°C to +125°C 16 Narrow SO
MAX4581AUE+ -40°C to +125°C 16 TSSOP
MAX4582CPE+ 0°C to +70°C 16 PDIP
MAX4582CSE+ 0°C to +70°C 16 Narrow SO
MAX4582CUE+ 0°C to +70°C 16 TSSOP
MAX4582CEE+ 0°C to +70°C 16 QSOP
MAX4582EPE+ -40°C to +85°C 16 PDIP
MAX4582ESE+ -40°C to +85°C 16 Narrow SO
MAX4582EUE+ -40°C to +85°C 16 TSSOP
Ordering Information (continued)
+
Denotes a lead(Pb)-free/RoHS-compliant package.
/V Denotes an automotive qualified part.
T = Tape and reel.
*
EP = Exposed pad.
PART TEMP RANGE PIN-
PACKAGE
TOP
MARK
MAX4582EEE+ -40°C to +85°C 16 QSOP
MAX4582ETE+ -40°C to +85°C 16 TQFN-EP* AGH
MAX4582ASE+ -40°C to +125°C 16 Narrow SO
MAX4582AUE/V+T -40°C to +125°C 16 TSSOP
MAX4583CPE+ 0°C to +70°C 16 PDIP
MAX4583CSE+ 0°C to +70°C 16 Narrow SO
MAX4583CUE+ 0°C to +70°C 16 TSSOP
MAX4583CEE+ 0°C to +70°C 16 QSOP
MAX4583EPE+ -40°C to +85°C 16 PDIP
MAX4583ESE+ -40°C to +85°C 16 Narrow SO
MAX4583EUE+ -40°C to +85°C 16 TSSOP
MAX4583EEE+ -40°C to +85°C 16 QSOP
MAX4583ETE+ -40°C to +85°C 16 TQFN–EP* AGH
MAX4583ASE+ -40°C to +125°C 16 Narrow SO
MAX4583AUE+ -40°C to +125°C 16 TSSOP
BOTTOM VIEW
*CONNECT EXPOSED PAD TO VCC
12
13
14
15
+++
16
8
7
6
5
11 10 9
1234
X1 X0 X3 A
B
C
GND
VEE
VCC
X4
X6
XX7 X5 EN
X2
MAX4581
*EP
12
13
14
15
16
8
7
6
5
11 10 9
1234
X1 XX0 X3
A
B
GND
VEE
VCC
Y0
Y2
YY3 Y1 EN
X2
MAX4582
*EP
12
13
14
15
16
8
7
6
5
11 10 9
1234
XX1 X0 A
B
C
GND
VEE
VCC
Y1
Y0
Z1 ZZ0 EN
Y
MAX4583
*EP
TQFN TQFN TQFN
Pin Configurations/Functional Diagrams (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
16 ______________________________________________________________________________________
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE OUTLINE NO. LAND
PATTERN NO.
16 PDIP P16+1 21-0043
16 Narrow SO S16+1 21-0041 90-0097
16 TSSOP U16+2 21-0066 90-0117
16 QSOP E16+4 21-0055 90-0167
16 TQFN T1633+5 21-0136 90-0032
Chip Information
PROCESS: BICMOS
TRANSISTOR COUNT: 219
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
17
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2012 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
5 6/07 Various changes
6 3/12 Updated TQFN, PDIP, and lead-free packaging options; updated temperature
ranges 1–7, 15, 16