Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 210
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 150A
IDM Pulsed Drain Current 850
PD @TC = 25°C Power Dissipation 330 W
Linear Derating Factor 2.2 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy460 mJ
IAR Avalanche CurrentSee Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche EnergymJ
TJOperating Junction and -55 to + 175 °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
HEXFET® Power MOSFET
Specifically designed for Automotive applications, this HEXFET® Power MOSFET
utilizes the lastest processing techniques to achieve extremely low on-resistance
per silicon area. Additional features of this design are a 175°C junction operating
temperature, fast switching speed and improved repetitive avalanche rating.
These features combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety of other applications.
S
D
G
Absolute Maximum Ratings
VDSS = 40V
RDS(on) = 3.6m
ID = 210A
Description
06/30/04
www.irf.com 1
OAdvanced Process Technology
OUltra Low On-Resistance
ODynamic dv/dt Rating
O175°C Operating Temperature
OFast Switching
ORepetitive Avalanche Allowed up to Tjmax
Features
Typical Applications
OElectric Power Steering
O14 Volts Automotive Electrical Systems
OLead-Free
AUTOMOTIVE MOSFET
Thermal Resistance Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
TO-220AB
IRF2204PbF
PD - 95490
IRF2204PbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.041 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 3.0 3.6 mVGS = 10V, ID = 130A
VGS(th) Gate Threshold Voltage 2.0 ––– 4 .0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 120 ––– ––– S VDS = 10V, ID = 130A
––– ––– 20 µA VDS = 40V, VGS = 0V
––– ––– 250 VDS = 32V, VGS = 0V, T J = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge –– 130 20 0 ID = 130A
Qgs Gate-to-Source Charge ––– 35 52 nC VDS = 32V
Qgd Gate-to-Drain ("Miller") Charge ––– 39 59 VGS = 10V
td(on) Turn-On Delay Time ––– 15 ––– VDD = 20V
trRise Time ––– 140 ––– ID = 130A
td(off) Turn-Off Delay Time –– 62 –– RG = 2.5
tfFall Time ––– 110 ––– VGS = 10V
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 5890 ––– VGS = 0V
Coss Output Capacitance ––– 1570 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance –– 130 ––– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 8000 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 1370 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 2380 ––– VGS = 0V, VDS = 0V to 32V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1 . 3 V TJ = 25°C, IS = 130A, VGS = 0V
trr Reverse Recovery Time ––– 68 100 ns T J = 25°C, IF = 130A
Qrr Reverse RecoveryCharge ––– 1 20 180 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
210
850
A
IRF2204PbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
210A
1
10
100
1000
10000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
10000
0.1 1 10 10
0
20µs PULSE WI DTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
4.0 5.0 6.0 7.0 8.0 9.0 10.0
VGS, G at e-to-Source Vol t age (V)
10.00
100.00
1000.00
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 25V
20µs PULSE WI D TH
IRF2204PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
030 60 90 120 150
0
2
4
6
8
10
12
Q , T o ta l Ga te C h a rge (n C)
V , Gate-to-Source Voltage (V)
G
GS
I=
D130A
V = 20V
DS
V = 32V
DS
0.1
1
10
100
1000
0.0 0.5 1.0 1.5 2.0 2.5
V ,Source-to-Drain Voltage (V)
I , R ev ers e Drain Current (A)
SD
SD
V = 0 V
GS
T = 175 C
J°
T = 25 C
J°
110 100
VDS, Drain-t o-Source Volt age (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + Cgd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + C
gd
1 10 100
VDS , Drain- toSour ce Voltage (V )
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
IRF2204PbF
www.irf.com 5
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
9
0%
1
0%
V
GS t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
25 50 75 100 125 150 175
0
50
100
150
200
250
T , Case Temperature ( C )
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Therm al Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF2204PbF
6www.irf.com
QG
QGS QGD
V
G
Charge
D.U.T. V
D
S
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
150
300
450
600
750
900
Starting Tj, Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
AS
°
ID
TOP
BOTTOM
52A
91A
130A
Fig 14. Threshold Voltage Vs. Temperature
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRF2204PbF
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3· BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Dut y Cycle = Single P ulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Start ing TJ , Junction Temperature (°C )
0
100
200
300
400
500
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1 0 % Duty Cycle
ID = 210A
IRF2204PbF
8www.irf.com
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
R
e-Applied
V
oltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
-
+
+
+
-
-
-
RG
VDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 17. For N-channel HEXFET® power MOSFETs
IRF2204PbF
www.irf.com 9
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting TJ = 25°C, L = 0.06mH
RG = 25, IAS = 130A. (See Figure 12).
ISD 130A, di/dt 170A/µs, VDD V(BR)DSS,
TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Notes:
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10. 54 (.415)
10. 29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.055)
1.15 (.045)
2.54 (.100)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER A N SI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
HEXFET
1- GATE
2- DRAIN
3- SOU RCE
4- DRAIN
LEAD ASSI GN MENTS
IGBTs , CoPAC
K
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE:
IN T H E ASSEMBLY LINE "C"
THIS IS AN IRF1010
LOT CODE 1789
ASSEMBL ED ON WW 19, 1997 PART NUMBE
R
ASSEMBLY
LOT CODE
DATE CODE
YEAR 7 = 1997
LINE C
WEEK 19
LOGO
RECTIFIER
INTERNATIONAL
Note: "P" in assembly line
position indicates "Lead-Free"