FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Features Description Variable Frequency Control with 50% Duty Cycle for Half-bridge Resonant Converter Topology High Efficiency through Zero Voltage Switching (ZVS) Fixed Dead Time (350ns) Optimized for MOSFETs Remote On/Off Control Using Control Pin The FSFR2100 is a highly integrated power switch designed for high-efficiency half-bridge resonant converters. Offering everything necessary to build a reliable and robust resonant converter, the FSFR2100 simplifies designs and improves productivity, while improving performance. The FSFR2100 combines power MOSFETs with fast-recovery type body diodes, a highside gate-drive circuit, an accurate current controlled oscillator, frequency limit circuit, soft-start, and built-in protection functions. The high-side gate-drive circuit has a common-mode noise cancellation capability, which guarantees stable operation with excellent noise immunity. The fast-recovery body diode of the MOSFETs improves reliability against abnormal operation conditions, while minimizing the effect of the reverse recovery. Using the zero-voltage-switching (ZVS) technique dramatically reduces the switching losses and efficiency is significantly improved. The ZVS also reduces the switching noise noticeably, which allows a small-sized Electromagnetic Interference (EMI) filter. Internal SuperFETTMs with Fast-Recovery Type Body Diode (trr=120ns) Up to 300kHz Operating Frequency Pulse Skipping for Frequency Limit (Programmable) at Light-Load Condition Protection Functions: Over-Voltage Protection (OVP), Over-Load Protection (OLP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD) Applications The FSFR2100 can be applied to various resonant converter topologies, such as: series resonant, parallel resonant, and LLC resonant converters. PDP and LCD TVs Desktop PCs and Servers Adapters Related Resources Telecom Power Supplies Audio Power Supplies AN-4151 -- Half-Bridge LLC Resonant Converter Design Using FSFR2100 Fairchild Power Switch TM (FPS ) Evaluation Board: FEBFSFR2100_D015v1 Ordering Information Part Number Package Operating Junction Temperature RDS(ON_MAX) Maximum Output Power without Heatsink (VIN=350~400V)(1,2) Maximum Output Power with Heatsink (VIN=350~400V)(1,2) FSFR2100 9-SIP -40 to +130C 0.38 200W 450W Notes: 1. The junction temperature can limit the maximum output power. 2. Maximum practical continuous power in an open-frame design at 50C ambient. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters April 2012 D1 Cr Llk LVcc VCC Np HVCC Lm Ns RT CON CDL VIN Vo Ns VDL Control IC D2 CF RF VCTR KA431 CS SG PG Rsense Figure 1. Typical Application Circuit (LLC Resonant Half-Bridge Converter) Block Diagram 1.5 s Figure 2. Internal Block Diagram (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 2 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Application Circuit Diagram Figure 3. Package Diagram Pin Definitions Pin # Name 1 VDL Description This is the drain of the high-side MOSFET, typically connected to the input DC link voltage. 2 CON This pin is for enable/disable and protection. When the voltage of this pin is above 0.6V, the IC operation is enabled. When the voltage of this pin drops below 0.4V, gate drive signals for both MOSFETs are disabled. When the voltage of this pin increases above 5V, protection is triggered. 3 RT This pin programs the switching frequency. Typically, an opto-coupler is connected to control the switching frequency for the output voltage regulation. 4 CS This pin senses the current flowing through the low-side MOSFET. Typically, negative voltage is applied on this pin. 5 SG This pin is the control ground. 6 PG This pin is the power ground. This pin is connected to the source of the low-side MOSFET. 7 LVCC 8 NC 9 HVCC This is the supply voltage of the high-side gate-drive circuit IC. 10 VCTR This is the drain of the low-side MOSFET. Typically, a transformer is connected to this pin. This pin is the supply voltage of the control IC. No connection. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 3 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Pin Configuration Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. TA=25C unless otherwise specified. Symbol Parameter Min. VDS Maximum Drain-to-Source Voltage (VDL-VCTR and VCTR-PG) 600 LVCC Low-Side Supply Voltage -0.3 HVCC to VCTR High-Side VCC Pin to Low-side Drain Voltage Max. Unit V 25.0 V -0.3 25.0 V HVCC High-Side Floating Supply Voltage -0.3 625.0 V VCON Control Pin Input Voltage -0.3 LVCC V VCS Current Sense (CS) Pin Input Voltage -5.0 1.0 V VRT RT Pin Input Voltage -0.3 5.0 V 50 V/ns 12 W dVCTR/dt PD TJ TSTG Allowable Low-Side MOSFET Drain Voltage Slew Rate (3) Total Power Dissipation Maximum Junction Temperature(4) +150 Recommended Operating Junction Temperature(4) -40 +130 Storage Temperature Range -55 +150 C C MOSFET Section VDGR Drain Gate Voltage (RGS=1M) VGS Gate Source (GND) Voltage 600 V (5) IDM Drain Current Pulsed ID Continuous Drain Current 30 V 33 A TC=25C 11 TC=100C 7 A Package Section Torque Recommended Screw Torque 5~7 kgf*cm Notes: 3. Per MOSFET when both MOSFETs are conducting. 4. The maximum value of the recommended operating junction temperature is limited by thermal shutdown. 5. Pulse width is limited by maximum junction temperature. Thermal Impedance TA=25C unless otherwise specified. Symbol JC Parameter Junction-to-Case Center Thermal Impedance (Both MOSFETs Conducting) (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 Value Unit 10.44 C/W www.fairchildsemi.com 4 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Absolute Maximum Ratings TA=25C unless otherwise specified. Symbol Parameter Test Conditions Min. Typ. Max. Unit MOSFET Section BVDSS Drain-to-Source Breakdown Voltage RDS(ON) On-State Resistance trr ID=200A, TA=25C (6) Body Diode Reverse Recovery Time 600 ID=200A, TA=125C 650 VGS=10V, ID=5.5A 0.32 VGS=0V, IDiode=11.0A 120 V 0.38 ns Supply Section ILK Offset Supply Leakage Current H-VCC=VCTR=600V/500V 50 A IQHVCC Quiescent HVCC Supply Current (HVCCUV+) - 0.1V 50 120 A IQLVCC Quiescent LVCC Supply Current (LVCCUV+) - 0.1V 100 200 A IOHVCC Operating HVCC Supply Current (RMS Value) fOSC=100KHz, VCON > 0.6V 6 9 mA No Switching, VCON < 0.4V 100 200 A IOLVCC Operating LVCC Supply Current (RMS Value) fOSC=100KHz, VCON > 0.6V 7 11 mA No Switching, VCON < 0.4V 2 4 mA UVLO Section LVCCUV+ LVCC Supply Under-Voltage Positive-Going Threshold (LVCC Start) 13.0 14.5 16.0 V LVCCUV- LVCC Supply Under-Voltage Negative-Going Threshold (LVCC Stop) 10.2 11.3 12.4 V LVCCUVH LVCC Supply Under-Voltage Hysteresis HVCCUV+ HVCC Supply Under-Voltage Positive-Going Threshold (HVCC Start) 8.2 9.2 10.2 V HVCCUV- HVCC Supply Under-Voltage Negative-Going Threshold (HVCC Stop) 7.8 8.7 9.6 V HVCCUVH HVCC Supply Under-Voltage Hysteresis 3.2 V 0.5 V Oscillator & Feedback Section VCONDIS Control Pin Disable Threshold Voltage 0.36 0.40 0.44 V VCONEN Control Pin Enable Threshold Voltage 0.54 0.60 0.66 V VRT V-I Converter Threshold Voltage 1.5 2.0 2.5 V fOSC Output Oscillation Frequency 94 100 106 KHz DC Output Duty Cycle 48 50 52 % fSS Internal Soft-Start Initial Frequency tSS Internal Soft-Start Time RT=5.2K 140 fSS=fOSC+40kHz, RT=5.2K 2 3 KHz 4 ms Continued on the following page... (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 5 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Electrical Characteristics TA=25C unless otherwise specified. Symbol Parameter Test Conditions Min. Typ. Max. Unit Protection Section IOLP OLP Delay Current VCON=4V 3.6 4.8 6.0 A VOLP OLP Protection Voltage VCON > 3.5V 4.5 5.0 5.5 V VOVP LVCC Over-Voltage Protection L-VCC > 21V 21 23 25 V VAOCP AOCP Threshold Voltage V/t=-0.1V/s -1.0 -0.9 -0.8 V (6) tBAO AOCP Blanking Time VCS < VAOCP; V/t=-0.1V/s VOCP OCP Threshold Voltage V/t=-1V/s (6) tBO OCP Blanking Time VCS < VOCP; V/t=-1V/s tDA Delay Time (Low Side) Detecting from (6) VAOCP to Switch Off V/t=-1V/s TSD Thermal Shutdown Temperature(6) ISU Protection Latch Sustain LVCC Supply Current VPRSET 50 ns -0.64 -0.58 -0.52 V 1.0 1.5 2.0 s 250 400 ns 130 150 C 100 150 A 110 LVCC=7.5V Protection Latch Reset LVCC Supply Voltage 5 V Dead-Time Control Section DT Dead Time(7) 350 ns Notes: 6. This parameter, although guaranteed, is not tested in production. 7. These parameters, although guaranteed, are tested only in EDS (wafer test) process. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 6 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Electrical Characteristics (Continued) 1.1 1.1 1.05 1.05 Normalized at 25OC Normalized at 25OC These characteristic graphs are normalized at TA=25C. 1 0.95 1 0.95 0.9 0.9 -50 -25 0 25 50 75 -50 100 -25 0 50 75 100 Figure 5. Switching Frequency vs. Temperature 1.1 1.1 1.05 1.05 Normalized at 25OC Normalized at 25OC Figure 4. Low-Side MOSFET Duty Cycle vs. Temperature 1 0.95 0.9 1 0.95 0.9 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 Temp (OC) Temp (OC) Figure 6. High-Side VCC (HVCC) Start vs. Temperature Figure 7. High-Side VCC (HVCC) Stop vs. Temperature 1.1 1.1 1.05 1.05 Normalized at 25OC Normalized at 25OC 25 Temp (OC) Temp (OC) 1 0.95 1 0.95 0.9 0.9 -50 -25 0 25 50 75 -50 100 -25 0 25 50 75 100 Temp (OC) Temp (OC) Figure 8. Low-Side VCC (LVCC) Start vs. Temperature Figure 9. Low-Side VCC (LVCC) Stop vs. Temperature (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 7 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Typical Performance Characteristics 1.1 1.1 1.05 1.05 Normalized at 25OC Normalized at 25OC These characteristic graphs are normalized at TA=25C. 1 0.95 -50 -25 0 25 50 75 -50 100 -25 0 25 50 75 100 Temp (OC) Temp (OC) Figure 10. OLP Delay Current vs. Temperature Figure 11. OLP Protection Voltage vs. Temperature 1.1 1.1 1.05 1.05 Normalized at 25OC Normalized at 25OC 0.95 0.9 0.9 1 0.95 0.9 1 0.95 0.9 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 Temp (OC) Temp (OC) Figure 12. LVCC OVP Voltage vs. Temperature Figure 13. RT Voltage vs. Temperature 1.1 1.1 1.05 1.05 Normalized at 25OC Normalized at 25OC 1 1 0.95 1 0.95 0.9 0.9 -50 -25 0 25 Temp 50 75 -50 100 Figure 14. CON Pin Enable Voltage vs. Temperature (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 -25 0 25 50 75 100 Temp (OC) (OC) Figure 15. OCP Voltage vs. Temperature www.fairchildsemi.com 8 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Typical Performance Characteristics (Continued) Gain 1. Basic Operation 1.8 FSFR2100 is designed to drive high-side and low-side MOSFETs complementarily with 50% duty cycle. A fixed dead time of 350ns is introduced between consecutive transitions, as shown in Figure 16. f min f normal f max f ISS 1.6 1.4 1.2 1.0 Soft-start 0.8 0.6 60 70 80 90 100 110 120 130 140 150 freq (kHz) Figure 16. MOSFETs Gate Drive Signal Figure 18. Resonant Converter Typical Gain Curve 2. Internal Oscillator LVcc FSFR2100 employs a current-controlled oscillator, as shown in Figure 17. Internally, the voltage of RT pin is regulated at 2V and the charging/discharging current for the oscillator capacitor, CT, is obtained by copying the current flowing out of RT pin (ICTC) using a current mirror. Therefore, the switching frequency increases as ICTC increases. VDL RT Rmax Rmin Rss Css CON Control IC SG PG Figure 19. Frequency Control Circuit The minimum switching frequency is determined as: f min = Figure 17. Current Controlled Oscillator (1) Assuming the saturation voltage of opto-coupler transistor is 0.2V, the maximum switching frequency is determined as: 3. Frequency Setting Figure 18 shows a typical voltage gain curve of a resonant converter, where the gain is inversely proportional to the switching frequency in the ZVS region. The output voltage can be regulated by modulating the switching frequency. Figure 19 shows the typical circuit configuration for RT pin, where the opto-coupler transistor is connected to the RT pin to modulate the switching frequency. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 5.2k x 100(kHz ) Rmin f max = ( 5.2k 4.68k ) x 100( kHz ) + Rmin Rmax (2) To prevent excessive inrush current and overshoot of output voltage during startup, increase the voltage gain of the resonant converter progressively. Since the voltage gain of the resonant converter is inversely proportional to the switching frequency, the soft-start is implemented by sweeping down the switching frequency from an initial high frequency (f I S S ) until the output voltage is established. The soft-start circuit is made by connecting R-C series network on the RT pin, as shown www.fairchildsemi.com 9 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Functional Description f ISS = ( 5.2k 5.2k ) x 100 + 40 ( kHz ) + Rmin RSS SKIP = 5. 2 k 4.16 k + R min R max x100(kHz) (5) (3) It is typical to set the initial frequency of soft-start two ~ three times the resonant frequency (fO) of the resonant network. The soft-start time is three to four times of the RC time constant. The RC time constant is as follows: TSS = RSS CSS (4) fs f ISS Figure 22. Control Pin Configuration for Pulse Skipping 40kHz Control loop take over Remote On / Off: When an auxiliary power supply is used for standby, the main power stage using FSFR2100 can be shut down by pulling down the control pin voltage, as shown in Figure 23. R1 and C1 are used to ensure soft-start when switching resumes. time Figure 20. Frequency Sweeping of Soft-start 4. Control Pin The FSFR2100 has a control pin for protection, cycle skipping, and remote on/off. Figure 21 shows the internal block diagram for control pin. Figure 21. Internal Block of Control Pin Figure 23. Remote On / Off Circuit Protection: When the control pin voltage exceeds 5V, protection is triggered. Detailed applications are described in the protection section. Pulse Skipping: FSFR2100 stops switching when the control pin voltage drops below 0.4V and resumes switching when the control pin voltage rises above 0.6V. To use pulse-skipping, the control pin should be connected to the opto-coupler collector pin. The frequency that causes pulse skipping is given as: (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 10 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters in Figure 19. FSFR2100 also has an internal soft-start for 3ms to reduce the current overshoot during the initial cycles, which adds 40kHz to the initial frequency of the external soft-start circuit, as shown in Figure 20. The initial frequency of the soft-start is given as: Current Sensing Using Resistor: FSFR2100 senses drain current as a negative voltage, as shown in Figure 24 and Figure 25. Half-wave sensing allows low power dissipation in the sensing resistor, while full-wave sensing has less switching noise in the sensing signal. RT Np CON Cr Cd Control IC Ns Ip Rd Np Ns SG PG Ns 100 Ns VSENSE CB Control IC VCS CSENSE Ids CS SG Cr Ip PG Rsense VCS Ids VCr VCrp-p Figure 24. Half-Wave Sensing Ids Vsense Vsense pk CB = VCr p - p Csense + CB Vsense pk = VCON 2 Vsensepk VCON VCS Vsensepk Tdelay = Rd Cd Cr Control IC VCS Np CS PG SG Rsense Figure 26. Current Sensing Using Resonant Capacitor Voltage Ns Ns 6. Protection Circuits Ids The FSFR2100 has several self-protective functions, such as Overload Protection (OLP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Over-Voltage Protection (OVP), and Thermal Shutdown (TSD). OLP, OCP, and OVP are auto-restart mode protections; while AOCP and TSD are latch-mode protections, as shown in Figure 27. Figure 25. Full-Wave Sensing Current Sensing Using Resonant Capacitor Voltage: For high-power applications, current sensing using a resistor may not be available due to the severe power dissipation in the resistor. In that case, indirect current sensing using the resonant capacitor voltage can be a good alternative because the amplitude of the resonant p-p capacitor voltage (Vcr ) is proportional to the resonant current in the primary side (Ipp-p) as: VCr p - p = I p p- p 2 f sCr 6.1 Auto-restart Mode Protection: Once a fault condition is detected, switching is terminated and the MOSFETs remain off. When LVCC falls to the LVCC stop voltage of 11.3V, the protection is reset. The FPS resumes normal operation when LVCC reaches the start voltage of 14.5V. (6) To minimize power dissipation, a capacitive voltage divider is generally used for capacitor voltage sensing, as shown in Figure 26. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 11 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters 5. Current Sensing 6.7 Thermal Shutdown (TSD): The MOSFETs and the control IC in one package makes it easy for the control IC to detect the abnormal over-temperature of the MOSFETs. If the temperature exceeds approximately 130C, the thermal shutdown triggers. 7. Figure 27. Protection Blocks 6.3 Over-Current Protection (OCP): When the sensing pin voltage drops below -0.58V, OCP is triggered and the MOSFETs remain off. This protection has a shutdown time delay of 1.5s to prevent premature shutdown during startup. 6.4 Abnormal Over-Current Protection (AOCP): If the secondary rectifier diodes are shorted, large current with extremely high di/dt can flow through the MOSFET before OCP or OLP is triggered. AOCP is triggered without shutdown delay when the sensing pin voltage drops below -0.9V. This protection is latch mode and reset when LVCC is pulled down below 5V. 6.5 Overload Protection (OLP): Overload is defined as the load current exceeding its normal level due to an unexpected abnormal event. In this situation, the protection circuit should trigger to protect the power supply. However, even when the power supply is in the normal condition, the overload situation can occur during the load transition. To avoid premature triggering of protection, the overload protection circuit should be designed to trigger only after a specified time to determine whether it is a transient situation or a true overload situation. Figure 26 shows a typical overload protection circuit. By sensing the resonant capacitor voltage on the control pin, the overload protection can be implemented. Using RC time constant, shutdown delay can be also introduced. The voltage obtained on the control pin is given as: VCON = CB VCr p - p 2(C B + Csense ) PCB Layout Guidelines Duty unbalance problems may occur due to the radiated noise from main transformer, the inequality of the secondary side leakage inductances of main transformer, and so on. Among them, it is one of the dominant reasons that the control components in the vicinity of RT pin are enclosed by the primary current flow pattern on PCB layout. The direction of the magnetic field on the components caused by the primary current flow is changed when the high and low side MOSFET turns on by turns. The magnetic fields with opposite direction from each other induce a current through, into, or out of the RT pin, which makes the turn-on duration of each MOSFET different. It is highly recommended to separate the control components in the vicinity of RT pin from the primary current flow pattern on PCB layout. Figure 28 shows an example for the duty balanced case. Figure 28. Example for Duty Balancing (7) where VCrp-p is the amplitude of the resonant capacitor voltage. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 12 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters 6.6 Over-Voltage Protection (OVP): When the LVCC reaches 23V, OVP is triggered. This protection is used when auxiliary winding of the transformer to supply VCC to FPSTM is utilized. 6.2 Latch-Mode Protection: Once this protection is triggered, switching is terminated and the MOSFETs remain off. The latch is reset only when LVCC is discharged below 5V. Application FPSTM Device Input Voltage Range Rated Output Power Output Voltage (Rated Current) LCD TV FSFR2100 390VDC (340~400VDC) 200W 24V-8.3A Features High efficiency ( >94% at 400VDC input) Reduced EMI noise through zero-voltage-switching (ZVS) Enhanced system reliability with various protection functions Figure 29. Typical Application Circuit (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 13 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Typical Application Circuit (Half-Bridge LLC Resonant Converter) Usually, LLC resonant converters require large leakage inductance value. To obtain a large leakage inductance, sectional winding method is used. Core: EC35 (Ae=106 mm2) Bobbin: EC35 (Horizontal) Transformer Model Number: SNX-2468-1 Figure 30. Transformer Construction Pin(S F) Wire Turns Note Np 62 0.08x88 (Litz Wire) 36 Ns1 12 9 0.08x234 (Litz Wire) 4 Bifilar winding Ns2 10 13 0.08x234 (Litz Wire) 4 Bifilar winding Pins Specifications Remark Primary-Side Inductance (Lp) 26 550H 10% 100kHz, 1V Primary-Side Effective Leakage (Lr) 26 110H 10% Short one of the secondary windings For more detailed information regarding the transformer, visit http://www.santronics-usa.com/documents.html or contact sales@santronics-usa.com or +1-408-734-1878 (Sunnyvale, California USA). (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 14 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Typical Application Circuit (Continued) FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters Physical Dimensions Figure 31. 9-Lead, SIP Module, Formed, Lead, 3.2X10.5X26mm Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 15 FSFR2100 -- Fairchild Power Switch (FPSTM) for Half-Bridge Resonant Converters (c) 2007 Fairchild Semiconductor Corporation FSFR2100 * Rev.1.0.9 www.fairchildsemi.com 16