IRLR2905Z
IRLU2905Z
HEXFET® Power MOSFET
VDSS = 55V
RDS(on) = 13.5mΩ
ID = 42A
8/28/09
www.irf.com 1
AUTOMOTIVE MOSFET
PD - 95848C
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and
a wide variety of other applications.
S
D
G
Description
OLogic Level
OAdvanced Process Technology
OUltra Low On-Resistance
O175°C Operating Temperature
OFast Switching
ORepetitive Avalanche Allowed up to Tjmax
Features
D-Pak
IRLR2905Z
I-Pak
IRLU2905Z
HEXFET® is a registered trademark of International Rectifier.
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS
(
Thermall
y
limited
)
Single Pulse Avalanche Energy
d
mJ
EAS (Tested ) Single Pulse Avalanche Energy Tested Value
h
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
g
mJ
TJ Operating Junction and
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 1.38
RθJA Junction-to-Ambient (PCB mount)
i
––– 50 °C/W
RθJA Junction-to-Ambient ––– 110
85
57
See Fig.12a, 12b, 15, 16
110
0.72
± 16
Max.
60
43
240
42
-55 to + 175
300 (1.6mm from case )
10 lbf
y
in (1.1N
y
m)
IRLR/U2905Z
2www.irf.com
S
D
G
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V
ΔV(BR)DSS
/
ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.053 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 11 13.5 mΩ
––– ––– 20 mΩ
––– ––– 22.5 mΩ
VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V
gfs Forward Transconductance 25 ––– ––– S
IDSS Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
QgTotal Gate Charge ––– 23 35
Qgs Gate-to-Source Charge ––– 8.5 ––– nC
Qgd Gate-to-Drain ("Miller") Charge ––– 12 –––
td(on) Turn-On Delay Time ––– 14 –––
trRise Time ––– 130 –––
td(off) Turn-Off Delay Time ––– 24 ––– ns
tfFall Time ––– 33 –––
LDInternal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
and center of die contact
Ciss Input Capacitance ––– 1570 –––
Coss Output Capacitance ––– 230 –––
Crss Reverse Transfer Capacitance ––– 130 ––– pF
Coss Output Capacitance ––– 840 –––
Coss Output Capacitance ––– 180 –––
Coss eff. Effective Output Capacitance ––– 290 –––
Source-Drain Ratin
g
s and Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 42
(Body Diode) A
ISM Pulsed Source Current ––– ––– 240
(Body Diode)
c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 22 33 ns
Qrr Reverse Recovery Charge ––– 14 21 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 5.0V, ID = 30A
e
VGS = 16V
VGS = -16V
VDS = 44V
Conditions
VGS = 5.0V
e
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 36A, VGS = 0V
e
TJ = 25°C, IF = 36A, VDD = 28V
di/dt = 100A/μs
e
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 36A
e
VDS = VGS, ID = 250μA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 4.5V, ID = 15A
e
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
f
VGS = 5.0V
e
VDD = 28V
ID = 36A
RG = 15 Ω
VDS = 25V, ID = 36A
ID = 36A
IRLR/U2905Z
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
VGS, Gate-to-Source Voltage (V)
1.0
10.0
100.0
1000.0
ID, Drain-to-Source Current (Α)
VDS = 10V
60μs PULSE WIDTH
TJ = 25°C
TJ = 175°C
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60μs PULSE WIDTH
Tj = 25°C
3.0V
VGS
TOP 10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60μs PULSE WIDTH
Tj = 175°C
3.0V
VGS
TOP 10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
0 1020304050
ID, Drain-to-Source Current (A)
0
10
20
30
40
50
60
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 8.0V
380μs PULSE WIDTH
IRLR/U2905Z
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
0
500
1000
1500
2000
2500
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 1020304050
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
VGS, Gate-to-Source Voltage (V)
VDS= 44V
VDS= 28V
VDS= 11V
ID= 36A
0.2 0.6 1.0 1.4 1.8 2.2
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100μsec
IRLR/U2905Z
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Normalized On-Resistance
Vs. Temperature
1E-006 1E-005 0.0001 0.001 0.01
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.765 0.000269
0.6141 0.001614
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
10
20
30
40
50
60
ID , Drain Current (A)
LIMITED BY PACKAGE
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 30A
VGS = 5.0V
IRLR/U2905Z
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3μF
50KΩ
.2μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
VGS(th) Gate threshold Voltage (V)
ID = 250μA
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
40
80
120
160
200
240
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 4.3A
6.2A
BOTTOM 36A
IRLR/U2905Z
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ΔTj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
10
20
30
40
50
60
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 36A
IRLR/U2905Z
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRLR/U2905Z
www.irf.com 9
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
6.73 (.265)
6.35 (.250)
- A -
4
1 2 3
6.22 (.245)
5.97 (.235)
- B -
3X 0.89 (.035)
0.64 (.025)
0.25 (.010) M A M B
4.57 (.180)
2.28 (.090)
2X 1.14 (.045)
0.76 (.030)
1.52 (.060)
1.15 (.045)
1.02 (.040)
1.64 (.025)
5.46 (.215)
5.21 (.205)
1.27 (.050)
0.88 (.035)
2.38 (.094)
2.19 (.086) 1.14 (.045)
0.89 (.035)
0.58 (.023)
0.46 (.018)
6.45 (.245)
5.68 (.224)
0.51 (.020)
MIN.
0.58 (.023)
0.46 (.018)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
10.42 (.410)
9.40 (.370)
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
EXAMPLE:
LOT CODE 9U1P
THIS IS AN IRFR120
WIT H AS S E MB L Y
WEEK = 16
DAT E CODE
YEAR = 0
LOGO
RECTIFIER
INTERNAT IONAL
ASSEMBLY
LOT CODE
016
IRFU120
9U 1P
Notes : T his part marking information applies to devices produced before 02/26/2001
INTERNAT IONAL
LOGO
RECTIFIER
3412
IRFU120
916A
LOT CODE
AS S E MB L Y
EXAMPLE:
WIT H AS S E MB L Y
THIS IS AN IRFR120
YEAR 9 = 1999
DAT E CODE
LINE A
WE E K 16
IN THE AS SEMBLY LINE "A"
ASS E MBLED ON WW 16, 1999
LOT CODE 1234
PART NUMBER
Notes : T his part marking information applies to devices produced after 02/26/2001
IRLR/U2905Z
10 www.irf.com
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
6.73 (.265)
6.35 (.250)
- A -
6.22 (.245)
5.97 (.235)
- B -
3X 0.89 (.035)
0.64 (.025)
0.25 (.010) M A M B
2.28 (.090)
1.14 (.045)
0.76 (.030)
5.46 (.215)
5.21 (.205)
1.27 (.050)
0.88 (.035)
2.38 (.094)
2.19 (.086)
1.14 (.045)
0.89 (.035)
0.58 (.023)
0.46 (.018)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
9.65 (.380)
8.89 (.350)
2X
3X
2.28 (.090)
1.91 (.075)
1.52 (.060)
1.15 (.045)
4
1 2 3
6.45 (.245)
5.68 (.224)
0.58 (.023)
0.46 (.018)
WE E K = 16
DAT E CODE
YEAR = 0
Notes : T his part marki ng i nformation appl ies to devices pr oduced befor e 02/26/2001
EXAMPLE:
LOT CODE 9U1P
THIS IS AN IRFR120
WITH ASSEMBLY
AS S E MB L Y
INTERNATIONAL
RECT IFIER
LOGO
LOT CODE
IRFU120
9U 1P
016
INTERNATIONAL
LOGO
RECT IFIER
LOT CODE
AS S E MB L Y
EXAMPLE:
WITH ASSEMBLY
THIS IS AN IRFR120
YEAR 9 = 1999
DAT E CODE
LINE A
WE E K 19
IN THE ASSEMBLY LINE "A"
ASS EMBLED ON WW 19, 1999
LOT CODE 5678
PART NUMBER
Notes : T his part marking information applies to devices produced after 02/26/2001
56
IRFU120
919A
78
IRLR/U2905Z
www.irf.com 11
Data and specifications subject to change without notice.
This product has been designed for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.8/09
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.089mH
RG = 25Ω, IAS = 36A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Notes:
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
Rθ is measured at TJ approximately 90°C