10/12/11
www.irf.com 1
HEXFET® Power MOSFET
VDSS = 40V
RDS(on) = 3.7mΩ
ID = 75A
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating.These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
S
D
G
Description
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
Features
IRF1404Z
IRF1404ZS
IRF1404ZL
D2Pak
IRF1404ZS
TO-220AB
IRF1404Z
TO-262
IRF1404ZL
Absolute Maximum Ratings
Parameter Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
A
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Package Limited)
I
DM
Pulsed Drain Current
P
D
@T
C
= 25°C
Power Dissipation W
Linear Derating Factor W/°C
V
GS Gate-to-Source Voltage V
E
AS (Thermally limited)
Single Pulse Avalanche Energy
mJ
E
AS
(Tested )
Single Pulse Avalanche Energy Tested Value
I
AR
Avalanche Current
c
A
E
AR
Repetitive Avalanche Energy
mJ
T
J Operating Junction and
T
STG Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
i
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case –– 0.65 °C/W
RθCS Case-to-Sink, Flat Greased Surface
i
0.50 –––
RθJA Junction-to-Ambient
i
––– 62
RθJA Junction-to-Ambient (PCB Mount)
j
––– 40
480
320
See Fig.12a, 12b, 15, 16
220
1.5
± 20
Max.
190
130
750
75
-55 to + 175
300 (1.6mm from case )
10 lbf
y
in (1.1N
y
m)
PD - 94634B
IRF1404ZS_L
2www.irf.com
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V
Δ
V
(BR)DSS
/
Δ
T
J Breakdown Voltage Temp. Coefficient ––– 0.033 ––– VC
R
DS(on) Static Drain-to-Source On-Resistance ––– 2.7 3.7
m
Ω
V
GS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
gfs Forward Transconductance 170 –– ––– V
I
DSS Drain-to-Source Leakage Current ––– –– 20 μA
––– –– 250
I
GSS Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– –– -200
Q
gTotal Gate Charge ––– 100 150
Q
gs Gate-to-Source Charge ––– 31 –– nC
Q
gd Gate-to-Drain ("Miller") Charge ––– 42 ––
t
d(on) Turn-On Delay Time ––– 18 ––
t
rRise Time ––– 110 –––
t
d(off) Turn-Off Delay Time –– 36 –– ns
t
fFall Time –58–
L
DInternal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
L
SInternal Source Inductance ––– 7.5 ––– from package
and center of die contact
C
iss Input Capacitance ––– 4340 ––
C
oss Output Capacitance ––– 1030 ––
C
rss Reverse Transfer Capacitance ––– 550 ––– pF
C
oss Output Capacitance ––– 3300 ––
C
oss Output Capacitance ––– 920 –––
C
oss
eff.
Effective Output Capacitance ––– 1350 ––
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units
I
SContinuous Source Current ––– ––– 75
(Body Diode) A
I
SM Pulsed Source Current ––– ––– 750
(Body Diode)
c
V
SD Diode Forward Voltage ––– ––– 1.3 V
t
rr Reverse Recovery Time ––– 28 42 ns
Qrr Reverse Recovery Charge ––– 34 51 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VDS = 25V, ID = 75A
ID = 75A
VDS = 32V
Conditions
VGS = 10V
e
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
e
TJ = 25°C, IF = 75A, VDD = 20V
di/dt = 100A/μs
e
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 75A
e
VDS = VGS, ID = 250μA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 12C
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 32V
f
VGS = 10V
e
VDD = 20V
ID = 75A
RG = 3.0 Ω
IRF1404ZS_L
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
20μs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
4.5V 20μs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0 40 80 120 160
ID, Drain-to-Source Current (A)
0
40
80
120
160
200
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 15V
20μs PULSE WIDTH
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (
A)
TJ = 25°C
TJ = 175°C
VDS = 15V
20μs PULSE WIDTH
IRF1404ZS_L
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 40 80 120 160
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
ID= 75A
0.2 0.6 1.0 1.4 1.8
VSD, Source-toDrain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0 1 10 100 1000
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
IRF1404ZS_L
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Normalized On-Resistance
Vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
40
80
120
160
200
ID , Drain Current (A)
LIMITED BY PACKAGE
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
IRF1404ZS_L
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3μF
50KΩ
.2μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
100
200
300
400
500
600
EAS, Single Pulse Avalanche Energy (mJ)
ID
TOP 31A
53A
BOTTOM 75A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250μA
IRF1404ZS_L
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
10000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ΔTj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
IRF1404ZS_L
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRF1404ZS_L
www.irf.com 9
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.055)
1.15 (.045)
2.54 (.100)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE:
IN THE ASSEMBLY LINE "C"
T HIS IS AN IRF 1010
LOT CODE 1789
AS S E MBLE D ON WW 19, 1997 PART NUMBER
ASSEMBLY
LOT CODE
DAT E CODE
YEAR 7 = 1997
LINE C
WEEK 19
LOGO
RECTIFIER
INTERNAT IONAL
EXAMPLE : T HIS IS AN IR F 1010
LOT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
INTERNAT IONAL
RECTIFIER
LOGO
LOT CODE
PART NUMBER
DAT E CODE
For GB Production
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF1404ZS_L
10 www.irf.com
D2Pak Part Marking Information
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
For GB Production
F 530S
T HIS IS AN IRF530S WITH
LOT CODE 8024
AS S EMBL ED ON WW 02, 2000
IN THE ASSEMBLY LINE "L"
ASSEMBLY
LOT CODE
INT E RNAT IONAL
RE CT IF IER
LOGO
PART NUMB E R
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
DAT E CODE
IN THE ASSEMBLY LINE "L"
AS S EMB LED ON WW 02, 2000
THIS IS AN IRF530S WIT H
LOT CODE 8024 INTERNATIONAL
LOGO
RE CT IF IER
LOT CODE
PART NUMBER
F 530S
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF1404ZS_L
www.irf.com 11
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXA
M
PLE:THIS IS A
N IRL3103L
LO
T C
O
DE 1789
A
SSEM
BLY
PA
RT NUMBER
DA
TE C
O
DE
WEEK 19
LINE C
LO
T C
ODE
YEA
R 7 = 1997
A
SSEM
BLED O
N WW
19, 1997
IN THE A
SSEM
BLY LINE "C
"LO
G
O
REC
TIFIER
INTERNA
TIO
NA
L
IGBT
1- GATE
2- COLLEC-
TOR
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF1404ZS_L
12 www.irf.com
IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2011
TO-220AB package is not recommended for Surface Mount Application.
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.11mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the
same charging time as Coss while VDS is rising
from 0 to 80% VDSS .
Notes:
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is only applied to TO-220AB pakcage.
This is applied to D2Pak, when mounted on 1" square PCB (FR-
4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
D2Pak Tape & Reel Information
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24. 30 (.95 7)
23. 90 (.94 1)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.