ACPL-227 / ACPL-247
DC Input Multi-Channel Half-Pitch
Phototransistor Optocoupler
Data Sheet
Description
The ACPL-227 is a DC-input dual channel half-pitch
phototransistor optocoupler which contains two light
emitting diodes optically coupled to two separate photo-
transistors. It is packaged in an 8-pin SO package.
Likewise, the ACPL-247 is a DC-input quad channel half-
pitch phototransistor optocoupler which contains four
light emitting diodes optically coupled to four separate
phototransistors. It is packaged in a 16-pin SO package.
For both devices, the input-output isolation voltage is
rated at 3,000 Vrms. Response time, tr, is 2s typically,
while minimum CTR is 50% at input current of 5 mA.
Features
xCurrent transfer ratio (CTR: 50% (min) at IF = 5mA, VCE = 5V)
xHigh input-output isolation voltage (VISO = 3,000VRMS)
xNon-saturated Response time (tr: 2µs (typ) at VCC =
10V, IC = 2mA, RL= 100:)
xSO package
xCMR 10kV/s (typical)
xSafety and regulatory approvals
- cUL
- IEC/EN/DIN EN 60747-5-2
xOptions available:
CTR Ranks 0, B & C for ACPL-227 and Rank 0 only for
ACPL-247
Applications
x I/O Interface for Programmable controllers, computers.
x Sequence controllers
x System appliances, measuring instruments
x Signal transmission between circuits of dierent
potentials and impedances.
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
ACPL-227 pin layout ACPL-247 pin layout



   

  
Pin 1, 3 Anode
Pin 2, 4 Cathode
Pin 5, 7 Emitter
Pin 6, 8 Collector
Pin 1, 3, 5, 7 Anode
Pin 2, 4, 6, 8 Cathode
Pin 9,11,13,15 Emitter
Pin 10,12,14,16 Collector
2
Ordering Information
ACPL-2x7-xxxx is UL recognized at 3,000 Vrms for 1 minute per UL1577 and Canadian Component Acceptance Notice
#5.
Part
number
RoHS Compliant Option
Package
No. Of
Channels
Surface
Mount
Tape &
Reel
IEC/EN/DIN EN
60747-5-2 Quantity
Rank ‘0’
50%
<CTR<
600%
IF=5mA
VCE=5V
Rank ‘0’
100%
<CTR<
600%
IF=5mA
VCE=5V
Rank ‘B’
130%
<CTR<
260%
IF=5mA
VCE=5V
Rank ‘C’
200%
<CTR<
400%
IF=5mA
VCE=5V
ACPL-227 -500E -50BE -50CE SO-8 Dual X X 2000 pcs per reel
-560E -56BE -56CE SO-8 Dual X X X 2000 pcs per reel
ACPL-247 -500E SO-16 Quad X X 2000 pcs per reel
-560E SO-16 Quad X X X 2000 pcs per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
ACPL-227-56CE to order product of Dual Channel SO-8 Surface Mount package in Tape & Reel with IEC/EN/DIN EN
60747-5-2 Safety Approval, 200%<CTR<400% and RoHS compliant.
Example 2:
ACPL-247-500E to order product of Quad Channel SO-16 Surface Mount package in Tape and Reel packaging with
100%<CTR<600% and RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
3
Package Outline Drawings
4.40
±0.20
0.173
±0.008
0.75
0.030
0.75
0.030
1.27
±0.25
0.050
±0.010
PIN ONE
RANK
DATE CODE
LEAD FREE
VDE option only
A227V
YYWWA
5.20
±0.30
0.205
±0.012
2.00
±0.20
0.079
±0.008
0.12
±0.10
0.005
±0.004
0.40
±0.10
0.016
±0.004
DIMENSIONS IN MILLIMETERS [INCHES]
[0.020.008]
0.7
±
0.2
7.00
±0.40
0.276
±0.016
0.20
±0.05
0.008
±0.002
[0.200.012]
5.30
±
0.3
ACPL-227 PACKAGE OUTLINE
4.40
±0.20
0.173
±0.008
0.75
0.030
0.75
0.030
1.27
±0.25
0.050
±0.010
A247V
YYWWA
DATE CODE
PIN ONE
RANK
ACPL-247 PACKAGE OUTLINE
DIMENSIONS IN MILLIMETERS[INCHES]
LEAD FREE
VDE option only
10.28
±0.30
0.405
±0.012
2.00
±0.20
0.079
±0.008
0.12
±0.10
0.005
±0.004
0.40
±0.10
0.016
±0.004
[0.200.012]
5.30
±
0.3
0.20
±0.05
0.008
±0.002
7.00
±0.40
0.276
±0.016
[0.020.008]
0.7
±
0.2
4
Absolute Maximum Ratings
Parameter Symbol ACPL-227 ACPL-247 Units Note
Storage Temperature TS-55~125 qC
Operating Temperature TA-55~110 qC
Average Forward Current IF(AVG) 50 mA
Pulse Forward Current IFSM 1A
Reverse Voltage VR6V
LED Power Dissipation (1 channel) PI65 mW
Collector Current IC50 mA
Collector-Emitter Voltage VCEO 80 V
Emitter-Collector Voltage VECO 7V
Isolation Voltage (AC for 1min, R.H. 40~60%) VISO 3,000 VRMS 1min
Collector Power Dissipation (1 channel) PC150 100 mW
Total Power Dissipation PTOT 200 170 mW
Lead Solder Temperature 260°C for 10 seconds
Solder Reow Temperature Prole
Recommended reow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.
5
Electrical Specications (DC)
Over recommended ambient temperature at 25qC unless otherwise specied.
Parameter Symbol Min. Typ. Max. Units Test Conditions Note
Forward Voltage VF- 1.2 1.4 V IF = 20mA Fig.6
Reverse Current IR--10
PAVR = 5V
Terminal Capacitance Ct- 30 - pF V = 0, f = 1MHz
Collector Dark Current ICEO - - 100 nA VCE = 48V, IF = 0 mA Fig.12
Collector-Emitter
Breakdown Voltage
BVCEO 80 - - V IC = 0.5 mA, IF = 0 mA
Emitter-Collector
Breakdown Voltage
BVECO 7- - V
IE = 100 PA, IF = 0 mA
Current Transfer Ratio
(ACPL-227 Only)
CTR 50 - 600 % IF = 5 mA, VCE = 5V CTR=(IC/IF )* 100%
Current Transfer Ratio
(ACPL-247 Only)
CTR 100 - 600 % IF = 5 mA, VCE = 5V CTR=(IC/IF )* 100%
Saturated CTR CTR(sat) - 60 - % IF=1mA, VCE = 0.4V
Collector-Emitter
Saturation Voltage
VCE(sat) - - 0.4 V IF = 8mA, IC = 2.4mA Fig.14
Isolation Resistance Riso 5x1010 1x1011 -:DC500V, R.H. 40~60%
Floating Capacitance CF- 0.6 1 pF V = 0, f = 1MHz
Cut-o Frequency
(-3dB)
FC-80- kHzV
CC = 5V, IC = 2 mA,
RL = 100:
Fig. 2,19
Response Time (Rise) tr-2- PsVCC = 10V, IC = 2 mA,
RL = 100:
Fig. 1
Response Time (Fall) tf-3- Ps
Turn-on Time ton -3- Ps
Turn-o Time to -3- Ps
Turn-ON Time tON -2- PsVCC = 5V, IF = 16 mA,
RL = 1.9k:
Fig. 1, 17
Storage Time TS-25- Ps
Turn-OFF Time tOFF -40- Ps
Common Mode
Rejection Voltage
CMR - 10 - kV/Ps Ta=25ºC, RL=470:,
VCM=1.5kV(peak),
IF=0mA, VCC=9V,
Vnp=100mV
Fig.20
Figure 2. Frequency Response Test CircuitFigure 1. Switching Time Test Circuit
,)5/
9&&
9&(
,)
9&(
WRQ WRII


WUWI
WV
95/
9&&
2XWSXW
5'
6







)RUZDUG&XUUHQW,
)
P$
$PELHQW7HPSHUDWXUH7D&









&ROOHFWRU3RZHU'LVVLSDWLRQ3FP:
$PELHQW7HPSHUDWXUH7D&





3HDN)RUZDUG&XUUHQW,)3P$
'XW\5DWLR
3XOVHZLGWKȝV
7D &



)RUZDUG&XUUHQW,)P$
)RUZDUG9ROWDJH9)9








)RUZDUGFXUUHQW,)P$
)RUZDUGYROWDJHWHPSHUDWXUHFRHIIFLHQW
'9
)
'7DP9&





3XOVH)RUZDUG&XUUHQW,)3P$
3XOVH)RUZDUG9ROWDJH9)39
3XOVH:LGWK
ȝV
5HSHWLWLYH
)UHTXHQF\ +]
7D &
&
&
7D &
&
&
&
$&3/
$&3/
$&3/
$&3/
)RUZDUGFXUUHQW,)P$
Figure 3. Forward Current vs. Ambient Temperature.
Figure 6. Forward Current vs. Forward Voltage
Figure 4. Collector Power Dissipation vs. Ambient Temperature
Figure 7. Forward Voltage Temperature Coecient vs. Forward Current
Figure 5. Pulse Forward Current vs. Duty Cycle Ratio
Figure 8. Pulse Forward Current vs. Pulse Forward Voltage
7





&ROOHFWRU&XUUHQW,FP$
&ROOHFWRU(PLWWHU9ROWDJH9&(9










&ROOHFWRU(PLWWHU9ROWDJH9&(9
&ROOHFWRU&XUUUHQW,FP$





)RUZDUG&XUUHQW,)$
&ROOHFWRU&XUUHQW,&$
(
(
(

$PELHQW7HPSHUDWXUH7D&
&ROOHFWRU'DUN&XUUHQW,&(2$
,) P$
P$
P$
P$
P$
3&PD[ P:
3&PD[ P:
$&3/
$&3/
D &
7
,) P$
P$
P$
P$
P$
P$
9
&(
 9
9
9
9&( 9 9
9
9
Figure 9. Collector Current vs. Collector-Emitter Voltage
Figure 12. Collector Dark Current vs. Ambient Temperature
Figure 10. Collector Current vs. Small Collector-Emitter Voltage
Figure 13. Current Transfer Ratio vs. Forward Current
Figure 11. Collector Current vs. Forward Current
Figure 14. Collector-Emitter Saturation Voltage vs. Ambient Temperature




)RUZDUG&XUUHQW,
)
$
&XUUHQW7UDQVIHU5DWLR&75











&ROOHFWRU(PLWWHU6DWXUDWLRQ9ROWDJH
$PELHQW7HPSHUDWXUH7D&
9
&
(
VDW9
9
&
(
 9
9
9
,
)
 P$
,
&
 P$
,
)
 P$
,
&
 P$
,
)
 P$
,
&
 P$




$PELHQW7HPSHUDWXUH7DR&
&ROOHFWRU&XUUHQW,&P$





6ZLWFKLQJ7LPHWȝV
/RDG5HVLVWDQFH5/N
7D &
9
&&
 9
5
/
 N




$PELHQW7HPSHUDWXUH7D&
6ZLWFKLQJWLPHWȝV
,
)
 P$
9
&&
 9
5
/
 N
)RUZDUG&XUUHQW,)P$
&ROOHFWRU(PLWWHU6DWXUDWLRQ9ROWDJH9&(VDW9





)UHTXHQF\IN+]
9RG%
9FF 9
,& P$
7D &
9R
5
/
9FF
9
&0
 9
+LJK9ROWDJH3XOVH
9
&0
G9GW
9R 9
FS
9
QS
9FS§G9GW[&
I
[5
/
9
FS
9ROWDJHWKDWLVJHQHUDWHGE\WKH
FDSDFLWDQFHEHWZHHQSULPDU\DQG
GLVSODFHPHQWFXUUHQWLQIORDWLQJ
VHFRQGDU\VLGHV
,
)
 P$
P$
P$
P$
P$
W
21
7
6
W
2))
,& P$
P$
P$
P$
P$
P$
W
2))
7D &
W
6
W
21
N
5/ 
Figure 15. Collector Current vs. Ambient Temperature Figure 16. Switching Time vs. Load Resistance
Figure 17. Switching Time vs. Ambient Temperature Figure 18. Collector-Emitter Saturation Voltage vs. Forward Current
Figure 19. Frequency Response Figure 20. CMR Test Circuit
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved.
AV02-0752EN - July 20, 2010