TPS715xx www.ti.com .................................................................................................................................................... SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 50 mA, 24 V, 3.2-A Supply Current Low-Dropout Linear Regulator in SC70 Package FEATURES DESCRIPTION 1 * * * * * 2 * * * * * 24-V Maximum Input Voltage Low 3.2-A Quiescent Current at 50 mA Stable With Any Capacitor ( 0.47 F) 50-mA Low-Dropout Regulator Available in 1.8 V, 1.9 V, 2.3 V, 2.5 V, 3.0 V, 3.3 V, 3.45 V, 5.0 V, and Adjustable (1.2 V to 15 V) Designed to Support MSP430 Families: - 1.9-V version ensured to be higher than minimum VIN of 1.8 V - 2.3-V version ensured to meet 2.2-V minimum VIN for FLASH on MSP430F2xx - 3.45-V version ensured to be lower than maximum VIN of 3.6 V - Wide variety of fixed output voltage options to match VIN to the minimum required for desired MSP430 speed Minimum/Maximum Specified Current Limit 5-Pin SC70/SOT-323 (DCK) Package -40C to +125C Specified Junction Temperature Range For 80-mA Rated Current and Higher Power Package, see TPS715Axx The TPS715xx low-dropout (LDO) voltage regulators offer the benefits of high input voltage, low-dropout voltage, low-power operation, and miniaturized packaging. The devices, which operate over an input range of 2.5 V to 24 V, are stable with any capacitor ( 0.47 F). The low dropout voltage and low quiescent current allow operations at extremely low power levels. Therefore, the devices are ideal for powering battery management ICs. Specifically, since the devices are enabled as soon as the applied voltage reaches the minimum input voltage, the output is quickly available to power continuously operating battery charging ICs. The usual PNP pass transistor has been replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the low dropout voltage, typically 415 mV at 50 mA of load current, is directly proportional to the load current. The low quiescent current (3.2 A typically) is stable over the entire range of output load current (0 mA to 50 mA). APPLICATIONS * * * Ultra-Low Power Microcontrollers Cellular/Cordless Handsets Portable/Battery-Powered Equipment DCK PACKAGE (TOP VIEW) FB/NC 1 GND 2 NC 3 IN 5 OUT 4 IN Solar Cell TPS715xx OUT GND MSP430 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright (c) 2001-2008, Texas Instruments Incorporated TPS715xx SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 .................................................................................................................................................... www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ORDERING INFORMATION (1) VOUT (2) PRODUCT TPS715xxyyyz (1) (2) XX is nominal output voltage (for example, 28 = 2.8 V, 285 = 2.85 V, 01 = Adjustable). YYY is package designator. Z is package quantity. For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Output voltages from 1.25 V to 5.4 V in 50-mV increments are available through the use of innovative factory EEPROM programming; minimum order quantities may apply. Contact factory for details and availability. ABSOLUTE MAXIMUM RATINGS (1) (2) Over operating temperature range (unless otherwise noted). UNIT VIN range -0.3 V to +24 V VOUT range -0.3 V to +16.5 V Peak output current Internally limited ESD rating, HBM 2 kV ESD rating, CDM 500 V Continuous total power dissipation See Dissipation Rating Table Junction temperature range, TJ -40C to +150C Storage temperature range, Tstg -65C to +150C (1) (2) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. DISSIPATION RATING TABLE BOARD PACKAGE RJCC/W RJAC/W DERATING FACTOR ABOVE TA = +25C TA 25C POWER RATING TA = +70C POWER RATING TA = +85C POWER RATING Low-K (1) DCK 165 395 2.52 mW/C 250 mW 140 mW 100 mW High-K (2) DCK 165 315 3.18 mW/C 320 mW 175 mW 130 mW (1) (2) 2 The JEDEC Low-K (1s) board design used to derive this data was a 3 inch x 3 inch, two-layer board with 2 ounce copper traces on top of the board. The JEDEC High-K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground planes and 2 ounce copper traces on top and bottom of the board. Submit Documentation Feedback Copyright (c) 2001-2008, Texas Instruments Incorporated TPS715xx www.ti.com .................................................................................................................................................... SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 ELECTRICAL CHARACTERISTICS Over operating junction temperature range (TJ = -40C to +125C), VIN = VOUT(NOM) + 1 V, IOUT = 1 mA, and COUT = 1 F, unless otherwise noted. Typical values are at TJ = +25C. PARAMETER TEST CONDITIONS Input voltage (1) VIN Ground pin current Over VIN, IOUT, and T (2) IGND TYP UNIT 24 IO = 50 mA 3 24 1.2 15 V -4.0 +4.0 % VIN + 1.0 V VIN 24 V 100 A IOUT 50 mA 0 IOUT 50 mA, TJ = -40C to +85C 3.2 4.2 0 mA IOUT 50 mA 3.2 4.8 0 mA IOUT 50 mA, VIN = 24 V VOUT/IOUT IOUT = 100 A to 50 mA 22 Output voltage line regulation (1) VOUT/VIN VOUT + 1 V < VIN 24 V 20 BW = 200 Hz to 100 kHz, COUT = 10 F, IOUT = 50 mA Output noise voltage Vn Output current limit ICL Power-supply ripple rejection PSRR f = 100 kHz, COUT = 10 F Dropout voltage VIN = VOUT(NOM) - 0.1 V VDO IOUT = 50 mA V A 5.8 Load regulation (1) (2) MAX 2.5 VOUT voltage range (TPS71501) VOUT accuracy (1) MIN IO = 10 mA mV 60 mV Vrms 575 VOUT = 0 V, VIN 3.5 V 125 750 mA VOUT = 0 V, VIN < 3.5 V 90 750 mA 60 415 dB 750 mV Minimum VIN = VOUT + VDO or the value shown for Input voltage in this table, whichever is greater. See Figure 1. The TPS715xx family employs a leakage null control circuit. This circuit is active only if output current is less than pass FET leakage current. The circuit is typically active when output load is less than 5 A, VIN is greater than 18 V, and die temperature is greater than +100C. Copyright (c) 2001-2008, Texas Instruments Incorporated Submit Documentation Feedback 3 TPS715xx SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 .................................................................................................................................................... www.ti.com FUNCTIONAL BLOCK DIAGRAMS V(OUT) V(IN) Current Sense Leakage Null Control Circuit ILIM _ GND R1 + FB R2 Vref = 1.205 V Bandgap Reference Figure 1. Functional Block Diagram--Adjustable Version V(OUT) V(IN) Current Sense Leakage Null Control Circuit ILIM _ GND Bandgap Reference R1 + R2 Vref = 1.205 V Figure 2. Functional Block Diagram--Fixed Version Table 1. Terminal Functions TERMINAL NAME NO. FIXED FB 4 DESCRIPTION ADJ. 1 Adjustable version only. This terminal is used to set the output voltage. NC 1 GND 2 2 No connection Ground NC 3 3 No connection IN 4 4 Input supply. OUT 5 5 Output of the regulator, any output capacitor 0.47 F can be used for stability. Submit Documentation Feedback Copyright (c) 2001-2008, Texas Instruments Incorporated TPS715xx www.ti.com .................................................................................................................................................... SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 TYPICAL CHARACTERISTICS OUTPUT VOLTAGE vs OUTPUT CURRENT OUTPUT VOLTAGE vs JUNCTION TEMPERATURE 3.320 3.305 3.300 3.295 3.290 0 10 20 30 40 3.28 3.27 3.26 VIN = 4.3 V COUT = 1 F -40 -25 -10 5 20 35 50 65 80 95 110 125 TJ - Junction Temperature - C Figure 5. OUTPUT SPECTRAL NOISE DENSITY vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY DROPOUT VOLTAGE vs OUTPUT CURRENT 600 VIN = 4.3 V VOUT = 3.3 V COUT = 1 F TJ = 25C 16 6 IOUT = 50 mA 4 3 2 1 14 12 10 8 6 IOUT = 1 mA 4 2 0 1k 10 k f - Frequency - Hz 10 100 k VIN = 3.2 V COUT = 1 F 500 TJ = 125C 400 TJ = 25C 300 200 TJ = -40C 100 IOUT = 50 mA 0 100 V DO - Dropout Voltage - mV VIN = 4.3 V VOUT = 3.3 V COUT = 1 F IOUT = 1 mA 100 1k 10k 100k 1M 0 10 M 0 f - Frequency - Hz 10 20 30 40 IOUT - Output Current - mA Figure 7. Figure 8. TPS71501 DROPOUT VOLTAGE vs INPUT VOLTAGE DROPOUT VOLTAGE vs JUNCTION TEMPERATURE POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY 1 600 IOUT = 50 mA VIN = 3.2 V V DO - Dropout Voltage - mV 0.8 TJ = 125C 0.7 TJ = 25C 0.6 0.5 0.4 TJ = -40C 0.3 0.2 500 IOUT = 50 mA 400 300 200 IOUT = 10 mA 100 0.1 0 3 6 9 12 15 VIN - Input Voltage - V Figure 9. Copyright (c) 2001-2008, Texas Instruments Incorporated 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 TJ - Junction Temperature - C Figure 10. PSRR - Power Supply Ripple Rejection - dB Figure 6. 0.9 0 2.5 2 18 5 3 Figure 4. 8 7 3.5 Figure 3. Zo - Output Impedance - Hz IOUT = 50 mA 3.29 VIN = 4.3 V VOUT = 3.3 V IOUT = 1 F 4 3.30 3.25 -40 -25 -10 5 20 35 50 65 80 95 110 125 TJ - Junction Temperature - C 50 IO - Output Current - mA V/ IOUT = 1 mA IGND - Ground Current - A VOUT - Output Voltage - V VOUT - Output Voltage - V 3.31 3.310 Output Spectral Noise Density - 4.5 3.32 VIN = 4.3 V COUT = 1 F TJ = 25C 3.315 V DO - Dropout Voltage - V QUIESCENT CURRENT vs JUNCTION TEMPERATURE 50 100 VIN = 4.3 V VOUT = 3.3 V COUT = 10 F TJ = 25C 90 80 70 60 IOUT = 1 mA 50 40 30 20 IOUT = 50 mA 10 0 10 100 1k 10k 100k 1M 10 M f - Frequency - Hz Figure 11. Submit Documentation Feedback 5 TPS715xx SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 .................................................................................................................................................... www.ti.com TYPICAL CHARACTERISTICS (continued) DVOUT - Change in Output Voltage - mV VIN - Input Voltage - V VOUT - Output Voltage - V 6 5 4 3 VIN 2 VOUT 1 0 0 2 4 6 8 10 12 14 t - Time - ms 16 18 Figure 12. 6 Submit Documentation Feedback 20 VIN - Input Voltage - V VOUT = 3.3 V RL = 66 COUT = 10 F 7 LOAD TRANSIENT RESPONSE DVOUT - Change in Output Voltage - mV LINE TRANSIENT RESPONSE VOUT = 3.3 V IOUT = 50 mA COUT = 10 F 100 50 0 -50 5.3 4.3 0 50 100 150 200 250 300 350 400 450 500 t - Time - s Figure 13. IOUT - Output Current - mA POWER-UP / POWER-DOWN 8 400 200 VIN = 4.3 V VOUT = 3.3 V COUT = 10 mF 0 -200 60 40 20 0 0 100 200 300 400 500 600 700 800 900 1000 ms t - Time - Figure 14. Copyright (c) 2001-2008, Texas Instruments Incorporated TPS715xx www.ti.com .................................................................................................................................................... SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 APPLICATION INFORMATION The TPS715xx family of LDO regulators has been optimized for ultra-low power applications such as the MSP430 microcontroller. Its ultra-low supply current maximizes efficiency at light loads, and its high input voltage range makes it suitable for supplies such as unconditioned solar panels. VIN IN C1 0.1 F TPS71533 OUT GND VOUT 0.47 F Figure 15. Typical Application Circuit (Fixed Voltage Version) External Capacitor Requirements Although not required, a 0.047-F or larger input bypass capacitor, connected between IN and GND and located close to the device, is recommended to improve transient response and noise rejection of the power supply as a whole. A higher-value input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source. The TPS715xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. Any capacitor (including ceramic and tantalum) greater than or equal to 0.47 F properly stabilizes this loop. X7R type capacitors are recommended, but X5R and others may be used. Power Dissipation and Junction Temperature To ensure reliable operation, worst-case junction temperature should not exceed +125C. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, PD(max), and the actual dissipation, PD, which must be less than or equal to PD(max). The maximum-power-dissipation limit is determined using the following equation: T max * T A P + J D(max) R qJA (1) where: * TJmax is the maximum allowable junction temperature. * RJA is the thermal resistance junction-to-ambient for the package (see the Dissipation Ratings table). * TA is the ambient temperature. The regulator dissipation is calculated using: P D + VIN*V OUT I OUT (2) For a higher power package version of the TPS715xx, see the TPS715Axx. Regulator Protection The TPS715xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g., during power-down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might be appropriate. The TPS715xx features internal current limiting. During normal operation, the TPS715xx limits output current to approximately 500 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. Take care not to exceed the power dissipation ratings of the package. Copyright (c) 2001-2008, Texas Instruments Incorporated Submit Documentation Feedback 7 TPS715xx SLVS338P - MAY 2001 - REVISED NOVEMBER 2008 .................................................................................................................................................... www.ti.com Programming the TPS71501 Adjustable LDO Regulator The output voltage of the TPS71501 adjustable regulator is programmed using an external resistor divider as shown in Figure 16. The output voltage operating range is 1.2 V to 15 V, and is calculated using: 1 ) R1 R2 V OUT + VREF (3) where: * VREF = 1.205 V typ (the internal reference voltage) Resistors R1 and R2 should be chosen for approximately 1.5-A divider current. Lower value resistors can be used for improved noise performance, but the solution consumes more power. Higher resistor values should be avoided as leakage current into/out of FB across R1/R2 creates an offset voltage that artificially increases/decreases the feedback voltage and thus erroneously decreases/increases VOUT. The recommended design procedure is to choose R2 = 1 M to set the divider current at 1.5 A, and then calculate R1 using Equation 4: R1 + VV OUT *1 REF R2 (4) OUTPUT VOLTAGE PROGRAMMING GUIDE VIN IN VOUT OUT TPS71501 R1 0.1F GND FB R2 VOUT + VREF CFB 0.47F OUTPUT VOLTAGE R1 R2 1.8 V 0.499 M 1 M 2.8 V 1.33 M 1 M 5.0 V 3.16 M 1 M 1 ) R1 R2 Figure 16. TPS71501 Adjustable LDO Regulator Programming Power the MSP430 Microcontroller Several versions of the TPS715xx are ideal for powering the MSP430 microcontroller. Table 2 shows potential applications of some voltage versions. Table 2. Typical MSP430 Applications DEVICE VOUT (TYP) TPS71519 1.9 V APPLICATION VOUT, MIN > 1.800 V required by many MSP430s. Allows lowest power consumption operation. TPS71523 2.3 V VOUT, MIN > 2.200 V required by some MSP430s FLASH operation. TPS71530 3.0 V VOUT, MIN > 2.700 V required by some MSP430s FLASH operation. TPS715345 3.45 V VOUT, MIN < 3.600 V required by some MSP430s. Allows highest speed operation. The TPS715xx family offers many output voltage versions to allow designers to minimize the supply voltage for the processing speed required of the MSP430. This minimizes the supply current consumed by the MSP430. 8 Submit Documentation Feedback Copyright (c) 2001-2008, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp Samples (Requires Login) BQ71525DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM BQ71525DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM BQ71533DCKR ACTIVE SC70 DCK 5 TBD Call TI Call TI BQ71533DCKRG4 ACTIVE SC70 DCK 5 TBD Call TI Call TI TPS71501DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71501DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71518DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71518DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71519DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71519DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71523DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71523DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71525DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71525DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71530DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71530DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71533DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71533DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Addendum-Page 1 (3) PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 17-Aug-2012 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp TPS715345DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS715345DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71550DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TPS71550DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM (3) Samples (Requires Login) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TPS71501, TPS71525, TPS71530, TPS71533, TPS71550 : * Automotive: TPS71501-Q1, TPS71525-Q1, TPS71530-Q1, TPS71533-Q1, TPS71550-Q1 Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 * Enhanced Product: TPS71501-EP NOTE: Qualified Version Definitions: * Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects * Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant BQ71525DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71501DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71501DCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 TPS71518DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71519DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71523DCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 TPS71523DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71525DCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 TPS71525DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71530DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71530DCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 TPS71533DCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 TPS71533DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS715345DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71550DCKR SC70 DCK 5 3000 180.0 8.4 2.25 2.4 1.22 4.0 8.0 Q3 TPS71550DCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) BQ71525DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71501DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71501DCKR SC70 DCK 5 3000 180.0 180.0 18.0 TPS71518DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71519DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71523DCKR SC70 DCK 5 3000 180.0 180.0 18.0 TPS71523DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71525DCKR SC70 DCK 5 3000 180.0 180.0 18.0 TPS71525DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71530DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71530DCKR SC70 DCK 5 3000 180.0 180.0 18.0 TPS71533DCKR SC70 DCK 5 3000 180.0 180.0 18.0 TPS71533DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS715345DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71550DCKR SC70 DCK 5 3000 202.0 201.0 28.0 TPS71550DCKR SC70 DCK 5 3000 180.0 180.0 18.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated