January 2012 I
© 2012 Microsemi Corporation
Accelerator Series FPGAs – ACT 3 Family
Features
Up to 10,000 Gate Array Equivalent Gates (up to 25,000
equivalent PLD Gates)
Highly Predictable Perfo rmance with 100% Au tomatic Place-
and-Route
As Low as 9.0 ns Clock-to-Output Times (–1 Speed Grade)
Up to 186 MHz On-Chip Performance (–1 Speed Grade)
Up to 228 User-Programmable I/O Pins
Four Fast, Low-Skew Clock N etworks
More than 500 Macro Functions
Replaces up to Twenty 32 Macro-Cell CPLDs
Replaces up to One Hundred 20-Pin PAL ® Pa ckage s
Up to 1,153 Dedicated Flip-Flop s
VQFP, TQFP, BGA, and PQFP Packages
Nonvolatile, User Programmable
Fully Tested Prior to Shipment
5.0 V and 3.3 V Versions
Optimized for Logic Synthesis Meth odologies
Low Power CMOS Technology
Table 1 • ACT 3 Family Product Information
Device A1415 A1425 A1440 A1460 A14100
Capacity
Gate Array Equivalen t Gates 1,500 2,500 4,000 6,000 10,000
PLD Equivalent Gates 3,750 6,250 10,000 15,000 25,000
TTL Equivalent Package (40 gates) 40 60 100 150 250
20-Pin PAL Equivalent Packages (100 gates) 15 25 40 60 100
Logic Modules 200 310 564 848 1,377
S-Module 104 160 288 432 697
C-Module 96 150 276 416 680
Dedicated Flip-Flops1264 360 568 768 1,153
User I/Os (maximum) 80 100 140 168 228
Maximum Performance2 (worst-case commercial, –1 speed grade)
Chip-to-Chip3 (MHz) 80 80 80 78 76
Accumulators (16-bit, MHz) 47 47 47 47 47
Loadable Counter (16-bit, MHz) 82 82 82 82 78
Prescaled Loadable Counters (16-bit, MHz) 186 186 186 150 150
Datapath, Shift Registers (MHz) 186 186 186 150 150
Clock-to-Output (pad-to-pad, ns) 9.0 9.0 9.5 10.0 10.5
Packages4 (by pin count)
CPGA
PLCC
PQFP
RQFP
VQFP
TQFP
BGA
CQFP
PG1005
PL84
PQ100
VQ100
PG1335
PL84
PQ100, PQ160
VQ100
CQ132
PG1755
PL84
PQ160
VQ100
TQ176
PG207
PQ160, PQ208
TQ176
BG2255
CQ196
PG257
RQ208
BG313
CQ256
Notes:
1. One flip-flop per S0Module, two flip-flops per I/O Module.
2. Based on A1415A-1, A1425A-1, A1440A-1, A1460A-1, and A1410 0A-1.
3. Clock-to-Output (pad-to-pad) + assumed trace d elay + setup time. Refer to the "System Performance Mo del" on page 1-1 and
Table 1-1 on page 1-2.
4. See the "Product Plan" table on page III for package availability.
5. Discontinued device and package combination.
6. –2 and –3 speed grades have been discontinued. For more information about discontinued devices, refer to the Product
Discontinuation Notices (PDNs) listed below, available on the Microsemi SoC Products Group website:
PDN March 2001, PDN 0104, PDN 0203, PDN 0604, PDN 1004
Revision 3
Accelerator Series FPGAs – ACT 3 Family
II Revision 3
Ordering Information
Notes:
1. The –2 and –3 speed gra des have been discontinued.
2. The Ceramic Pin Grid Array packages PG100, PG133, and PG175 have been discontinued in all device densities, speed
grades, and temperature grades.
3. The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed
grades, and all temperature grades.
4. Military Grade devices are no longer available for the A1440A device.
5. For more information about discontinued devices, refer to the Product Discontinuation Notices (PDNs) listed below, av ailable on
the Microsemi SoC Products Group website:
PDN March 2001
PDN 0104
PDN 0203
PDN 0604
PDN 1004
_
Part Number
Speed Grade
Package Type
Package Lead Count
C = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
B = MIL-STD-883
Application (Temperature Range)
PG = Ceramic Pin Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flatpack
RQ = Plastic Power Quad Flatpack
VQ = Very Thin (1.0 mm) Quad Flatpack
TQ = Thin (1.4 mm) Quad Flatpack
CQ = Ceramic Quad Flatpack
BG = Plastic Ball Grid Array
Std = Standard Speed
–1 = Approximately 15% faster than Standard
–2 = Approximately 25% faster than Standard
–3 = Approximately 35% faster than Standard
A1415A = 1,500 Gates
A14V15A = 1,500 Gates (3.3 V)
A1425A = 2,500 Gates
A14V25A = 2,500 Gates (3.3 V)
A1440A = 4,000 Gates
A14V40A = 4,000 Gates (3.3 V)
A1460A = 6,000 Gates
A14V60A = 6,000 Gates (3.3 V)
A14100A = 10,000 Gates
A14V100A = 10,000 Gates (3.3 V)
A14100 1
Die Revision
A = 1.0 mm CMOS Process
ARQ 208GC
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
Accelerator Series FPGAs – ACT 3 Family
Revision 3 III
Product Plan
Device/Package
Speed Grade1Application1
Std. –1 –2 –3 C I M B
A1415A Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ✓✓DD✓✓
100-Pin Plastic Quad Flatpack (PQFP) ✓✓DD✓✓
100-Pin Very Thin Quad Flatpack (VQFP) ✓✓DD✓✓
100-Pin Ceramic Pin Grid Array (CPGA) D D D D D
A14V15A Device
84-Pin Plastic Leaded Chip Carrier (PLCC) –––
––
100-Pin Very Thin Quad Flatpack (VQFP) –––
––
A1425A Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ✓✓DD✓✓
100-Pin Plastic Quad Flatpack (PQFP) ✓✓DD✓✓ ––
100-Pin Very Thin Quad Flatpack (VQFP) ✓✓DD✓✓ ––
132-Pin Ceramic Quad Flatpack (CQFP) ✓✓ ––
✓✓
133-Pin Ceramic Pin Grid Array (CPGA) D D D D D D D
160-Pin Plastic Quad Flatpack (PQFP) ✓✓DD✓✓ ––
A14V25A Device
84-Pin Plastic Leaded Chip Carrier (PLCC) –––
––
100-Pin Very Thin Quad Flatpack (VQFP) –––
––
160-Pin Plastic Quad Flatpack (PQFP) –––
––
A1440A Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ✓✓DD✓✓ ––
100-Pin Very Thin Quad Flatpack (VQFP) ✓✓DD✓✓ ––
160-Pin Plastic Quad Flatpack (PQFP) ✓✓DD✓✓ ––
175-Pin Ceramic Pin Grid Array (CPGA) D D D D D
176-Pin Thin Quad Flatpack (TQFP) ✓✓DD––
Notes:
1. Applications:
C = Commercial
I = Industrial
M = Military
2. Commercial only
Availability:
= Available
P = Planned
– = Not planned
D = Discontinued
Speed Grade:
–1 = Approx. 15% faster than Std.
–2 = Approx. 25% faster than Std.
–3 = Approx. 35% faster than Std.
(–2 and –3 speed grades have
been discontinued.)
Accelerator Series FPGAs – ACT 3 Family
IV Revision 3
A14V40A Device
84-Pin Plastic Leaded Chip Carrier (PLCC) –––
––
100-Pin Very Thin Quad Flatpack (VQFP) –––
––
160-Pin Plastic Quad Flatpack (PQFP) –––
––
176-Pin Thin Quad Flatpack (TQFP) –––
––
A1460A Device
160-Pin Plastic Quad Flatpack (PQFP) ✓✓DD✓✓ ––
176-Pin Thin Quad Flatpack (TQFP) ✓✓DD✓✓ ––
196-Pin Ceramic Quad Flatpack (CQFP) ✓✓ ––✓✓
207-Pin Ceramic Pin Grid Array (CPGA) ✓✓DD✓✓
208-Pin Plastic Quad Flatpack (PQFP) ✓✓DD✓✓ ––
225-Pin Plastic Ball Grid Array (BGA) D D D D D ––
A14V60A Device
160-Pin Plastic Quad Flatpack (PQFP) –––––
176-Pin Thin Quad Flatpack (TQFP) –––––
208-Pin Plastic Quad Flatpack (PQFP) –––––
A14100A Device
208-Pin Power Quad Flatpack (RQFP) ✓✓DD✓✓ ––
257-Pin Ceramic Pin Grid Array (CPGA) ✓✓DD✓✓
313-Pin Plastic Ball Grid Array (BGA) ✓✓DD––
256-Pin Ceramic Quad Flatpack (CQFP) ✓✓ ––✓✓
A14V100A Device
208-Pin Power Quad Flatpack (RQFP) –––––
313-Pin Plastic Ball Grid Array (BGA) –––––
Device/Package
Speed Grade1Application1
Std. –1 –2 –3 C I M B
Notes:
1. Applications:
C = Commercial
I = Industrial
M = Military
2. Commercial only
Availability:
= Available
P = Planned
– = Not planned
D = Discontinued
Speed Grade:
–1 = Approx. 15% faster than Std.
–2 = Approx. 25% faster than Std.
–3 = Approx. 35% faster than Std.
(–2 and –3 speed grades have
been discontinued.)
Accelerator Series FPGAs – ACT 3 Family
Revision 3 V
Plastic Device Resources
Hermetic Device Resources
Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability:
http://www.microsemi.com/soc/contact/default.aspx.
Device
Series Logic
Modules Gates
User I/Os
PL84 PQ100 PQ160 PQ/RQ208 VQ100 TQ176 BG225* BG313
A1415 200 1500 70 80 80
A1425 310 2500 70 80 100 83
A1440 564 4000 70 – 131 83 140
A1460 848 6000 131 167 151 168
A14100 1377 10000 175 228
Note: *Discontinued
Device
Series Logic
Modules Gates
User I/Os
PG100* PG133* PG175* PG207 PG257 CQ132 CQ196 CQ256
A1415 200 1500 80 – – – – – – –
A1425 310 2500 100 – – – 100 – –
A1440 564 4000 – – 140 – – – – –
A1460 848 6000 – – – 168 – – 168
A14100 1377 10000 – – – – 228 – – 228
Note: *Discontinued
Table of Contents
VI Revision 3
ACT 3 Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Detailed Specifications
Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Clock Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Routing Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
5 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
3.3 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
ACT 3 Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
Package Pin Assignments
PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
PQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
PQ208, RQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
CQ132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
CQ196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
BG225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
BG313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
PG100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
PG133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
PG175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
PG207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
PG257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Safety Critical, Life Support, and High -R eliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Revision 3 1-1
1 – ACT 3 Family Overview
General Description
Microsemi’s ACT 3 Accelerator Series of FPGAs offers the industry’s fastest high-capacity
programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable
solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (–1 speed grade),
with capacities spanning from 1,500 to 10,000 gate array equivalent gates.
The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and
sequential logic modules used in Microsemi’s 3200DX and 1200XL families. In addition, the ACT 3 I/O
modules contain registers which deliver 9.0 nanosecond clock-to-out times (–1 speed grade). The
devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting
very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high
fanout signals such as flip-flop resets and output.
The ACT 3 family is supported by Microsemi’s Designer Series Development System which offers
automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user
programming, and debug and diagnostic probe capabilities.
System Performance Model
Figure 1- 1 • Predictable Performance (worst-case commercial, –1 speed grade)
Accumulators (16-Bit)
Loadable Counters (16-Bit)
Prescaled Loadable Counters (16-Bit)
Shift Registers
186 MHz
82 MHz
47 MHz
186 MHz
Chip #2 I/O ModuleChip #1 I/O Module
35 pF
I/O CLK I/O CLK
tCKHS tTRACE tINSU
ACT 3 Family Overview
1-2 Revision 3
Table 1-1 • Chip-to-Chip Performance (worst-case commer cial)
Device and Sp eed
Grade tCKHS (ns) tTRACE (ns) tINSU (ns) Tot al (ns) MHz
A1425A -3 7.5 1.0 1.8 10.3 97
A1460A -3 9.0 1.0 1.3 11.3 88
A1425A -2 7.5 1.0 2.0 10.5 95
A1460A -2 9.0 1.0 1.5 11.5 87
A1425A -1 9.0 1.0 2.3 12.3 81
A1460A -1 10.0 1.0 1.8 12.8 78
A1425A STD 10.0 1.0 2.7 13.7 73
A1460A STD 11.5 1.0 2.0 14.5 69
Note: The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN
0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Revision 3 2-1
2 – Detailed Specifications
This section of the datasheet is mea nt to familiarize the user with the architecture of the ACT 3 family of
FPGA devices. A generic description of the family will be presented first, followed by a detailed
description of the logic blocks, the routing structure, the antifuses, and the special function circuits. The
on-chip circuitry required to program the devices is not covered.
Topology
The ACT 3 family architecture is composed of six key elements: Logic modules, I/O modules, I/O Pad
Drivers, Routing Tracks, Clock Networks, and Programming and Test Circuits. The basic structure is
similar for all devices in the family, differing only in the number of rows, columns, and I/Os. The array
itself consists of alternating rows of modules and channels. The logic modules and channels are in the
center of the array; the I/O modules are located along the array periphery. A simplified floor plan is
depicted in Figure 2-1.
Figure 2- 1 • Generalized Floor Plan of ACT 3 Device
IOIO IO IO IOIO
CSCSSIOIOC
CSCSSIOIOC
CSCSSIOIOC
BIO IO IO IO IOIO
IOIO BIN S C C SS
IOIO BIN S C C SS
IOIO BIN S C C SS
IOIO IO CLKM IO
IO IO IO IO
IOIO BIN S C
IO
CSSCSCSSIOIOC
An Array with
n
rows and
m
columns
Top I/Os
Bottom I/Os
Left I/Os Right I/Os
Rows
n+1
n
n–1
2
1
0
Channels
n+1
n
n–1
2
1
0
n+2
0 1 2 3 4 5 c–1 c c+1 m m+1m+2 m+3 Columns
Detailed Specifications
2-2 Revision 3
Logic Modules
ACT 3 logic modules are enhanced versions of the 1200XL family logic modules. As in the 1200XL
family, there are two types of modules: C-modules and S-modules (Figure 2-2 and Figure 2-3). The C-
module is functionally equivalent to the 1200XL C-module and implements high fanin combinatorial
macros, such as 5-input AND, 5-input OR, and so on. It is available for use as the CM8 hard macro. The
S-module is designed to implement high-speed sequential functions within a singl e module.
S-modules consist of a full C-module driving a flip-flop, which allows an additional level of logic to be
implemented without additiona l propagation delay. It is available for use as the DF M8A/B and DLM8A/B
hard macros. C-modules and S-modules are arranged in pairs called module-pairs. Module-pairs are
arranged in alternating patterns and make up the bulk of the array. This arrangement allows the
placement software to support two-module macros of four types (CC, CS, SC, and SS). The C-module
implements the following function:
Y = !S1 * !S0 * D00 + !S1 * S0 * D01 + S1 * !S0 * D10 + S1 * S0 * D11 EQ 1
where: S0 = A0 * B0 and S1 = A1 + B1
Figure 2- 2 • C-Module Diagram
Figure 2- 3 • S-Module Diagram
D11
D01
D00
D10
A1 B1 A0 B0
YOUT
S1 S0
CLR
CLK
D11
D01
D00
D10
A1 B1 A0 B0
YQ
DOUT
S0
S1
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-3
The S-module contains a full implementation of the C-module plus a clearable sequential element that
can either implement a latch or flip-flop function. The S-module can therefore implement any function
implemented by the C-module. This allows complex combinatorial-sequential functions to be
implemented with no delay penalty. The Designer Series Development System will automatically
combine any C-module macro driving an S-module macro into the S-module, thereby freeing up a logic
module and eliminating a module delay.
The clear input CLR is accessible from the routing channel. In addition, the clock input may be connected
to one of three clock networks: CLKA, CLKB, or HCLK. The C-module and S-module functional
descriptions are shown in Figure 2-2 and Figure 2-3 on page 2-2. The clock selection is determined by a
multiplexer select at the clock input to the S-module.
I/Os
I/O Modules
I/O modules provide an interfa ce between the array and the I/O Pad Drivers. I/O modules are located in
the array and access the routing channels in a similar fashion to logic modules. The I/O module
schematic is shown in Figure 4. The signals Da taIn and DataOut connect to the I/O pad driver.
Each I/O module contains two D-type flip-flops. Each flip-flop is connected to the dedicated I/O clock
(IOCLK). Each flip-flop can be bypassed by nonsequential I/Os. In addition, each flip-flop contains a data
enable input that can be accessed from the routing channels (ODE and IDE). The asynchronous
preset/clear input is driven by the dedi cated preset/clear network (IOPCL ). Either preset or clear can be
selected individually on an I/O module by I/O module basis.
Figure 2- 4 • Functional Diagram for I/O Module
DDATAOUT
DQ
CLR/PRE
DATAIN
IOCLK
IOPCL
Y
D
Q
CLR/PRE
ODE
MUX
1
0MUX
1
0
MUX0
1
MUX
3
0
1
2
S1 S0
Detailed Specifications
2-4 Revision 3
The I/O module output Y is used to bring Pad signals into the array or to feed the output register back into
the array. This allows the outpu t register to be used in high-speed state machine app lications. Side I/O
modules have a dedicated output segment for Y extending into the routing channels above and below
(similar to logic mo dules). Top/Bottom I/O modules have no dedicated output segment. Signals comi ng
into the chip from the top or bottom are routed usin g F-fuses and LVTs (F-fuses and LVTs are explained
in detail in the routing section).
I/O Pad Drivers
All pad drivers are capable of being tristate. Each buffer connects to an associated I/O module with four
signals: OE (Output Enable), IE (Input Enable ), DataOut, and DataIn. Certain special signals used only
during programming and test also connect to the pad drivers: OUTEN (global output enable), INEN
(global input enable), and SLEW (individual slew sel ection). See Figure 2-5.
Special I/Os
The special I/Os are of two types: temporary and permanent. Temporary special I/Os are used during
programming and testing. They function as normal I/Os when the MODE pin is inactive. Permanent
special I/Os are user programmed as either normal I/Os or special I/Os. Their function does not change
once the device has been programmed. The permanent special I/Os consist of the array clock input
buffers (CLKA and CLKB), the hard-wired array clock input buffer (HCLK), the hard-wired I/O clock input
buffer (IOCLK), and the hard-wired I/O register preset/clear input buffer (IOPCL). Their function is
determined by the I/O macros selected.
Clock Networks
The ACT 3 architecture contains four clock networks: two high-performance dedicated clock networks
and two general purpose routed networks. The high-performance networks function up to 200 MHz,
while the general purpose routed ne tworks function up to 150 MHz.
Figure 2- 5 • Function Diagram for I/O Pad Drive r
PAD
OE
SLEW
DATAOUT
DATAIN
IEN
INEN
OUTEN
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-5
Dedicated Clocks
Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed
performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad
Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the
array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by
special I/Os.
The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock
module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):
Externally from the CLKA pad
Externally from the CLKB pad
Internally from the CLKINA input
Internally from the CLKINB input
The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal
clock track are located in each horizontal routing channel. The function of the clock module is determined
by the selection of clock macros from the macro library. The ma cro CLKBUF is used to connect one of
the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally
generated clock signal to a clock network. Since both clock networks are identical, the user does not care
whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like
resets, output enables, or data enables. This saves logic modules a nd results in performance increases
in some cases.
Routing Structure
The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O
modules. These routing tracks are metal interconnects that may either be of continuous length or broken
into segments. Segments can be joined together at the ends using an ti fu ses to in crease their l engths up
to the full length of the track.
Figure 2- 6 • Clock Networks
CLKB
CLKA
FROM
PADS
CLOCK
DRIVERS
CLKMOD
CLKINB
CLKINA
S0
S1 INTERNAL
SIGNAL
CLKO(17)
CLKO(16)
CLKO(15)
CLKO(2)
CLKO(1)
CLOCK TRACKS
Detailed Specifications
2-6 Revision 3
Horizontal Routing
Horizontal channels are located between the rows of modules and are composed of several routing
tracks. The horizontal routing tracks within the channel are divided into one or more segments. The
minimum horizontal segment length is the width of a mo dule-pair, and the maximum horizontal segment
length is the full length of the channel. Any segment that spans more than one-third the row length is
considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal
routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock
networks and for power and ground tie-off tracks.
Vertical Routing
Other tracks run vertically through the modules. V ertical tracks are of three types: input, output, and long.
Vertical tracks are also di vided into one or more segments. Each segment in an input track is dedicated
to the input of a particular module. Each segment in an output track is dedicated to the output of a
particular module. Long segments are uncommitted and can be assigned during routing. Each output
segment spans four channels (two above and two bel ow), except near the top and bottom of the array
where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks
and segments is shown in Figure 2-8.
Figure 2- 7 • Horizontal Routing Tracks and Segments
Figure 2- 8 • Vertical Routing Tracks and Segments
HF
Module Row
HCLK
CLK0
NVCC
SIGNAL
SIGNAL
(LHT)
SIGNAL
NVSS
CLK1
Track
Segment |
|
|
|
|
|
|
Module Row
Vertical Input
Segment
S-Module C-Module
VF
FF
XF
Module Row
Channel
LVTs
S-Module C-Module
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-7
Antifuse Connections
An antifuse is a “normally open” structure as opposed to the normally closed fuse structure used in
PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly
testable structures as well as an efficient programming architecture. The structure is highly testable
because there are no preexisting connections; temporary connections can be made using pass
transistors. These temporary connections can isolate individual antifuses to be programmed as well as
isolate individual circuit structures to be tested. This can be done both before and after programming. For
example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the
functionality of all logic modules can be verified.
Four types of antifuse connections are used in the routing structure of the ACT 3 array. (The physical
structure of the antifuse is identical in ea ch case; only the usage differs.)
Table 2-1 shows four types of antifuses.
Examples of all four types of connections are shown in Figure 2-7 on page 2-6 and Figure 2-8 on
page 2-6.
Module Interface
Connections to Logic and I/O modules are mad e through vertical segments that connect to the module
inputs and outputs. These vertical segments lie on vertical tracks that span the entire height of the array.
Module Input Connections
The tracks dedicated to module inputs are segmented by pass transistors in each module row. During
normal user operation, the pass transistors are inactive, w hich isolates the inputs of a module from the
inputs of the module directly above or below it. During certain test modes, the p a ss transistors are active
to verify the continuity of the metal tracks. Vertical input segments span only the channel above or the
channel below. The logic modules are arranged such that half of the inputs are connected to the channel
above and half of the inputs to segments in the channel below, as shown in Figure 2-9.
Table 2-1 • Antifuse Types
Type Description
XF Horizontal-to-vertical connection
HF Horizontal-to-horizontal connection
VF Vertical-to-vertical connection
FF "Fast" vertical connection
Figure 2- 9 • Logic Module Routing Interface
Y+2
Y+1
A1 D10 D11
B1 B0 D01 D00
Y-1
Y-2
LVTs
Y+2
Y+1
Y
Y-1
Y-2
C-Modules
S-Modules
D10 B0 A0 D11 A1 B1 D01
A0 Y
Detailed Specifications
2-8 Revision 3
Module Output Connections
Module outputs have dedicated output segments. Output segments extend vertically two channels above
and two channels below, except at the top or bottom of the array. Output segments twist, as shown in
Figure 10, so that only four vertical tracks are required.
LVT Connections
Outputs may also connect to nondedicated segments called Long Vertical Tracks (LVTs). Each module
pair in the array shares four LVTs th at span the length o f th e column. Any modu le in the column pair can
connect to one of the LVTs in the column using an FF connection. The FF connection uses antifuses
connected directly to the driver stage of the module output, bypassing the isolation transistor. FF
antifuses are programmed at a higher current level than HF, VF, or XF antifuses to produce a lower
resistance value.
Antifuse Connections
In general every intersection of a vertical segment and a horizontal segment contains an unprogrammed
antifuse (XF-type). One exception is in the case of the clock networks.
Clock Connections
To minimize lo ading on the clock networks, a subset of inputs has antifuses on the clock tracks. Only a
few of the C-module and S-module inputs can be connected to the clock networks. To further reduce
loading on the clock network, only a subset of the horizontal routing tracks can connect to the clock
inputs of the S-module.
Programming and Test Circuits
The array of logic and I/O modules is surrounded by test and programming circuits controlled by the
temporary special I/O pins MODE, SDI, and DCLK. The function of these pins is similar to all ACT family
devices. The ACT 3 family also includes support for two Actionprobe® circuits, allowing complete
observability of any logic or I/O module in the array using the te mporary special I/O pins, PRA and PRB.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-9
5 V Operating Conditions
Table 2-2 • Absolute Maximum Ratings1, Free Air Temperature Range
Symbol Parameter Limits Units
VCC DC supply voltage –0.5 to +7.0 V
VI Input voltage –0.5 to VCC + 0.5 V
VO Output voltage –0.5 to VCC + 0.5 V
IIO I/O source sink current2±20 mA
TSTG Storage temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be
operated outside the recommended operating conditions.
2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater
than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will forward bias and can draw excessive
current.
Table 2-3 • Recommended Operating Condition s
Parameter Commercial Industrial Military Units
Temperature range* 0 to +70 –40 to +85 –55 to +125 °C
5 V power supply tolerance ±5 ±10 ±10 %VCC
Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military.
Table 2-4 • Electrical Specifications
Symbol Parameter Test Condition
Commercial Industrial Military
UnitsMin. Max. Min. Max. Min. Max.
VOH1,2 High level output IOH = –4 mA (CMOS) 3.7 3.7 V
IOH = –6 mA (CMOS) 3.84 V
IOH = –10 mA (TTL)32.40 V
VOL1,2 Low leve l ou tp u t IOL = +6 mA (CMOS) 0.33 0.4 0.4 V
IOL = +12 mA (TTL)30.50
VIH High level input TTL inputs 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V
VIL Low level input TTL inputs –0.3 0.8 –0.3 0.8 –0.3 0.8 V
IIN Input leakage VI = VCC or GND –10 +10 10 +10 –10 +10 µA
IOZ 3-state output leakage VO = VCC or GND –10 +10 –10 +10 –10 +10 µA
CIO I/O capacitance3,4 10 10 10 pF
ICC(S) Standby VCC supply current (typica l = 0.7 mA) 2 10 20 mA
ICC(D) Dynamic VCC supply current. See the Power Dissipation section.
Notes:
1. Microsemi devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is
required.
2. Tested one output at a time, VCC = minimum.
3. Not tested; for information only.
4. VOUT = 0 V, f = 1 MHz
5. Typical standby current = 0.7 mA. All out puts unloaded. All inputs = VCC or GND.
Detailed Specifications
2-10 Revision 3
3.3 V Operating Conditions
Table 2-5 • Absolute Maximum Ratings1, Free Air Temperature Range
Symbol Parameter Limits Units
VCC DC supply voltage –0.5 to +7.0 V
VI Input voltage –0.5 to VCC + 0.5 V
VO Output voltage –0.5 to VCC + 0.5 V
IIO I/O source sink current2±20 mA
TSTG Storage temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be
operated outside the recommended operating conditions.
2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater
than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will forward bias and can draw excessive
current.
Table 2-6 • Recommended Operating Condition s
Parameter Commercial Units
Temperature range* 0 to +70 °C
Power supply tolerance 3.0 to 3.6 V
Note: *Ambient temperature (TA) is used for commercial.
Table 2-7 • Electrical Specifications
Parameter
Commercial
UnitsMin. Max.
VOH1IOH = –4 mA 2.15 V
IOH = –3.2 mA 2.4 V
VOL1IOL = 6 mA 0.4 V
VIL –0.3 0.8 V
VIH 2.0 VCC + 0.3 V
Input transition time tR, tF2VI = VCC or GND –10 +10 µA
CIO I/O Capacitance2,3 10 pF
Standby current, ICC4 (typical = 0.3 mA) 0.75 mA
Leakage current5–10 10 µA
1. Only one output tested at a time. VCC = minimum.
2. Not tested; for information only.
3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f - 1 MHz.
4. Typical standby current = 0.3 mA. All out puts unloaded. All inputs = VCC or GND.
5. VO, VIN = VCC or GND
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-11
Package Thermal Characteristics
The device junction to case thermal characte ristic is θjc, and the j unction to ambient air cha racteristic is
θja. The thermal characteristics for θja are shown with two different air flow rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at
commercial temperature and still air is as follows:
EQ 2
Table 2-8 • Package Thermal Characteristics
Package Type* Pin Count θjc
θja
Still Air
θja
300 ft./min. Units
Ceramic Pin Grid Array 100 20 35 17 °C/W
133 20 30 15 °C/W
175 20 25 14 °C/W
207 20 22 13 °C/W
257 20 15 8 °C/W
Ceramic Quad Flatpack 132 13 55 30 °C/W
196 13 36 24 °C/W
256 13 30 18 °C/W
Plastic Quad Flatpack 100 13 51 40 °C/W
160 10 33 26 °C/W
208 10 33 26 °C/W
Very Thin Quad Flatpack 100 12 43 35 °C/W
Thin Quad Flatpack 176 11 32 25 °C/W
Power Quad Flatpack 208 0.4 17 13 °C/W
Plastic Leaded Chip Carrier 84 12 37 28 °C/W
Plastic Ball Grid Array 225 10 25 19 °C/W
313 10 23 17 °C/W
Note: Maximum power dissipation in still air:
PQ160 = 2.4 W
PQ208 = 2.4 W
PQ100 = 1.6 W
VQ100 = 1.9 W
TQ176 = 2.5 W
PL84 = 2.2 W
RQ208 = 4.7 W
BG225 = 3.2 W
BG313 = 3.5 W
Max. junction temp. (°C) Max. ambient temp. (°C)
θja°C/W
--------------------------------------------------------------------------------------------------------------------------------------- 150°C 70°C
25°C/W
------------------------------------3.2 W==
Detailed Specifications
2-12 Revision 3
Power Dissipation
P = [ICC standby + Iactive] * VCC * IOL * VOL * N + IOH* (VCC – VOH) * M EQ 3
where:
ICC standby is the current flowing when no inputs or outputs are changing
Iactive is the current flowing due to CMOS switching.
IOL and IOH are TTL sink/source current.
VOL and VOH are TTL level output voltages.
N is the number of outputs driving T TL lo ads to VOL.
M equals the number of outputs driving TTL loads to VOH.
An accurate determin ation of N and M is problema tical because their values d epend on the design and
on the system I/O. The power can be divided into two components: static and active.
Static Power Component
Microsemi FPGAs have small static power components that result in lower power dissipation than PALs
or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level
power dissipation can be achieved.
The power due to standby current is typically a sma ll component of the overal l power. Standby power is
calculated in Table 2-9 fo r commercial, worst case conditions.
The static power dissipated by TTL loads depends on the number of o utputs driving hig h or low a nd the
DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will
generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual
dissipation will average somewhere between as I/Os switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This
component is frequency dependent, a function of the logic and the exte rnal I/O. Active power dissipation
results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module
inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.
An additional component of the active power dissipation is the totem-pole current in CMOS transistor
pairs. The net effect can be associated with an equivalent capacitance that can be combined with
frequency and voltage to represent active power dissipation.
Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed by EQ 4.
Power (µW) = CEQ * VCC2 * F EQ 4
Where:
CEQ is the equivalent capacitance expressed in pF.
VCC is the power supply in volts.
F is the switching frequency in MHz.
Table 2-9 • Standby Power Calculation
ICC VCC Power
2 mA 5.25 V 10.5 mW
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-13
Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for
each circuit component of interest. Measurements have been made over a range of frequencies at a
fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used
over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.
To calculate the active power dissipated from the complete design , the switching frequency of each part
of the logic must be known. EQ 5 shows a pie ce -wise linear summation over all components.
Power =VCC2 * [(m * CEQM * fm)modules + (n * CEQI * fn) inputs
+ (p * (CEQO+ CL) * fp)outputs
+ 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1
+ 0.5 * (q2 * CEQCR * fq2)routed_Clk2
+ (r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk
+ (s2 * CEQCI * fs2)IO_Clk]EQ 5
Where:
m = Number of logic modules switching at fm
n = Number of input buffers switching at fn
p = Number of output buffers switching at fp
q1 = Number of clock loads on the first routed array clock
q2 = Number of clock loads on the second route d array clock
r1 = Fixed capacitance due to first routed array clock
r2 = Fixed capacitance due to second routed array clock
s1 = Fixed number of clock loads on the dedicated array clock
s2 = Fixed number of clock loads on the dedicated I/O clock
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in pF
CEQCD = Equivalent capacitance of dedicated array clock in pF
CEQCI = Equivalent capacitance of dedicated I/O clock in pF
CL = Output lead capacitance in pF
fm = Average logic module switching rate in MHz
fn = Average input buffer switching rate in MHz
fp = Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz
fs1 = Average dedicated array clock rate in MHz
fs2 = Average dedicated I/O clock rate in MHz
Table 2-10 • CEQ Values for Microsemi FPGAs
Item CEQ Value
Modules (CEQM) 6.7
Input Buffers (CEQI)7.2
Output Buffers (CEQO) 10.4
Routed Array Clock Buffer Loads (CEQCR) 1.6
Dedicated Clock Buffer Loads (CEQCD) 0.7
I/O Clock Buffer Loads (CEQCI) 0.9
Detailed Specifications
2-14 Revision 3
Table 2-11 • Fixed Capacitance Values for Microsemi FPGAs
Device Type r1, routed_Clk1 r2, routed_Clk2
A1415A 60 60
A14V15A 57 57
A1425A 75 75
A14V25A 72 72
A1440A 105 105
A14V40A 100 100
A1440B 105 105
A1460A 165 165
A14V60A 157 157
A1460B 165 165
A14100A 195 195
A14V100A 185 185
A14100B 195 195
Table 2-12 • Fixed Clock Loads (s1/s2)
Device Type s1, Clock Loads on Dedicated
Array Clock s2, Clock Loads on Dedicated
I/O Clock
A1415A 104 80
A14V15A 104 80
A1425A 160 100
A14V25A 160 100
A1440A 288 140
A14V40A 288 140
A1440B 288 140
A1460A 432 168
A14V60A 432 168
A1460B 432 168
A14100A 697 228
A14V100A 697 228
A14100B 697 228
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-15
Determining Average Switching Frequency
To determi ne the switching frequency for a design, yo u must have a detailed understanding of the data
input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that
they can be generally used to predict the upper limits of power dissipation. These guidelines are as
follows:
Table 2-13 • Guidelines for Predicting Power Dissipation
Data Value
Logic Modules (m) 80% of modules
Inputs switching (n) # inputs/4
Outputs switching (p) # output/4
First routed array clock loads (q1) 40% of sequential modules
Second routed array clock loads (q2) 40% of sequential modules
Load capacitance (CL) 35 pF
Average logic module switching rate (fm) F/10
Average input switching rate (fn) F/5
Average output switching rate (fp) F/10
Average first routed array clock rate (fq1) F/2
Average second routed array clock rate (fq2) F/2
Average dedicated array clock rate (fs1) F
Average dedicated I/O clock rate (fs2)F
Detailed Specifications
2-16 Revision 3
ACT 3 Timing Model
Note: Values shown for A1425A –1 speed grade device.
Figure 2-10 • Timing Model
Output DelaysInternal DelaysInput Delays
tINH = 0.0 ns
tINSU = 2.3 ns
I/O CLOCK
I/O Module
DQ
tICKY = 6.0 ns
FIOMAX = 150 MHz
tINY = 3.6 ns tIRD2 = 1.6 ns
Combinatorial
Logic Module
tPD = 2.6 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.1 ns tDHS = 6.4 ns
I/O Module
ARRAY
CLOCK
FHMAX = 150 MHz
Comb.
Logic
Included
in tSUD
DQDQ
tOUTH = 0.9 ns
tOUTSU = 0.9 ns
tDHS = 6.4 ns
tENZHS = 5.1 ns
tRD1 = 1.1 ns
tCO = 2.6 ns
tSUD = 0.7 ns
tHD = 0.0 ns
tRD4 = 2.2 ns
tRD8 = 3.6 ns
Predicted
Routing
Delays
tHCKH = 3.9 ns
tCKHS = 9.0 ns
(pad-pad)
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-17
Figure 2-11 • Output Buffers
Figure 2-12 • AC Test Loads
Figure 2-13 • Input Buffer Delays
To AC test loads (shown below)
PAD
D
E
TRIBUFF
In VCC GND
50%
Out
VOL
VOH
1.5 V
tDHS,
50%
1.5 V
tDHS
En VCC GND
50%
Out VOL
1.5 V
tENZHS,
50%
10%
tENHSZ
En VCC GND
50%
Out
GND
VOH
1.5 V
tENZHS,
50%
90%
tENHSZ
VCC
Load 1
(Used to measure propagation delay) Load 2
(Used to measure rising/falling edges)
35 pF
To the output under test VCC GND
35 pF
To the output under test
R to VCC
for tPLZ / tPZL
R to GND for tPHZ / tPZH
R = 1 kΩ
PAD Y
INBUF
In 3V 0V
1.5 V
Out
GND
VCC
50%
t
INY
1.5 V
50%
t
INY
Detailed Specifications
2-18 Revision 3
Figure 2-14 • Module Delays
Figure 2-15 • Sequential Module Timing Characteristics
S
A
BY
S, A or B
Out
GND
VCC
50%
tPD
Out
GND
GND
VCC
50%
50% 50%
VCC
50% 50%
tPD
tPD
tPD
Flip-Flops
(Positive edge triggered)
D
CLK CLR
Q
D
CLK
Q
CLR
tWCLKA
tWASYN
tHD
tSUD tA
tWCLKA
tCO
tCLR
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-19
Figure 2-16 • I/O Module: Sequential Input Timing Characteristics
Figure 2-17 • I/O Module: Sequential Output Timing Characteristics
(Positive edge triggered)
D
E
IOCLK CLR
PRE Y
D
IOCLK
E
Y
PRE, CLR
tIOPWH
tIOASPW
tINH
tIDESU
tINSU
tICLRY
tIOP
tIOPWL
tICKY
tIDEH
Q
tCKHS,
D
IOCLK
E
Y
PRE, CLR
tIOPWH
tIOASPW
tOUTH
tODESU
tOUTSU
tOCLRY
tIOP
tIOPWL
tOCKY
tCKLS
(Positive edge triggered)
D
E
IOCLK CLR
PRE
Y
Q
tODEH
Detailed Specifications
2-20 Revision 3
Tightest Delay Distributions
Propagation delay between logic modules depends on the resistive and capacitive loading of the routing
tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as
the length of routing tracks, the number of interconnect elements, or the number of inputs increases.
From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout
(number of loads) driven by a module. Higher fanout usually require s some paths to have longer le ngths
of routing track. The ACT 3 family delivers the tightest fano ut delay distribution of any FPGA. This tight
distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by
decreasing the number of interconnect eleme nts per path.
Microsemi’s patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3
family’s antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6
femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative
devices due to the low number of antifuses required per interconnect path. The ACT 3 family’s
proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects
using only two antifuses.
The ACT 3 family’s tight fanout delay distribution offers an FPGA design environment in which fanout can
be traded for the increased performance of reduced logic level designs. This also simplifies performance
estimates when designing with ACT 3 devices.
Timing Characteristics
Timing characteristics for ACT 3 devices fall into three ca tegories: family dependent, device depe ndent,
and design dependent. The input and output buffer characteristics are common to all ACT 3 family
members. Internal routing delays are device dependent. Design dependency means actual delays are
not determined until after placement and routing of the user’s design is complete. Delay values may then
be determined by using the ALS Timer utility or performing simulation with post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets, which are used for initial design performance
evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are
determined by net property assignmen t prior to placement and ro uting. Up to 6% of the nets in a design
may be designated as critical, while 90% of the nets in a design are typical.
Long Tracks
Some nets in the design use long tracks. Long tracks are special routing resources that span multiple
rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This
increases capacit ance and resistance, result ng in longer net delays for macros connected to long tracks.
Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute
approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout
(FO = 8) routing delays in the datasheet specifications section.
Table 2-14 • Logic Module and Rou ting De lay by Fa nout (ns); Worst-Cas e Commercial Condi tions
Speed Grade FO = 1 FO = 2 FO = 3 FO = 4 FO = 8
ACT 3 –3 2.9 3.2 3.4 3.7 4.8
ACT 3 –2 3.3 3.7 3.9 4.2 5.5
ACT 3 –1 3.7 4.2 4.4 4.8 6.2
ACT 3 STD 4.3 4.8 5.1 5.5 7.2
Notes:
1. Obtained by added tRD(x=FO) to tPD from the Logic Module Timing Characteristics Tables found in this
datasheet.
2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 06 04, and
PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-21
Timing Derating
ACT 3 devices are manufactured in a CMOS process. Therefore, device performance varies according
to temperature, voltage, and process va riations. Mi nimum timing parameters reflect maximum opera ting
voltage, minimum operating temperatu re, and best-case processing. Maxi mum timing parameters reflect
minimum operating voltage, maximum operating temperature, and worst-case processing.
Table 2-15 • Timing Derating Factor (Temperature and Voltage)
(Commercial Minimum/Maximum Specification) x Industrial Military
Min. Max. Min. Max.
0.66 1.07 0.63 1.17
Table 2-16 • Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C)
and Voltage (5.0 V)
(Commercial Maximum Specification) x 0.85
Table 2-17 • Temperature a nd Vol ta ge Derating Factors
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)
55400 257085125
4.50 0.72 0.76 0.85 0.90 1.04 1.07 1.117
4.75 0.70 0.73 0.82 0.87 1.00 1.03 1.12
5.00 0.68 0.71 0.79 0.84 0.97 1.00 1.09
5.25 0.66 0.69 0.77 0.82 0.94 0.97 1.06
5.50 0.63 0.66 0.74 0.79 0.90 0.93 1.01
Note: This derating factor applies to all routing and propagation d elays.
Figure 2- 18 Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)
Voltage (V)
Derating Factor
0.60
0.70
0.80
0.90
1.00
1.10
1.20
4.50 4.75 5.00 5.25 5.50
Detailed Specifications
2-22 Revision 3
A1415A, A14V15A Timing Characteristics
Table 2-18 • A1415A, A14V15A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C1
Logic Module Propagation Delays2 –3 Speed3–2 Speed3 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tPD Internal Array Module 2.0 2.3 2.6 3.0 3.9 ns
tCO Sequential Clock to Q 2.0 2.3 2.6 3.0 3.9 ns
tCLR Asynchronous Clear to Q 2.0 2.3 2.6 3.0 3.9 ns
Predicted Routing Delays4
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
Logic Module Sequential Timing
tSUD Flip-Flop Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0 .0 ns
tSUD Latch Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Latch Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.9 2.4 3.2 3.8 4.8 ns
tWCLKA Flip-Flop Clock Pulse Width 1.9 2.4 3.2 3.8 4.8 ns
tAFlip-Flop Clock Input Period 4.0 5.0 6.8 8.0 10.0 ns
fMAX Flip-Flop Clock Frequency 250 200 150 125 100 MHz
Notes:
1. VCC = 3.0 V for 3.3 V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn + tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
3. The –2 and –3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed
below:
PDN March 2001
PDN 0104
PDN 0203
PDN 0604
PDN 1004
4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-23
A1415A, A14V15A Timing Characteristics (continued)
Table 2-19 • A1415A, A14V15A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module Input Propagation Delays –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed2Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tINY Input Data Pad to Y 2.8 3.2 3.6 4.2 5.5 ns
tICKY Input Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCKY Output Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tICLRY Input Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCLRY Output Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
Predicted Input Routing Delays2
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
I/O Module Sequential Timing (wrt IOCLK pad)
tINH Input F-F Data Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input F-F Data Setup 2.0 2.3 2.5 3.0 3.0 ns
tIDEH Input Data Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tIDESU Input Data Enable Setup 5.8 6.5 7.5 8.6 8.6 ns
tOUTH Output F-F Data hold 0.7 0.8 0.9 1.0 1.0 ns
tOUTSU Output F-F Data Setup 0.7 0.8 0.9 1.0 1.0 ns
tODEH Output Data Enable Hold 0.3 0.4 0.4 0.5 0.5 ns
fODESU Output Data Enable Setup 1.3 1.5 1.7 2.0 2.0 ns
Notes:
1. The –2 and –3 speed grades have been discont i nued. Pl ease refer to the Produ ct Disc ont inuati on Notice s (PDNs) listed
below:
PDN March 2001
PDN 0104
PDN 0203
PDN 0604
PDN 1004
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Detailed Specifications
2-24 Revision 3
A1415A, A14V15A Timing Characteristics (continued)
Table 2-20 • A1415A, A14V15A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module – TTL Output Timing1–3 Speed2 –2 Speed2–1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tDHS Data to Pad, High Slew 5.0 5.6 6.4 7.5 9.8 ns
tDLS Data to Pad, Low Slew 8.0 9.0 10.2 12.0 15.6 ns
tENZHS Enable to Pad, Z to H/L, High Slew 4.0 4.5 5.1 6.0 7.8 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 6.5 7.5 8.5 10.0 13.0 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 6.5 7.5 8.5 10.0 13.0 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 7.5 7.5 9.0 10.0 13.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 11.3 11.3 13.5 15.0 19.5 ns
dTLHHS Delta Low to High, High Slew 0.02 0.02 0.0 3 0.03 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.05 0.05 0.06 0.07 0.09 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0 .0 4 0.04 0.05 0.07 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.05 0.0 6 0.07 0.09 ns/pF
I/O Module – CMOS Output Timing1
tDHS Data to Pad, High Slew 6.2 7.0 7.9 9.3 12.1 ns
tDLS Data to Pad, Low Slew 11.7 13.1 14.9 17.5 22.8 ns
tENZHS Enable to Pad, Z to H/L, High Slew 5.2 5.9 6.6 7.8 10.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 8.9 10.0 11.3 13.3 17.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 6.7 7.5 8.5 10.0 13.0 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 6.7 7.5 9.0 10.0 13.0 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 8.9 8.9 10.7 11.8 15.3 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 13.0 13.0 15.6 17.3 22.5 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 0.0 5 0.06 0.08 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 0.09 0.11 0.14 ns/pF
dTHLHS Delta High to Low, High Slew 0.03 0 .0 3 0.03 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. The –2 and –3 speed grades have been discont i nued. Pl ease refer to the Produ ct Disc ont inuati on Notice s (PDNs) listed
below:
PDN March 2001
PDN 0104
PDN 0203
PDN 0604
PDN 1004
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-25
A1415A, A14V15A Timing Characteristics (continued)
Table 2-21 • A1415A, A14V15A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
Dedicated (hardwired) I/O Clock Network –3 Speed –2 Speed –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tIOCKH Input Low to High (pad to I/O module
input) 2.0 2.3 2.6 3.0 3.5 ns
tIOPWH Minimum Pulse Width High 1.9 2.4 3.3 3.8 4.8 ns
tIPOWL Minimum Pulse Width Low 1.9 2.4 3.3 3.8 4.8 ns
tIOSAPW Minimum Asynchronous Pulse Width 1.9 2.4 3.3 3.8 4.8 ns
tIOCKSW Maximum Skew 0.4 0.4 0.4 0.4 0.4 ns
tIOP Minimum Period 4.0 5.0 6.8 8.0 10.0 ns
fIOMAX Maximum Frequency 250 200 150 125 100 MHz
Dedicated (hardwired) Array Clock
tHCKH Input Low to High (pad to S-module
input) 3.0 3.4 3.9 4.5 5.5 ns
tHCKL Input High to Low (pad to S-module
input) 3.0 3.4 3.9 4.5 5.5 ns
tHPWH Minimum Pulse Width High 1.9 2.4 3.3 3.8 4.8 ns
tHPWL Minimum Pulse Width Low 1.9 2.4 3.3 3.8 4.8 ns
tHCKSW Delta High to Low, Low Slew 0.3 0.3 0.3 0.3 0.3 ns
tHP Minimum Period 4.0 5.0 6.8 8.0 10.0 ns
fHMAX Maximum Frequency 250 200 150 125 100 MHz
Routed Array Clock Netwo rks
tRCKH Input Low to High (FO = 64) 3.7 4.1 4.7 5.5 9.0 ns
tRCKL Input High to Low (FO = 64) 4.0 4.5 5.1 6.0 9.0 ns
tRPWH Min. Pulse Width High (FO = 64) 3.3 3.8 4.2 4.9 6.5 ns
tRPWL Min. Pulse Width Low (FO = 64) 3.3 3.8 4.2 4.9 6.5 ns
tRCKSW Maximum Skew (FO = 128) 0.7 0.8 0.9 1.0 1.0 ns
tRP Minimum Period (FO = 64) 6.8 8.0 8.7 10.0 13.4 ns
fRMAX Maximum Frequency (FO = 64) 150 125 115 100 75 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 1.7 0.0 1.8 0.0 2.0 0.0 2.2 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew (FO = 64) 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 3.0 ns
tHRCKSW H-Clock to R-Clock Skew (FO = 64)
(FO = 50% maximum) 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
0.0 3.0
3.0 ns
Notes:
1. Delays based on 35 pF loading.
2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Detailed Specifications
2-26 Revision 3
A1425A, A14V25A Timing Characteristics
Table 2-22 • A1425A, A14V25A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C1
Logic Module Propagation Delays2 –3 Speed3 –2 Speed3 –1 Speed Std. Sp eed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tPD Internal Array Module 2.0 2.3 2.6 3.0 3.9 ns
tCO Sequential Clock to Q 2.0 2.3 2.6 3.0 3.9 ns
tCLR Asynchronous Clear to Q 2.0 2.3 2.6 3.0 3.9 ns
Predicted Routing Delays4
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
Logic Module Sequential Timing
tSUD Flip-Flop Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0 .0 ns
tSUD Latch Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Latch Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.9 2.4 3.2 3.8 4.8 ns
tWCLKA Flip-Flop Clock Pulse Width 1.9 2.4 3.2 3.8 4.8 ns
tAFlip-Flop Clock Input Period 4.0 5.0 6.8 8.0 10.0 ns
fMAX Flip-Flop Clock Frequency 250 200 150 125 100 MHz
Notes:
1. VCC = 3.0 V for 3.3 V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn + tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-27
A1425A, A14V25A Timing Characteristics (continued)
Table 2-23 • A1425A, A14V25A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module Input Propagation Delays –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tINY Input Data Pad to Y 2.8 3.2 3.6 4.2 5.5 ns
tICKY Input Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCKY Output Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tICLRY Input Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCLRY Output Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
Predicted Input Routing Delays2
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
I/O Module Sequential Timing (wrt IOCLK pad)
tINH Input F-F Data Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input F-F Data Setup 1.8 2.0 2.3 2.7 3.0 ns
tIDEH Input Data Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tIDESU Input Data Enable Setup 5.8 6.5 7.5 8.6 8.6 ns
tOUTH Output F-F Data hold 0.7 0.8 0.9 1.0 1.0 ns
tOUTSU Output F-F Data Setup 0.7 0.8 0.9 1.0 1.0 ns
tODEH Output Data Enable Hold 0.3 0.4 0.4 0.5 0.5 ns
fODESU Output Data Enable Setup 1.3 1.5 1.7 2.0 2.0 ns
Notes: *
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Detailed Specifications
2-28 Revision 3
A1425A, A14V25A Timing Characteristics (continued)
Table 2-24 • A1425A, A14V25A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module – TTL Output Timing1–3 Speed2–2 Speed2 –1 Speed Std. Sp ee d 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tDHS Data to Pad, High Slew 5.0 5.6 6.4 7.5 9.8 ns
tDLS Data to Pad, Low Slew 8.0 9.0 10.2 12.0 15.6 ns
tENZHS Enable to Pad, Z to H/L, High Slew 4.0 4.5 5.1 6.0 7.8 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 6.5 7.5 8.5 10.0 13.0 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 6.5 7.5 8.5 10.0 13.0 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 7.5 7.5 9.0 10.0 13.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 11.3 11.3 13.5 15.0 19.5 ns
dTLHHS Delta Low to High, High Slew 0.02 0.02 0.0 3 0.03 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.05 0.05 0.06 0.07 0.09 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0 .0 4 0.04 0.05 0.07 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.05 0.0 6 0.07 0.09 ns/pF
I/O Module – CMOS Output Timing1
tDHS Data to Pad, High Slew 6.2 7.0 7.9 9.3 12.1 ns
tDLS Data to Pad, Low Slew 11.7 13.1 14.9 17.5 22.8 ns
tENZHS Enable to Pad, Z to H/L, High Slew 5.2 5.9 6.6 7.8 10.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 8.9 10.0 11.3 13.3 17.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 6.7 7.5 8.5 10.0 13.0 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 6.7 7.5 9.0 10.0 13.0 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 8.9 8.9 10.7 11.8 15.3 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 13.0 13.0 15.6 17.3 22.5 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 0.0 5 0.06 0.08 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 0.09 0.11 0.14 ns/pF
dTHLHS Delta High to Low, High Slew 0.03 0 .0 3 0.03 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Notes: *
1. Delays based on 35 pF loading.
2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-29
A1425A, A14V25A Timing Characteristics (continued)
Table 2-25 • A1425A, A14V25A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
Dedicated (hardwired) I/O Clock Network –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tIOCKH Input Low to High (pad to I/O module
input) 2.0 2.3 2.6 3.0 3.5 ns
tIOPWH Minimum Pulse Width High 1.9 2.4 3.3 3.8 4.8 ns
tIPOWL Minimum Pulse Width Low 1.9 2.4 3.3 3.8 4.8 ns
tIOSAPW Minimum Asynchronous Pulse Width 1.9 2.4 3.3 3.8 4.8 ns
tIOCKSW Maximum Skew 0.4 0.4 0.4 0.4 0.4 ns
tIOP Minimum Period 4.0 5.0 6.8 8.0 10.0 ns
fIOMAX Maximum Frequency 250 200 150 125 100 MHz
Dedicated (hardwired) Array Clock
tHCKH Input Low to High (pad to S-module
input) 3.0 3.4 3.9 4.5 5.5 ns
tHCKL Input High to Low (pad to S-module
input) 3.0 3.4 3.9 4.5 5.5 ns
tHPWH Minimum Pulse Width High 1.9 2.4 3.3 3.8 4.8 ns
tHPWL Minimum Pulse Width Low 1.9 2.4 3.3 3.8 4.8 ns
tHCKSW Delta High to Low, Low Slew 0.3 0.3 0.3 0.3 0.3 ns
tHP Minimum Period 4.0 5.0 6.8 8.0 10.0 ns
fHMAX Maximum Frequency 250 200 150 125 100 MHz
Routed Array Clock Netwo rks
tRCKH Input Low to High (FO = 64) 3.7 4.1 4.7 5.5 9.0 ns
tRCKL Input High to Low (FO = 64) 4.0 4.5 5.1 6.0 9.0 ns
tRPWH Min. Pulse Width High (FO = 64) 3.3 3.8 4.2 4.9 6.5 ns
tRPWL Min. Pulse Width Low (FO = 64) 3.3 3.8 4.2 4.9 6.5 ns
tRCKSW Maximum Skew (FO = 128) 0.7 0.8 0.9 1.0 1.0 ns
tRP Minimum Period (FO = 64) 6.8 8.0 8.7 10.0 13.4 ns
fRMAX Maximum Frequency (FO = 64) 150 125 115 100 75 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 1.7 0.0 1.8 0.0 2.0 0.0 2.2 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew (FO = 64)
(FO = 80) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 3.0
3.0 ns
tHRCKSW H-Clock to R-Clock Skew (FO = 64)
(FO = 80) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
Notes:
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Delays based on 35 pF loading.
Detailed Specifications
2-30 Revision 3
A1440A, A14V40A Timing Characteristics
Table 2-26 • A1440A, A14V40A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C1
Logic Module Propagation Delays2 –3 Speed 3–2 Speed3 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tPD Internal Array Module 2.0 2.3 2.6 3.0 3.9 ns
tCO Sequential Clock to Q 2.0 2.3 2.6 3.0 3.9 ns
tCLR Asynchronous Clear to Q 2.0 2.3 2.6 3.0 3.9 ns
Predicted Routing Delays4
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
Logic Module Sequential Timing
tSUD Flip-Flop Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0 .0 ns
tSUD Latch Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Latch Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.9 2.4 3.2 3.8 4.8 ns
tWCLKA Flip-Flop Clock Pulse Width 1.9 2.4 3.2 3.8 4.8 ns
tAFlip-Flop Clock Input Period 4.0 5.0 6.8 8.0 10.0 ns
fMAX Flip-Flop Clock Frequency 250 200 150 125 100 MHz
Notes:
1. VCC = 3.0 V for 3.3 V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn + tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-31
A1440A, A14V40A Timing Characteristics (continued)
Table 2-27 • A1440A, A14V40A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module Input Propagation Delays –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tINY Input Data Pad to Y 2.8 3.2 3.6 4.2 5.5 ns
tICKY Input Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCKY Output Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tICLRY Input Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCLRY Output Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
Predicted Input Routing Delays2
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
I/O Module Sequential Timing (wrt IOCLK pad)
tINH Input F-F Data Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input F-F Data Setup 1.8 1.7 2.0 2.3 2.3 ns
tIDEH Input Data Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tIDESU Input Data Enable Setup 5.8 6.5 7.5 8.6 8.6 ns
tOUTH Output F-F Data hold 0.7 0.8 0.9 1.0 1.0 ns
tOUTSU Output F-F Data Setup 0.7 0.8 0.9 1.0 1.0 ns
tODEH Output Data Enable Hold 0.3 0.4 0.4 0.5 0.5 ns
fODESU Output Data Enable Setup 1.3 1.5 1.7 2.0 2.0 ns
Notes:
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Detailed Specifications
2-32 Revision 3
A1440A, A14V40A Timing Characteristics (continued)
Table 2-28 • A1440A, A14V40A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module – TTL Output Timing1–3 Speed2–2 Speed2 –1 Speed Std. Sp ee d 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tDHS Data to Pad, High Slew 5.0 5.6 6.4 7.5 9.8 ns
tDLS Data to Pad, Low Slew 8.0 9.0 10.2 12.0 15.6 ns
tENZHS Enable to Pad, Z to H/L, High Slew 4.0 4.5 5.1 6.0 7.8 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 7.4 8.3 9.4 11.0 14.3 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 8.5 8.5 9.5 11.0 14.3 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 11.3 11.3 13.5 15.0 19.5 ns
dTLHHS Delta Low to High, High Slew 0.02 0.02 0.0 3 0.03 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.05 0.05 0.06 0.07 0.09 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0 .0 4 0.04 0.05 0.07 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.05 0.0 6 0.07 0.09 ns/pF
I/O Module – CMOS Output Timing1
tDHS Data to Pad, High Slew 6.2 7.0 7.9 9.3 12.1 ns
tDLS Data to Pad, Low Slew 11.7 13.1 14.9 17.5 22.8 ns
tENZHS Enable to Pad, Z to H/L, High Slew 5.2 5.9 6.6 7.8 10.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 8.9 10.0 11.3 13.3 17.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 7.4 8.3 9.4 11.0 14.3 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 9.0 9.0 10.1 11.8 14.3 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 13.0 13.0 15.6 17.3 22.5 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 0.0 5 0.06 0.08 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 0.09 0.11 0.14 ns/pF
dTHLHS Delta High to Low, High Slew 0.03 0 .0 3 0.03 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-33
A1440A, A14V40A Timing Characteristics (continued)
Table 2-29 • A1440A, A14V40A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
Dedicated (hardwired) I/O Clock Network –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tIOCKH Input Low to High (pad to I/O module
input) 2.0 2.3 2.6 3.0 3.5 ns
tIOPWH Minimum Pulse Width High 1.9 2.4 3.3 3.8 4.8 ns
tIPOWL Minimum Pulse Width Low 1.9 2.4 3.3 3.8 4.8 ns
tIOSAPW Minimum Asynchronous Pulse Width 1.9 2.4 3.3 3.8 4.8 ns
tIOCKSW Maximum Skew 0.4 0.4 0.4 0.4 0.4 ns
tIOP Minimum Period 4.0 5.0 6.8 8.0 10.0 ns
fIOMAX Maximum Frequency 250 200 150 125 100 MHz
Dedicated (hardwired) Array Clock
tHCKH Input Low to High (pad to S-module
input) 3.0 3.4 3.9 4.5 5.5 ns
tHCKL Input High to Low (pad to S-module
input) 3.0 3.4 3.9 4.5 5.5 ns
tHPWH Minimum Pulse Width High 1.9 2.4 3.3 3.8 4.8 ns
tHPWL Minimum Pulse Width Low 1.9 2.4 3.3 3.8 4.8 ns
tHCKSW Delta High to Low, Low Slew 0.3 0.3 0.3 0.3 0.3 ns
tHP Minimum Period 4.0 5.0 6.8 8.0 10.0 ns
fHMAX Maximum Frequency 250 200 150 125 100 MHz
Routed Array Clock Netwo rks
tRCKH Input Low to High (FO = 64) 3.7 4.1 4.7 5.5 9.0 ns
tRCKL Input High to Low (FO = 64) 4.0 4.5 5.1 6.0 9.0 ns
tRPWH Min. Pulse Width High (FO = 64) 3.3 3.8 4.2 4.9 6.5 ns
tRPWL Min. Pulse Width Low (FO = 64) 3.3 3.8 4.2 4.9 6.5 ns
tRCKSW Maximum Skew (FO = 128) 0.7 0.8 0.9 1.0 1.0 ns
tRP Minimum Period (FO = 64) 6.8 8.0 8.7 10.0 13.4 ns
fRMAX Maximum Frequency (FO = 64) 150 125 115 100 75 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 1.7 0.0 1.8 0.0 2.0 0.0 2.2 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew (FO = 64)
(FO = 144) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 3.0
3.0 ns
tHRCKSW H-Clock to R-Clock Skew (FO = 64)
(FO = 144) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
Notes:
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Delays based on 35 pF loading.
Detailed Specifications
2-34 Revision 3
A1460A, A14V60A Timing Characteristics
Table 2-30 • A1460A, A14V60A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C1
Logic Module Propagation Delays2 –3 Speed3 –2 Speed
3–1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tPD Internal Array Module 2.0 2.3 2.6 3.0 3.9 ns
tCO Sequential Clock to Q 2.0 2.3 2.6 3.0 3.9 ns
tCLR Asynchronous Clear to Q 2.0 2.3 2.6 3.0 3.9 ns
Predicted Routing Delays4
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
Logic Module Sequential Timing
tSUD Flip-Flop Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0 .0 ns
tSUD Latch Data Input Setup 0.5 0.6 0.7 0.8 0.8 ns
tHD Latch Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 2.4 3.2 3.8 4.8 6.5 ns
tWCLKA Flip-Flop Clock Pulse Width 2.4 3.2 3.8 4.8 6.5 ns
tAFlip-Flop Clock Input Period 5.0 6.8 8.0 10.0 13.4 ns
fMAX Flip-Flop Clock Frequency 200 150 125 100 75 MHz
Notes:
1. VCC = 3.0 V for 3.3 V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn + tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-35
A1460A, A14V60A Timing Characteristics (continued)
Table 2-31 • A1460A, A14V60A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module Input Propagation Delays –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tINY Input Data Pad to Y 2.8 3.2 3.6 4.2 5.5 ns
tICKY Input Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCKY Output Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tICLRY Input Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCLRY Output Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
Predicted Input Routing Delays2
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
I/O Module Sequential Timing (wrt IOCLK pad)
tINH Input F-F Data Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input F-F Data Setup 1.3 1.5 1.8 2.0 2.0 ns
tIDEH Input Data Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tIDESU Input Data Enable Setup 5.8 6.5 7.5 8.6 8.6 ns
tOUTH Output F-F Data hold 0.7 0.8 0.9 1.0 1.0 ns
tOUTSU Output F-F Data Setup 0.7 0.8 0.9 1.0 1.0 ns
tODEH Output Data Enable Hold 0.3 0.4 0.4 0.5 0.5 ns
fODESU Output Data Enable Setup 1.3 1.5 1.7 2.0 2.0 ns
Notes:
5. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
6. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Detailed Specifications
2-36 Revision 3
A1460A, A14V60A Timing Characteristics (continued)
Table 2-32 • A1460A, A14V60A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module – TTL Output Timing1–3 Speed2–2 Speed2 –1 Speed Std. Sp ee d 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tDHS Data to Pad, High Slew 5.0 5.6 6.4 7.5 9.8 ns
tDLS Data to Pad, Low Slew 8.0 9.0 10.2 12.0 15.6 ns
tENZHS Enable to Pad, Z to H/L, High Slew 4.0 4.5 5.1 6.0 7.8 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 7.8 8.7 9.9 11.6 15.1 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 9.0 9.0 10.0 11.5 15.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 12.8 12.8 15.3 17.0 22.1 ns
dTLHHS Delta Low to High, High Slew 0.02 0.02 0.0 3 0.03 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.05 0.05 0.06 0.07 0.09 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0 .0 4 0.04 0.05 0.07 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.05 0.0 6 0.07 0.09 ns/pF
I/O Module – CMOS Output Timing1
tDHS Data to Pad, High Slew 6.2 7.0 7.9 9.3 12.1 ns
tDLS Data to Pad, Low Slew 11.7 13.1 14.9 17.5 22.8 ns
tENZHS Enable to Pad, Z to H/L, High Slew 5.2 5.9 6.6 7.8 10.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 8.9 10.0 11.3 13.3 17.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 7.4 8.3 9.4 11.0 14.3 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 10.4 10.4 12.1 13.8 17.9 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 14.5 14.5 17.4 19.3 25.1 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 0.0 5 0.06 0.08 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 0.09 0.11 0.14 ns/pF
dTHLHS Delta High to Low, High Slew 0.03 0 .0 3 0.03 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-37
A1460A, A14V60A Timing Characteristics (continued)
Table 2-33 • A1460A, A14V60A Worst-Ca se Commercial Conditions, VCC = 4.75 V, TJ = 70°C
Dedicated (hardwired) I/O Clock Network –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tIOCKH Input Low to High (pad to I/O module
input) 2.3 2.6 3.0 3.5 4.5 ns
tIOPWH Minimum Pulse Width High 2.4 3.2 3.8 4.8 6.5 ns
tIPOWL Minimum Pulse Width Low 2.4 3.2 3.8 4.8 6.5 ns
tIOSAPW Minimum Asynchronous Pulse Width 2.4 3.2 3.8 4.8 6.5 ns
tIOCKSW Maximum Skew 0.6 0.6 0.6 0.6 0.6 ns
tIOP Minimum Period 5.0 6.8 8.0 10.0 13.4 ns
fIOMAX Maximum Frequency 200 150 125 100 75 MHz
Dedicated (hardwired) Array Clock
tHCKH Input Low to High (pad to S-module
input) 3.7 4.1 4.7 5.5 7.0 ns
tHCKL Input High to Low (pad to S-module
input) 3.7 4.1 4.7 5.5 7.0 ns
tHPWH Minimum Pulse Width High 2.4 3.2 3.8 4.8 6.5 ns
tHPWL Minimum Pulse Width Low 2.4 3.2 3.8 4.8 6.5 ns
tHCKSW Delta High to Low, Low Slew 0.6 0.6 0.6 0.6 0.6 ns
tHP Minimum Period 5.0 6.8 8.0 10.0 13.4 ns
fHMAX Maximum Frequency 200 150 125 100 75 MHz
Routed Array Clock Netwo rks
tRCKH Input Low to High (FO = 64) 6.0 6.8 7 .7 9.0 11.8 ns
tRCKL Input High to Low (FO = 64) 6.0 6.8 7.7 9.0 11.8 ns
tRPWH Min. Pulse Width High (FO = 64) 4.1 4.5 5.4 6.1 8.2 ns
tRPWL Min. Pulse Width Low (FO = 64) 4.1 4.5 5.4 6.1 8.2 ns
tRCKSW Maximum Skew (FO = 128) 1.2 1.4 1.6 1.8 1.8 ns
tRP Minimum Period (FO = 64) 8.3 9.3 11.1 12.5 16.7 ns
fRMAX Maximum Frequency (FO = 64) 120 105 90 80 60 M Hz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 2.6 0.0 2.7 0.0 2.9 0.0 3.0 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew (FO = 64)
(FO = 216) 0.0
0.0 1.7
5.0 0.0
0.0 1.7
5.0 0.0
0.0 1.7
5.0 0.0
0.0 1.7
5.0 0.0
0.0 5.0
5.0 ns
tHRCKSW H-Clock to R-Clock Skew (FO = 64)
(FO = 216) 0.0
0.0 1.3
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
Notes:
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Delays based on 35 pF loading.
Detailed Specifications
2-38 Revision 3
A14100A, A14V100A Timing Characteristics
Table 2-34 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C1
Logic Module Propagation Delays2 –3 Speed3 –2 Speed
3–1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tPD Internal Array Module 2.0 2.3 2.6 3.0 3.9 ns
tCO Sequential Clock to Q 2.0 2.3 2.6 3.0 3.9 ns
tCLR Asynchronous Clear to Q 2.0 2.3 2.6 3.0 3.9 ns
Predicted Routing Delays4
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
Logic Module Sequential Timing
tSUD Flip-Flop Data Input Setup 0.5 0.6 0.8 0.8 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.5 0.5 0 .5 ns
tSUD Latch Data Input Setup 0.5 0.6 0.8 0.8 0.8 ns
tHD Latch Data Input Hold 0.0 0.0 0.5 0.5 0 .5 ns
tWASYN Asynchronous Pulse Width 2.4 3.2 3.8 4.8 6.5 ns
tWCLKA Flip-Flop Clock Pulse Width 2.4 3.2 3.8 4.8 6.5 ns
tAFlip-Flop Clock Input Period 5.0 6.8 8.0 10.0 13.4 ns
fMAX Flip-Flop Clock Frequency 200 150 125 100 75 MHz
Notes:
1. VCC = 3.0 V for 3.3 V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn + tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-39
A14100A, A14V100A Timing Characteristics (continued)
Table 2-35 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module Input Propagation Delays –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tINY Input Data Pad to Y 2.8 3.2 3.6 4.2 5.5 ns
tICKY Input Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCKY Output Reg IOCLK Pad to Y 4.7 5.3 6.0 7.0 9.2 ns
tICLRY Input Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
tOCLRY Output Asynchronous Clear to Y 4.7 5.3 6.0 7.0 9.2 ns
Predicted Input Routing Delays2
tRD1 FO = 1 Routing Delay 0.9 1.0 1.1 1.3 1.7 ns
tRD2 FO = 2 Routing Delay 1.2 1.4 1.6 1.8 2.4 ns
tRD3 FO = 3 Routing Delay 1.4 1.6 1.8 2.1 2.8 ns
tRD4 FO = 4 Routing Delay 1.7 1.9 2.2 2.5 3.3 ns
tRD8 FO = 8 Routing Delay 2.8 3.2 3.6 4.2 5.5 ns
I/O Module Sequential Timing (wrt IOCLK pad)
tINH Input F-F Data Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input F-F Data Setup 1.2 1.4 1.5 1.8 1.8 ns
tIDEH Input Data Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tIDESU Input Data Enable Setup 5.8 6.5 7.5 8.6 8.6 ns
tOUTH Output F-F Data hold 0.7 0.8 1.0 1.0 1.0 ns
tOUTSU Output F-F Data Setup 0.7 0.8 1.0 1.0 1.0 ns
tODEH Output Data Enable Hold 0.3 0.4 0.5 0.5 0.5 ns
fODESU Output Data Enable Setup 1.3 1.5 2.0 2.0 2.0 ns
Notes: *
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
Detailed Specifications
2-40 Revision 3
A14100A, A14V100A Timing Characteristics (continued)
Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module – TTL Output Timing1–3 Speed2–2 Speed2 –1 Speed Std. Sp ee d 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tDHS Data to Pad, High Slew 5.0 5.6 6.4 7.5 9.8 ns
tDLS Data to Pad, Low Slew 8.0 9.0 10.2 12.0 15.6 ns
tENZHS Enable to Pad, Z to H/L, High Slew 4.0 4.5 5.1 6.0 7.8 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 8.0 9.0 10.2 12.0 15.6 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 9.5 9.5 10.5 12.0 15.6 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 12.8 12.8 15.3 17.0 22.1 ns
dTLHHS Delta Low to High, High Slew 0.02 0.02 0.0 3 0.03 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.05 0.05 0.06 0.07 0.09 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0 .0 4 0.04 0.05 0.07 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.05 0.0 6 0.07 0.09 ns/pF
I/O Module – CMOS Output Timing1
tDHS Data to Pad, High Slew 6.2 7.0 7.9 9.3 12.1 ns
tDLS Data to Pad, Low Slew 11.7 13.1 14.9 17.5 22.8 ns
tENZHS Enable to Pad, Z to H/L, High Slew 5.2 5.9 6.6 7.8 10.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 8.9 10.0 11.3 13.3 17.3 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 8.0 9.0 10.0 12.0 15.6 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 7.4 8.3 9.4 11.0 14.3 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 10.4 10.4 12.4 13.8 17.9 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 14.5 14.5 17.4 19.3 25.1 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 0.0 5 0.06 0.08 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 0.09 0.11 0.14 ns/pF
dTHLHS Delta High to Low, High Slew 0.03 0 .0 3 0.03 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Notes: *
1. Delays based on 35 pF loading.
2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-41
A14100A, A14V100A Timing Characteristics (continued)
Table 2-37 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C
Dedicated (hardwired) I/O Clock Network –3 Speed1 –2 Speed1 –1 Speed Std. Speed 3.3 V Speed1Units
Parameter/Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
tIOCKH Input Low to High (pad to I/O module
input) 2.3 2.6 3.0 3.5 4.5 ns
tIOPWH Minimum Pulse Width High 2.4 3.3 3.8 4.8 6.5 ns
tIPOWL Minimum Pulse Width Low 2.4 3.3 3.8 4.8 6.5 ns
tIOSAPW Minimum Asynchronous Pulse Width 2.4 3.3 3.8 4.8 6.5 ns
tIOCKSW Maximum Skew 0.6 0.6 0.7 0.8 0.6 ns
tIOP Minimum Period 5.0 6.8 8.0 10.0 13.4 ns
fIOMAX Maximum Frequency 200 150 125 100 75 MHz
Dedicated (hardwired) Array Clock
tHCKH Input Low to High (pad to S-module
input) 3.7 4.1 4.7 5.5 7.0 ns
tHCKL Input High to Low (pad to S-module
input) 3.7 4.1 4.7 5.5 7.0 ns
tHPWH Minimum Pulse Width High 2.4 3.3 3.8 4.8 6.5 ns
tHPWL Minimum Pulse Width Low 2.4 3.3 3.8 4.8 6.5 ns
tHCKSW Delta High to Low, Low Slew 0.6 0.6 0.7 0.8 0.6 ns
tHP Minimum Period 5.0 6.8 8.0 10.0 13.4 ns
fHMAX Maximum Frequency 200 150 125 100 75 MHz
Routed Array Clock Netwo rks
tRCKH Input Low to High (FO = 64) 6.0 6.8 7 .7 9.0 11.8 ns
tRCKL Input High to Low (FO = 64) 6.0 6.8 7.7 9.0 11.8 ns
tRPWH Min. Pulse Width High (FO = 64) 4.1 4.5 5.4 6.1 8.2 ns
tRPWL Min. Pulse Width Low (FO = 64) 4.1 4.5 5.4 6.1 8.2 ns
tRCKSW Maximum Skew (FO = 128) 1.2 1.4 1.6 1.8 1.8 ns
tRP Minimum Period (FO = 64) 8.3 9.3 11.1 12.5 16.7 ns
fRMAX Maximum Frequency (FO = 64) 120 105 90 80 60 M Hz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 2.6 0.0 2.7 0.0 2.9 0.0 3.0 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew (FO = 64)
(FO = 350) 0.0
0.0 1.7
5.0 0.0
0.0 1.7
5.0 0.0
0.0 1.7
5.0 0.0
0.0 1.7
5.0 0.0
0.0 5.0
5.0 ns
tHRCKSW H-Clock to R-Clock Skew (FO = 64)
(FO = 350) 0.0
0.0 1.3
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
Notes: *
1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at
http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
2. Delays based on 35 pF loading.
Detailed Specifications
2-42 Revision 3
Pin Descriptions
CLKA Clock A (Input)
Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules.
This pin can also be used as an I/O.
CLKB Clock B (Input)
Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules.
This pin can also be used as an I/O.
GND Ground
LOW supply voltage.
HCLK Dedicated (Hard-wired)
Array Clock (Input)
Clock input for sequential modules. This input is directly wired to each S-Module and offers clock speeds
independent of the number of S-Modules being dr iven. This pin can also be used as an I/O.
I/O Input/Output (Input, Output)
The I/O pin fun ctions as an input, output, three-state, or bidirectional buffer. Input and output levels are
compatible with standard TTL and CMOS specifications. Unused I/O pins are tristated by the Designer
Series software.
IOCLK Dedicated (Hard-wired)
I/O Clock (Input)
Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds
independent of the number of I/O modules being driven. Th is pin can also be used as an I/O.
IOPCL Dedicated (Hard-wired)
I/O Preset/Clear (Input)
Input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O
registers. This pin functions as an I/O when no I/O preset or clear macro s are used.
MODE Mode (Input)
The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is
HIGH, the special functions are active. When the MODE pin is LOW , the pins function as I/Os. To provide
Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the
MODE pin can be pulled high when required.
NC No Connection
This pin is not connected to circuitry within the device.
PRA Probe A (Output)
The Probe A pin is used to output data from any user-defined design node within the device. This
independent diagno stic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic
output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when
debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect
programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as
an I/O when the MODE pin is LOW.
PRB Probe B (Output)
The Probe B pin is used to output data from any user-defined design node within the device. This
independent diagno stic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic
output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when
debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect
programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as
an I/O when the MODE pin is LOW.
SDI Serial Data Input (Input)
Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is
HIGH. This pin functions as an I/O when the MODE pin is LOW.
Accelerator Series FPGAs – ACT 3 Family
Revision 3 2-43
SDO Serial Data Output (Output)
Serial data output for diagn ostic probe. SDO is active when the MODE pin is High. This pin function s as
an I/O when the MODE pin is Low.
DCLK Diagnostic Clock (Input)
Clock input for diagnostic probe and d evice programming. DCLK is active wh en the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
VCC 5 V Supply Voltage
HIGH supply voltage.
Revision 3 3-1
3 – Package Pin Assignment s
PL84
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
Note: This is the top view of the package.
12
13
14
15
16
18
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
74
73
72
71
70
68
69
67
66
65
64
63
62
61
60
59
58
57
56
55
54
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
11109 8 7 6 5 4 3 2 184838281807978777675
84-Pin
PLCC
Package Pin Assignments
3-2 Revision 3
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
PL84
Pin Number A1415, A14V15 Function A1425, A14V25 Function A1440, A14V40 Function
1 VCC VCC VCC
2 GND GND GND
3 VCC VCC VCC
4 PRA, I/O PRA, I/O PRA, I/O
11 DCLK, I/O DCLK, I/O DCLK, I/O
12 SDI, I/O SDI, I/O SDI , I/O
16 MODE MODE MODE
27 GND GND GND
28 VCC VCC VCC
40 PRB, I/O PRB, I/O PRB, I/O
41 VCC VCC VCC
42 GND GND GND
43 VCC VCC VCC
45 HCLK, I/O HCLK, I/O HCLK, I/O
52 SDO SDO SDO
53 IOPCL, I/O IOPCL, I/O IOPCL, I/O
59 VCC VCC VCC
60 VCC VCC VCC
61 GND GND GND
68 VCC VCC VCC
69 GND GND GND
74 IOCLK, I/O IOCLK, I/O IOCLK, I/O
83 CLKA, I/O CLKA, I/O CLKA, I/O
84 CLKB, I/O CLKB, I/O CLKB, I/O
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-3
PQ100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view of the package.
100-Pin
PQFP
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
123456789101112131415161718192021222324252627282930
Package Pin Assignments
3-4 Revision 3
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
PQ100
Pin Number A1415 Function A1425 Function
2 IOCLK, I/O IOCLK, I/O
14 CLKA, I/O CLKA, I/O
15 CLKB, I/O CLKB, I/O
16 VCC VCC
17 GND GND
18 VCC VCC
19 GND GND
20 PRA, I/O PRA, I/O
27 DCLK, I/O DCLK, I/O
28 GND GND
29 SDI, I/O SDI, I/O
34 MODE MODE
35 VCC VCC
36 GND GND
47 GND GND
48 VCC VCC
61 PRB, I/O PRB, I/O
62 GND GND
63 VCC VCC
64 GND GND
65 VCC VCC
67 HCLK, I/O HCLK, I/O
77 SDO SDO
78 IOPCL, I/O IOPCL, I/O
79 GND GND
85 VCC VCC
86 VCC VCC
87 GND GND
96 VCC VCC
97 GND GND
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-5
PQ160
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view of the package
Package Pin Assignments
3-6 Revision 3
PQ160
Pin Number A1425, A14V25 Function A1440, A14V40 Fu nction A1460, A14V60 Function
1 GND GND GND
2 SDI, I/O SDI, I/O SDI, I/O
5 NC I/O I/O
9 MODE MODE MODE
10 VCC VCC VCC
14 NC I/O I/O
15 GND GND GND
18 VCC VCC VCC
19 GND GND GND
20 NC I/O I/O
24 NC I/O I/O
27 NC I/O I/O
28 VCC VCC VCC
29 VCC VCC VCC
40 GND GND GND
41 NC I/O I/O
43 NC I/O I/O
45 NC I/O I/O
46 VCC VCC VCC
47 NC I/O I/O
49 NC I/O I/O
51 NC I/O I/O
53 NC I/O I/O
58 PRB, I/O PRB, I/O PRB, I/O
59 GND GND GND
60 VCC VCC VCC
62 HCLK, I/O HCLK, I/O HCLK, I/O
63 GND GND GND
74 NC I/O I/O
75 VCC VCC VCC
76 NC I/O I/O
77 NC I/O I/O
78 NC I/O I/O
79 SDO SDO SDO
80 IOPCL, I/ O IOPCL, I/O IOPCL, I/O
81 GND GND GND
90 VCC VCC VCC
91 VCC VCC VCC
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-7
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
92 NC I/O I/O
93 NC I/O I/O
98 GND GND GND
99 VCC VCC VCC
100 NC I/O I/O
103 GND GND GND
107 NC I/O I/O
109 NC I/O I/O
110 VCC VCC VCC
111 GND GND GND
112 VCC VCC VCC
113 NC I/O I/O
119 NC I/O I/O
120 IOCLK, I/O IOCLK, I/O IOCLK, I/O
121 GND GND GND
124 NC I/O I/O
127 NC I/O I/O
136 CLKA, I/O CLKA, I/O CLKA, I/O
137 CLKB, I/O CLKB, I/O CLKB, I/O
138 VCC VCC VCC
139 GND GND GND
140 VCC VCC VCC
141 GND GND GND
142 PRA, I/O PRA, I /O PRA, I/O
143 NC I/O I/O
145 NC I/O I/O
147 NC I/O I/O
149 NC I/O I/O
151 NC I/O I/O
153 NC I/O I/O
154 VCC VCC VCC
160 DCLK, I/O DCLK, I/O DCLK, I/O
PQ160
Pin Number A1425, A14V25 Function A1440, A14V40 Fu nction A1460, A14V60 Function
Package Pin Assignments
3-8 Revision 3
PQ208, RQ208
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view of the package
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
16893 16794 16695 16596 16497 16398 16299 161100 160101 159102 158103 157104
11641 11542 11443 11344 11245 11146 11047 10948 10849 10750 10651 10552
208-Pin
PQFP, RQFP
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-9
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
PQ208, RQ208
Pin Number A1460, A14V60
Function A14100, A14V100
Function
1GND GND
2 SDI, I/O SDI, I/O
11 MODE MODE
12 VCC VCC
25 VCC VCC
26 GND GND
27 VCC VCC
28 GND GND
40 VCC VCC
41 VCC VCC
52 GND GND
53 NC I/O
60 VCC VCC
65 NC I/O
76 PRB, I/O PRB, I/O
77 GND GND
78 VCC VCC
79 GND GND
80 VCC VCC
82 HCLK, I/O HCLK, I/O
98 VCC VCC
102 NC I/O
103 SDO SDO
104 IOPCL, I/O IOPCL, I/O
105 GND GND
114 VCC VCC
115 VCC VCC
116 NC I/O
129 GND GND
130 VCC VCC
131 GND GND
132 VCC VCC
145 VCC VCC
146 GND GND
147 NC I/O
148 VCC VCC
156 IOCLK, I/O IOCLK, I/O
157 GND GND
158 NC I/O
164 VCC VCC
180 CLKA, I/O CLKA, I/O
181 CLKB, I/O CLKB, I/O
182 VCC VCC
183 GND GND
184 VCC VCC
185 GND GND
186 PRA, I/O PRA, I/O
195 NC I/O
201 VCC VCC
205 NC I/O
208 DCLK, I/O DCLK, I/O
PQ208, RQ208
Pin Number A1460, A14V60
Function A14100, A14V100
Function
Package Pin Assignments
3-10 Revision 3
TQ176
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
140
139
138
137
176-Pin
TQFP
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
136
135
134
133
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-11
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
TQ176
Pin Number A1440, A14V40
Function A1460, A14V60
Function
1GND GND
2 S DI, I/O SDI, I/O
10 MODE MODE
11 VCC VCC
20 NC I/O
21 GND GND
22 VCC VCC
23 GND GND
32 VCC VCC
33 VCC VCC
44 GND GND
49 NC I/O
51 NC I/O
63 NC I/O
64 PRB, I/O PRB, I/O
65 GND GND
66 VCC VCC
67 VCC VCC
69 HCLK, I/O HCLK, I/O
82 NC I/O
83 NC I/O
87 SDO SDO
88 IOPCL, I/O IOPCL, I/O
89 GND GND
98 VCC VCC
99 VCC VCC
108 GND GND
109 VCC VCC
110 GND GND
119 NC I/O
121 NC I/O
122 VCC VCC
123 GND GND
124 VCC VCC
132 IOCLK, I/O IOCLK, I/O
133 GND GND
138 NC I/O
152 CLKA, I/O CLKA, I/O
153 CLKB, I/O CLKB, I/O
154 VCC VCC
155 GND GND
156 VCC VCC
157 PRA, I/O PRA, I/O
158 NC I/O
170 NC I/O
176 DCLK, I/O DCLK, I/O
TQ176
Pin Number A1440, A14V40
Function A1460, A14V60
Function
Package Pin Assignments
3-12 Revision 3
VQ100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
1
2
3
4
5
7
6
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
100-Pin
VQFP
75
74
73
72
71
69
70
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
32
31
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
94
95
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-13
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
VQ100
Pin Number A1415, A14V15 Function A1425, A14V25 Function A1440, A14V40 Function
1 GND GND GND
2 SDI, I/O SDI, I/O SDI, I/O
7 MODE MODE MODE
8 VCC VCC VCC
9 GND GND GND
20 VCC VCC VCC
21 NC I/O I/O
34 PRB, I/O PRB, I/O PRB, I/O
35 VCC VCC VCC
36 GND GND GND
37 VCC VCC VCC
39 HCLK, I/O HCLK, I/O HCLK, I/O
49 SDO SDO SDO
50 IOPCL, I/O IOPCL, I/O I OPCL, I/O
51 GND GND GND
57 VCC VCC VCC
58 VCC VCC VCC
67 VCC VCC VCC
68 GND GND GND
69 GND GND GND
74 NC I/O I/O
75 IOCLK, I/O IOCLK, I/O IOCLK, I/O
87 CLKA, I/O CLKA, I/O CLKA, I/O
88 CLKB, I/O CLKB, I/O CLKB, I/O
89 VCC VCC VCC
90 VCC VCC VCC
91 GND GND GND
92 PRA, I/O PRA, I/O PRA, I/O
93 NC I/O I/O
100 DCLK, I/O DCLK, I/O DCLK, I/O
Package Pin Assignments
3-14 Revision 3
CQ132
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view
132-Pin
CQFP
Pin #1
Index
132 131 130 129 128 127 126 125 124 107 106 105 104 103 102 101 100
34 35 36 37 38 39 40 41 42 59 60 61 62 63 64 65 66
67
68
69
70
71
72
73
74
75
92
93
94
95
96
97
98
99
33
32
31
30
29
28
27
26
25
8
7
6
5
4
3
2
1
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-15
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
CQ132
Pin Number A1425 Function
1NC
2GND
3SDI, I/O
9MODE
10 GND
11 VCC
22 VCC
26 GND
27 VCC
34 NC
36 GND
42 GND
43 VCC
48 PRB, I/O
50 HCLK, I/O
58 GND
59 VCC
63 SDO
64 IOPCL, I/O
65 GND
66 NC
67 NC
74 GND
75 VCC
78 VCC
89 VCC
90 GND
91 VCC
92 GND
98 IOCLK, I/O
99 NC
100 NC
101 GND
106 GND
107 VCC
116 CLKA, I/O
117 CLKB, I/O
118 PRA, I/O
122 GND
123 VCC
131 DCLK, I/O
132 NC
CQ132
Pin Number A1425 Function
Package Pin Assignments
3-16 Revision 3
CQ196
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
196-Pin
CQFP
Pin #1
Index
196 195 194 193 192 191 190 189 188 155 154 153 152 151 150 149 148
50 51 52 53 54 55 56 57 58 91 92 93 94 95 96 97 98
99
100
101
102
103
104
105
106
107
140
141
142
143
144
145
146
147
49
48
47
46
45
44
43
42
41
8
7
6
5
4
3
2
1
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-17
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
CQ196
Pin Number A1460 Function
1GND
2SDI, I/O
11 MODE
12 VCC
13 GND
37 GND
38 VCC
39 VCC
51 GND
52 GND
59 VCC
64 GND
77 HCLK, I/O
79 PRB, I/O
86 GND
94 VCC
98 GND
99 SDO
100 IOPCL, I/O
101 GND
110 VCC
111 VCC
112 GND
137 VCC
138 GND
139 GND
140 VCC
148 IOCLK, I/O
149 GND
155 VCC
162 GND
172 CLKA, I/O
173 CLKB, I/O
174 PRA, I/O
183 GND
189 VCC
193 GND
196 DCLK, I/O
CQ196
Pin Number A1460 Function
Package Pin Assignments
3-18 Revision 3
CQ256
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
256-Pin
CQFP
Pin #1
Index
256 255 254 253 252 251 250 249 248 200 199 198 197 196 195 194 193
65 66 67 68 69 70 71 72 73 121 122 123 124 125 126 127 128
129
130
131
132
133
134
135
136
137
185
186
187
188
189
190
191
192
64
63
62
61
60
59
58
57
56
8
7
6
5
4
3
2
1
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-19
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
CQ256
Pin Number A14100 Function
1GND
2SDI, I/O
11 MODE
28 VCC
29 GND
30 VCC
31 GND
46 VCC
59 GND
90 PRB, I/O
91 GND
92 VCC
93 GND
94 VCC
96 HCLK, I/O
110 GND
126 SDO
127 IOPCL, I/O
128 GND
141 VCC
158 GND
159 VCC
160 GND
161 VCC
174 VCC
175 GND
176 GND
188 IOCLK, I/O
189 GND
219 CLKA, I/O
220 CLKB, I/O
221 VCC
222 GND
223 VCC
224 GND
225 PRA, I/O
240 GND
256 DCLK, I/O
CQ256
Pin Number A14100 Function
Package Pin Assignments
3-20 Revision 3
BG225
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
12 3 4 5 6 7 8 9 10 11 12 13 14 15
12 3 4 5 6 7 8 9 10 11 12 13 14 15
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-21
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
4. The BG225 package has been discontinued.
BG225
A1460 Function Location
CLKA or I/O C8
CLKB or I/O B8
DCLK or I/O B2
GND A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15
HCLK or I/O P9
IOCLK or I/O B14
IOPCL or I/O P14
MODE D1
NC A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14
PRA or I/O A7
PRB or I/O L7
SDI or I/O D4
SDO N13
VCC A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13
Package Pin Assignments
3-22 Revision 3
BG313
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
12 3 4 5 6 7 8 9 10 11 12 13 14 15
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
16 17 18 19 20 21 22 23 24 25
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-23
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
BG313
A14100, A14V100
Function Location
CLKA or I/O J13
CLKB or I/O G13
DCLK or I/O B2
GND A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13
HCLK or I/O T14
IOCLK or I/O B24
IOPCL or I/O AD24
MODE G3
NC A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5,
C25, D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1,
N5, N7, N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24
PRA or I/O H12
PRB or I/O AD12
SDI or I/O C1
SDO AE23
VCC AB18, AD6, AE13, C 13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V22,
V24
Package Pin Assignments
3-24 Revision 3
PG100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
1
A
234567891011
B
C
D
E
F
G
H
J
K
L
A
B
C
D
E
F
G
H
J
K
L
100-Pin
CPGA
1234567891011
Orientation Pin
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-25
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
4. The PG100 package has been discontinued.
PG100
A1415 Function Location
CLKA or I/O C7
CLKB or I/O D6
DCLK or I/O C4
GND C3, C6, C9, E9, F3, F9, J3, J6, J8, J9
HCLK or I/O H6
IOCLK or I/O C10
IOPCL or I/O K9
MODE C2
PRA or I/O A6
PRB or I/O L3
SDI or I/O B3
SDO L9
VCC B6, B10, E11, F2, F10, G2, K2, K6, K10
Package Pin Assignments
3-26 Revision 3
PG133
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
133-Pin
CPGA
A
B
C
D
E
F
G
H
J
K
L
M
N
A
B
C
D
E
F
G
H
J
K
L
M
N
1 2 3 4 5 6 7 8 9 10111213
1 2 3 4 5 6 7 8 9 10 11 12 13
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-27
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
4. The PG133 package has been discontinued.
PG133
A1425 Function Location
CLKA or I/O D7
CLKB or I/O B6
DCLK or I/O D4
GND A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12
HCLK or I/O K7
IOCLK or I/O C10
IOPCL or I/O L10
MODE E3
NC A1, A7, A13, G1, G13, N1, N7, N13
PRA or I/O A6
PRB or I/O L6
SDI or I/O C2
SDO M11
VCC B2, B7, B12, E11, G2 , G12, J2, J12, M2, M7, M12
Package Pin Assignments
3-28 Revision 3
PG175
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
A
1
BCDEFGHJKL
2
3
4
5
6
7
8
9
10
11
175-Pin
CPGA
ABCDEFGHJKL
M
M
N
N
P
P
R
R
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-29
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
4. The PG175 package has been discontinued.
PG175
A1440 Function Location
CLKA or I/O C9
CLKB or I/O A9
DCLK or I/O D5
GND D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12
HCLK or I/O R8
IOCLK or I/O E12
IOPCL or I/O P13
MODE F3
NC A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15
PRA or I/O B8
PRB or I/O R7
SDI or I/O D3
SDO N12
VCC C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13
Package Pin Assignments
3-30 Revision 3
PG207
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
234567891011121314151617
1234567891011121314151617
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
207-Pin
CPGA
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-31
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
PG207
A1460 Function Location
CLKA or I/O K1
CLKB or I/O J3
DCLK or I/O E4
GND C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15
HCLK or I/O J15
IOCLK or I/O P5
IOPCL or I/O N14
MODE D7
NC A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17
PRA or I/O H1
PRB or I/O K16
SDI or I/O C3
SDO P15
VCC B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5
Package Pin Assignments
3-32 Revision 3
PG257
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
V
X
Y
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
V
X
Y
12345678910111213141516171819
1 2 3 4 5 6 7 8 9 10111213141516171819
257-Pin
CPGA
Accelerator Series FPGAs – ACT 3 Family
Revision 3 3-33
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC denotes no connection.
3. MODE should be terminated to GND through a 10K re sistor to enable Actionprobe usage; otherwi se it can be
terminated directly to GND.
PG257
A14100 Function Location
CLKA or I/O L4
CLKB or I/O L5
DCLK or I/O E4
GND B16, C4, D4, D10, D16, E11, J5, K4, K16, L15, R4, T4, T10, T16, T17, X7
HCLK or I/O J16
IOCLK or I/O T 5
IOPCL or I/O R16
MODE A5
NC E5
PRA or I/O J1
PRB or I/O J17
SDI or I/O B4
SDO R17
VCC C3, C10, C13, C17, K3, K17, V3, V7, V10, V17, X14
Revision 3 4-1
4 – Dat asheet Information
List of Changes
The following table lists critical changes that were made in each version of the datasheet.
Revision Changes Page
Revision 3
(January 2012) The description for SDO pins had earlier been removed from the datasheet and has
now been included again, in the "Pin Descriptions" section (SAR 35820). 2-21
SDO pin numbers had earlier been removed from package pin assignment tables in
the datasheet, and have now been re stored to the pin tables (SAR 35820). 3-1
Revision 2
(September 2011) The ACT 3 datasheet was formatted newly in the style used for current datasheets.
The same information is present (other than noted in the list of changes for this
revision) but divided into chapters.
N/A
The datasheet was revised to note in multiple places that speed grades –2 and –3
have been discontinued. The following device/package combinations have been
discontinued for all speed grades and temperatures (SAR 33872):
A1415 PG100
A1425 PG133
A1440 PG175
A1460 BG225
Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004.
I and
others
The "Features" section was revised to state the clock-to-ouput time and on-chip
performance for –1 speed grade as 9.0 ns and 186 MHz. The "General Description"
section was revised in accordance (SAR 33872).
I
The maximum performance values were updated in Table 1 • ACT 3 Family Product
Information, and now reflect worst-case commercial for the –1 speed grade (SAR
33872).
I
The "Product Pla n" table was updated as follo ws to conform to current offerings (SAR
33872):
The A1415A device is offered in PL84, PG100, and VQ100 packages for Military
application.
The A1440A device is offered in TQ176 and VQ100 packages for Industrial
application.
III
Table 1-1 • Chip-to-Chip Performance (worst-case commercial) was updated to
include data for all speed grades instead of only –3 (SAR 33872). 1-2
Figure 1-1 • Predictable Performance (worst-case commercial, –1 speed grade) was
revised to reflect values for the –1 speed grade (SAR 33872). 1-1
Figure 2-10 • Timing Model was updated to show data for the –1 speed grade instead
of –3 (SAR 33872). 2-16
Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial
Conditions was update d to include data for all speed grades instead of only –3 (SAR
33872).
2-20
Package names used in the "Package Pin Assignments" section and throughout the
document were revised to match standards given in Package Mechanical Drawings
(SAR 27395).
3-1
Datasheet Information
4-2 Revision 3
Revision 2
(continued) In the "Package Pin Assignmen ts" section, notes were added to the pin tables for the
following packages, stating that they are disconti n ue d:
"BG225"
"PG100"
"PG133"
"PG175"
3-20
3-24
3-26
3-28
Revision 1
(June 2006) RoHS compliant information was added to the "Ordering Information" section.II
Revision Changes Page
Accelerator Series FPGAs – ACT 3 Family
Revision 3 4-3
Datasheet Categories
Categories
In order to provide the latest information to des igners, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device is
designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these
categories are as follows:
Product Brief
The product brief is a summarized versi on of a datasheet (ad vance or producti on) and contains general
product information. This document gives an overvie w of specific de vice and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This info rmation can b e used as estimates, bu t not for production. This label only appl ies to the
DC and Switching Characteristics chapter of the da tasheet and will only be use d when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Production
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-supp ort, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliabili ty information.
5172106-3/1.12
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; en terprise and communications; and in dustrial
and alternative energy markets. Products include high-p erformance, high-relia bility an alog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Ali so Viejo CA 92656 USA
Within the USA: +1 (949) 380-61 00
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996