© by SEMIKRON 0898 B 6 75
Features
MOS input (voltage controlled)
N channel, homogeneous Silicon
structure (NPT- Non pu nch-
through IGBT)
Low loss high density chips
Low tail current
High short circuit capability,
self limiting to 6 * Icnom
Latch-up free
Fast & soft inverse CAL diodes 8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (9 mm) and
creepage distances (13 mm)
Typical Applications
Switched mode power supplies
Three phase inverters for
AC motor speed control
1) Tcase = 25 °C, unless otherwise
specified
2) IF = – IC, VR = 600 V,
–diF/dt = 500 A/µs, VGE = 0 V
3) Use VGEoff = –5... –15 V
8) CAL = Controlled Axial Lifetime
Technology
Case and mech. data B 6 80
Absolute Maximum Ratings Values
Symbol Conditions 1) Units
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
RGE = 20 k
Tcase = 25/65 °C
Tcase = 25/65 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40 040
DIN IEC 68 T.1
1200
1200
50 / 40
100 / 80
± 20
220
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
45 / 30
100 / 80
350
600
A
A
A
A2s
Characteristics
Symbol Conditions 1) min. typ. max. Units
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
VGE = 0, IC = 0,8 mA
VGE = VCE, IC = 1 mA
VGE = 0 Tj = 25 °C
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 25 A VGE = 15 V;
IC = 40 A Tj = 25 (125) °C
VCE = 20 V, IC = 25 A
VCES
4,5
12
5,5
0,1
3
2,1(2,4)
2,6(3,1)
6,5
1
200
2,45(2,85)
V
V
mA
mA
nA
V
V
S
CCHC
Cies
Coes
Cres
LCE
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
1900
250
110
300
2100
300
150
60
pF
pF
pF
pF
nH
td(on)
tr
td(off)
tf
Eon 5)
Eoff 5)
VCC = 600 V
VGE = +15 V / –15 V3)
IC = 25 A, ind. load
RGon = RGoff = 40
Tj = 125 °C
60
49
380
37
3,7
2,9
ns
ns
ns
ns
mWs
mWs
Inverse Diode 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 25 A VGE = 0 V;
IF = 40 A Tj = 25 (125) °C
Tj = 125 °C
Tj = 125 °C
IF = 25 A; Tj = 125 °C2)
IF = 25 A; Tj = 125 °C2)
2,0(1,8)
2,3(2,1)
1,1
22
3,7
2,5
1,2
44
V
V
V
m
A
µC
Thermal Characteristics
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
0,56
1,0
0,05
°C/W
°C/W
°C/W
SEMITRANS® M
Low Loss IGBT Modules
SKM 40 GD 124 D
GD
Sixpack
http://store.iiic.cc/
© by SEMIKRONB 6 – 76
SKM 40 GD 124 D
0898
M040G124.XLS-4
0,1
1
10
100
1000
1 10 100 1000 10000
V
CE
V
I
C
A
t
p
=12µs
10s
1ms
10ms
M 040G12 4.X LS-6
0
2
4
6
8
10
12
0 200 400 600 800 1000 1200 1400
V
CE
V
I
CSC
/I
C
a l lowe d nu m b er s o f
short circuits: <1000
t ime bet ween s hort
circuits: >1s
d i /d t =30 0 A/µs
900 A/µs
1500 A / µs
M 0 40G12 4.X LS-5
0
0,5
1
1,5
2
2,5
0 200 400 600 800 1000 1200 1400
V
CE
V
I
Cpuls
/I
C
M 040G12 4.X LS-3
0
1
2
3
4
5
6
020406080100
R
G
E
mWs E
on
E
off
M040G124.XLS-1
0
50
100
150
200
250
0 20406080100120140160
T
C
°C
P
tot
W
M 040G12 4.X LS-2
0
2
4
6
8
10
12
0 102030405060
I
C
A
E
mWs
E
on
E
of f
Fig. 3 Turn-on /-off energy = f (R
G
) Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
) Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 1 25 °C
V
CE
= 600 V
V
GE
= + 15 V
R
G
= 40
1 pulse
T
C
= 25 °C
T
j
150 °C
T
j
150 °C
V
GE
= ± 15 V
t
sc
10 µs
L < 35 nH
I
C
= 25 A
T
j
150 °C
V
GE
= ± 15 V
R
Goff
= 40
I
C
= 25 A
T
j
= 125 °C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 25 A
Not for
linear use
http://store.iiic.cc/
© by SEMIKRON B 6 – 770898
M 040G12 4.X LS-9
0
10
20
30
40
50
012345
V
CE
V
I
C
A17V
15V
13V
11V
9V
7V
M040G124.XLS-10
0
10
20
30
40
50
012345
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M040G124.XLS-12
0
10
20
30
40
50
02468101214
V
G
E
V
I
C
A
M 040G12 4.X LS-8
0
10
20
30
40
50
60
0 20406080100120140160
T
C
°C
I
C
A
P
cond(t)
= V
CEsat(t)
· I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
· I
C(t)
V
CE(TO)(Tj)
1,3 + 0,0005 (T
j
–25) [V]
typ.: r
CE(Tj)
= 0,032 + 0,00010 (T
j
–25) [
]
max.: r
CE(Tj)
= 0,046 + 0,00014 (T
j
25) [
]
valid for V
GE
= + 15 [V]; I
C
0,3 I
Cn
Fig. 9 Typ. output characteristic, t
p
= 80 µs; 25 °C Fig. 10 Typ. output characteristic, t
p
= 80 µs; 125 °C
Fig. 8 Rated current vs. temperature I
C
= f (T
C
)
+2
–1
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, t
p
= 80 µs; V
CE
= 20 V
T
j
= 150 ° C
V
GE
15V
http://store.iiic.cc/
© by SEMIKRONB 6 – 78
SKM 40 GD 124 D
0898
M040G124.XLS-18
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
0 1020304050
I
F
A
E
offD
mJ
60 Ω
35 Ω
80 Ω
25 Ω
R
G
=20 Ω
M040G124.XLS-17
0
10
20
30
40
50
0123
V
F
V
I
F
AT
j
= 1 25 ° C, t yp.
T
j
=25°C, typ.
T
j
=12C, max .
T
j
=25°C, max.
M040G124.XLS-16
10
100
1000
020406080100
R
G
t
ns t
doff
t
don
t
r
t
f
M040G124.XLS-15
10
100
1000
0204060
I
C
A
t
ns t
doff
t
don
t
r
t
f
M040G124.XLS-14
0,01
0,1
1
10
0102030
V
CE
V
C
nF C
ies
C
oes
C
res
M040G124.XLS-13
0
2
4
6
8
10
12
14
16
18
20
0 50 100 150 200
Q
Gate
nC
V
GE
V
600
V
800V
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MHz
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. swit ching times vs. gate resistor R
G
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
T
j
= 1 25 °C
V
CE
= 600 V
V
GE
= ± 15 V
I
C
= 25 A
induct. load
I
Cpuls
= 25 A
T
j
= 125 °C
V
CE
= 600 V
V
GE
= ± 15 V
R
Gon
= 40
R
Goff
= 40
induct. load
V
CC
= 600 V
T
j
= 12 5 °C
V
GE
= ± 15 V
http://store.iiic.cc/
© by SEMIKRON 0898 B 6 79
I:\MARKETIN\FRAMEDAT\datbl\B06-igbt\40gd124.fm
M040G124.XLS-20
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
s
ZthJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
sin
g
le pulse
tp
M040G124.XLS-24
0
1
2
3
4
5
6
0 500 1000 1500
diF/dt A/
µ
s
Qrr
µ
CIF=
25 A
15 A
10 A
5 A
6
0 Ω 35 Ω
0 Ω
25 Ω RG=20 Ω
40 A
M040G124.XLS-23
0
10
20
30
40
50
0 500 1000 1500
diF/dt A/
µ
s
IRR
A
60 Ω
35 Ω
80 Ω
25 Ω
RG=20 Ω
M040G124.XLS-22
0
10
20
30
40
50
0 1020304050
I
FA
I
RR
A
60 Ω
35 Ω
80 Ω
25 Ω
RG=
20 Ω
M040G124.XLS-19
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
tps
ZthJC
K/W
D=0,50
0,20
0,10
0,05
0,02
0,01
sin
g
le pul se
Fig. 19 Transient thermal impedance of IGBT
ZthJC = f (tp); D = tp / tc = tp · f Fig. 20 Transient thermal impedance of
inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f
Fig. 22 Typ. CAL diode peak reverse recovery
current IRR = f (IF; RG)Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
Fig. 24 Typ. CAL diode recovered charge
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
IF = 25 A
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
http://store.iiic.cc/
© by SEMIKRONB 6 – 80
SKM 40 GD 124 D
0898
SEMI TRANS Sixpack
Case D 67
UL Recognized
File no. E 63 532
SKM 40 GD 12 4 D
Di me nsi on s in mm
Case outline and circuit diagram
Mechanical Da ta
Symbol Conditions Values Units
min. typ. max.
M
1
a
w
to heatsink, SI U nits (M5)
to heatsink, US Units 4
35
5
44
5x9,81
175
Nm
lb.in.
m/s
2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Two devices are supplied in one
SE M IB O X A.
Larger packing units (10 and 20
piec es ) ar e u sed if su itabl e
SE MI B O X
C
1.
http://store.iiic.cc/