5–1
FEATURES
Current Transfer Ratio at I
F
=10 mA
ILD/Q1, 20% Min.
ILD/Q2, 100% Min.
ILD/Q5, 50% Min.
High Collector-Emitter Voltage
ILD/Q1: BV
CEO
=50 V
ILD/Q2, ILD/Q5: BV
CEO
=70 V
Field-Effect Stable by TRansparent IOn
Shield (TRIOS) Isolation Test Voltage, 5300
VAC
RMS
Underwriters Lab File #E52744
VDE 0884 Available with Option 1
Maximum Ratings
(Each Channel)
Emitter
Reverse Voltage ................................................6 V
Forward Current ...........................................60 mA
Surge Current................................................. 2.5 A
Power Dissipation.......................................100 mW
Derate Linearly from 25
°
C..................... 1.3 mW/
°
C
Detector
Collector-Emitter Reverse Voltage
ILD/Q1........................................................... 50 V
ILD/Q2, ILD/Q5...............................................70 V
Collector Current.......................................... 50 mA
Collector Current (t<1 ms)...........................400 mA
Power Dissipation.......................................200 mW
Derate Linearly from 25
°
C......................2.6 mW/
°
C
Package
Isolation Test Voltage (between
emitter and detector referred to
standard climate 23
°
C/50%RH,
DIN 50014) ....................................5300 VAC
RMS
Creepage...............................................min. 7 mm
Clearance...............................................min. 7 mm
Isolation Resistance
V
IO
=500 V, T
A
=25
°
C .........................R
IO
=10
12
V
IO
=500 V, T
A
=100
°
C .......................R
IO
=10
11
Package Power Dissipation ...................... 250 mW
Derate Linearly from 25
°
C..................... 3.3 mW/
°
C
Storage Temperature................... –40
°
C to +150
°
C
Operating Temperature................–40
°
C to +100
°
C
Junction Temperature....................................100
°
C
Soldering Temperature
(2 mm from case bottom)..........................260
°
C
V
DE
DESCRIPTION
The ILD/Q1/2/5 are optically coupled isolated pairs employing GaAs infrar ed
LEDs and silicon NPN phototransistor. Signal information, including a DC
level, can be transmitted by the drive while maintaining a high degree of
electrical isolation between input and output. The ILD/Q1/2/5 are especially
designed for driving medium-speed logic and can be used to eliminate trou-
blesome ground loop and noise problems. Also these couplers can be
used
to replace relays and transformers in many digital interface applica-
tions such as CRT modulation. The ILD1/2/5 has two isolated channels in a
single DIP package and the ILQ1/2/5 has four isolated channels per pack-
age.
See Appnote 45, “How to Use Optocoupler Normalized Curves.”
Dimensions in inches (mm)
.
268 (6.81)
.
255 (6.48)
.790 (20.07)
.779 (19.77 )
.045 (1.14)
.030 (.76)
.100 (2.54) Typ.
3°–9°
.305 Typ.
(7.75) Typ.
.022 (.56)
.018 (.46) .012 (.30)
.008 (.20)
.135 (3.43
)
.115 (2.92
)
Pin One I.D.
Pin One I.D.
.150 (3.81)
.130 (3.30)
.040 (1.02)
.030 (.76 )
.268 (6.81)
.255 (6.48)
34
65 .390 (9.91)
.379 (9.63)
.045 (1.14)
.030 (.76)
4° Typ.
4° Typ.
.100 (2.54) Typ.
10° Typ.
10° Typ.
3°–9°
.305 Typ.
(7.75) Typ.
.022 (.56)
.018 (.46) .012 (.30)
.008 (.20)
.135 (3.43)
.115 (2.92)
12
87
.150 (3.81)
.130 (3.30)
.040 (1.02)
.030 (.76 )
1
2
3
4
8
7
6
5
Emitter
Collector
Collector
Emitter
Anode
Cathode
Cathode
Anode
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
Emitter
Collector
Collector
Emitter
Emitter
Collector
Collector
Emitter
Anode
Cathode
Cathode
Anode
Anode
Cathode
Cathode
Anode
Quad Channel
Dual Channel
DUAL CHANNEL
ILD1/2/5
QUAD CHANNEL
ILQ1/2/5
PHOTOTRANSISTOR
OPTOCOUPLER
5–2
ILD/Q1/2/5
Characteristics
Package Transfer Characteristics (Each Channel)
Symbol Min. Typ. Max. Unit Condition
Emitter
Forward Voltage V
F
1.25 1.65 V I
F
=60 mA
Reverse Current I
R
0.01 10
µ
AV
R
=6 V
Capacitance C
0
25 pF V
R
=0 V, f=1 MHz
Thermal Resistance, Junction to Lead R
THJL
750
°
C/W
Detector
Capacitance C
CE
6.8 pF V
CE
=5 V, f=1 MHz
Leakage Current, Collector-Emitter I
CEO
550nAV
CE
=10 V
Saturation Voltage, Collector-Emitter V
CESAT
0.25 0.4 I
CE
=1 mA, I
B
=20
µ
A
DC Forward Current Gain HFE 200 650 1800 V
CE
= 10 V, I
B
=20
µ
A
Saturated DC Forward Current Gain HFE
SAT
120 400 600 V
CE
= 0.4 V, I
B
=20
µ
A
Thermal Resistance, Junction to Lead R
THJL
500
°
C/W
Symbol Min. Typ. Max. Unit Condition
ILD/Q1
Saturated Current Transfer Ratio (Collector-Emitter) CTR
CESAT
75 % I
F
=10 mA, V
CE
=0.4 V
Current Transfer Ratio (Collector-Emitter) CTR
CE
20 90 300 % I
F
=10 mA, V
CE
=10 V
ILD/Q2
Saturated Current Transfer Ratio (Collector-Emitter) CTR
CESAT
170 % I
F
=10 mA, V
CE
=0.4 V
Current Transfer Ratio (Collector-Emitter) CTR
CE
100 200 500 % I
F
=10 mA, V
CE
=10 V
ILD/Q5
Saturated Current Transfer Ratio (Collector-Emitter) CTR
CESAT
100 % I
F
=10 mA, V
CE
=0.4 V
Current Transfer Ratio (Collector-Emitter) CTR
CE
50 130 400 % I
F
=10 mA, V
CE
=10 V
Isolation and Insulation
Common Mode Rejection, Output High C
MH
5000 V/
µ
sV
CM
=50 V
P-P
, R
L
=1 k
, I
F
=0 mA
Common Mode Rejection, Output Low C
ML
5000 V/
µ
sV
CM
=50 V
P-P
, R
L
=1 k
, I
F
=10 mA
Common Mode Coupling Capacitance C
CM
0.01 pF
Package Capacitance C
IO
0.8 pF V
IO
=0 V, f=1 MHz
5–3
ILD/Q1/2/5
Typical Switching Times
Figure 1. Non-saturated switching timing
Figure 2. Non-saturated switching timing
Figure 3. Saturated switching timing
Figure 4. Saturated switching timing
VO
VCC=5 V
RL=75
F=10 KHz,
DF=50%
I
F=10 mA
IF
V
O
tDtR
50%
PHL
tPLH
tS
tF
t
VO
VCC=5
V
RL
F=10 KHz,
DF=50%
I
F=10 mA
IF
V
O
tD
tR
VTH=1.5 V
tPHL
tPLH
tStF
Figure 5. Normalized non-saturated and saturated
CTR at T
A
=25
°
C versus LED current
Figure 6. Normalized non-saturated and saturated
CTR at T
A
=25
°
C versus LED current
Characteristic ILD/Q1
I
F
=20 mA ILD/Q2
I
F
=5 mA ILD/Q5
I
F
=10 mA Unit Condition
Delay, t
D
0.8 1.7 1.7
µ
s
V
CE
=5 V
R
L
=75 k
50% of V
PP
Rise time, t
R
1.9 2.6 2.6
µ
s
Storage, t
S
0.2 0.4 0.4
µ
s
Fall Time, t
F
1.4 2.2 2.2
µ
s
Propagation
H-L, t
PHL
0.7 1.2 1.1
µ
s
Propagation
L-H, tPLH 1.4 2.3 2.5 µs
Characteristic ILD/Q1
IF=20 mA ILD/Q2
IF=5 mA ILD/Q5
IF=10 mA Unit Condition
Delay, tD0.8 1 1.7 µs
VCE=0.4 V
RL=1 k
VCC=5 V
VTH=1.5 V
Rise time, tR1.2 2 7 µs
Storage, tS7.4 5.4 4.6 µs
Fall Time, tF7.6 13.5 20 µs
Propagation
H-L, tPHL 1.6 5.4 2.6 µs
Propagation
L-H, tPLH 8.6 7.4 7.2 µs
.1 1 10 100
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
If - Forward Current - mA
Vf-Forward Voltage - V
Ta = -55°C
Ta = 25°C
Ta = 100°C
.1 1 10 100
0.0
0.5
1.0
1.5
NCTR(SAT)
NCTR
IF - LED Current - mA
CTRNF - Normalized CTR Factor
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
CTRce(sat) Vce = 0.4V
5–4 ILD/Q1/2/5
Figure 10. Collector-emitter current versus tempera-
ture and LED current
Figure 11. Collector-emitter leakage current versus
temperature
Figure 12. Propagation delay versus collector load
resistor
6050403020100
0
5
10
15
20
25
30
35
50°C
70°C
85°C
IF - LED Current - mA
Ice - Collector Current - mA
25°C
100806040200-20
10 -2
10 -1
10 0
10 1
10 2
10 3
10 4
10 5
Ta - Ambient Temperature - °C
Iceo - Collector-Emitter - nA
TYPICAL
Vce = 10V
.1 1 10 100
1
10
100
1000
1.0
1.5
2.0
2.5
RL - Collector Load Resistor - K
tPLH - Propagation Low-High - µs
tPHL - Propagation High-Low - µs
tPLH
tPHL
Ta = 25°C, IF = 10mA
Vcc = 5V, Vth = 1.5V
Figure 7. Normalized non-saturated and saturated
CTR at TA=50°C versus LED current
Figure 8. Normalized non-saturated and saturated
CTR at TA=70°C versus LED current
Figure 9. Normalized non-saturated and saturated
CTR at TA=85°C versus LED current
.1 1 10 100
0.0
0.5
1.0
1.5
NCTR(SAT)
NCTR
IF - LED Current - mA
CTRNF - Normalized CTR Factor
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
Ta = 50°C
CTRce(sat) Vce = 0.4V
.1 1 10 100
0.0
0.5
1.0
1.5
NCTR(SAT)
NCTR
IF - LED Current - mA
CTR - Normalized CTR Factor
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
Ta = 70°C
CTRce(sat) Vce = 0.4V
100101.1
0.0
0.5
1.0
1.5
NCTR(SAT)
NCTR
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
Ta = 85°C
CTRce(sat) Vce = 0.4V
IF - LED Current - mA
NCTR - Normalized CTR