© 2011 Microchip Technology Inc. DS22200C-page 1
Features
150 mA Output Current
Low Drop Out Voltage, 260 mV typical @ 20 mA,
VR = 3.3V
50 µA Typical Quiescent Current
0.01 µA Typical Shutdown Current
Input Operating Voltage Range: 2.0V to 28.0V
Standard Output Voltage Options
(1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 10.0V, 12.0V)
Output Voltage Accuracy: ±2%
Output voltages from 1.8V to 18.0V in 0.1V
increments are available upon request
Stable with Ceramic output capacitors
Current Limit Protection With Current Foldback
Shutdown pin
High PSRR: 50 dB typical @ 1 kHz
Applications
Cordless Phones, Wireless Communications
PDAs, Notebook and Netbook Computers
•Digital Cameras
Microcontroller Power
Car Audio and Navigation Systems
Home Appliances
Related Literature
AN765, “Using Microchip’s Micropower LDOs”,
DS00765, Microchip Technology Inc., ©2002
AN766, “Pin-Compatible CMOS Upgrades to
BiPolar LDOs”, DS00766, Microchip Technology
Inc., ©2002
AN792, “A Method to Determine How Much
Power a SOT23 C an Di ss ip a te in an Appli ca tio n”,
DS00792, Microchip Technology Inc., ©2001
Description
The MCP1804 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 150 mA of
current while consuming only 50 µA of quiescent
current (typical, 1.8V V
OUT 5.0V). The input
operating range is specified from 2.0V to 28.0V.
The MCP1804 is capable of delivering 100 mA with
only 1300 mV (typical) of input to output voltage
differential (VOUT = 3.3V). The output voltage tolerance
of the MCP1804 at +25°C is a maximum of ±2%. Line
regulation is ±0.15% typical at +25°C.
The LDO input and output is stable with 0.1 µF of input
and output capacitance. Ceramic, tantalum or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit with current foldback
to 40 mA (typical) provides short-circuit protection.
A shutdown (SHDN) function allows the output to be
enabled or disabled. When disabled, the MCP1804
draws only 0.01 µA of current (typical).
Package options include the SOT-23-5 (SOT-25), SOT-
89-3, SOT-89-5, and SOT-223-3.
Package Types
SOT-23-5
123
54
VOUT
VIN NC
SHDNGND
SOT-89-5
(Top View)
123
54
VOUT SHDN
VIN NCGND
123
VOUT VIN
GND
(Top View)
SOT-223
123
VOUT VIN
GND
(Top View)
SOT-89-3
150 mA, 28V LDO Regulator With Shutdown
MCP1804
MCP1804
DS22200C-page 2 © 2011 Microchip Technology Inc.
Functional Block Diagram
Typical Application Circuit
Thermal
+
-
VIN VOUT
GND
Error Amplifier
Voltage
Reference Current Limiter
Shutdown
Control
SHDN
Protection
*5-Pin Versions Only
*
VIN
CIN
F
COUT
FCeramic
VIN
12V
Battery
+
VOUT
SHDN
GND
NC
Ceramic
VOUT
5.0V @ 30 mA
1
2
3
5
4
SOT-25
MCP1804
© 2011 Microchip Technology Inc. DS22200C-page 3
MCP1804
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
Input Voltage ...................................................... +30V
Output Current (Continuous)........... PD/(VIN-VOUT)mA
Output Current (Peak)...................................... 300 mA
Output Voltage ..................... (VSS-0.3V) to (VIN+0.3V)
SHDN Voltage ................................(VSS-0.3V) to +30V
† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification
is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.
ELECTR ICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C
Parameters Sym Min Typ Max Units Conditions
Input / Output Characteristics
Input Operating
Voltage
VIN 2.0 28.0 V Note 1
Input Quiescent
Current
IqIL = 0 mA
50 105 µA 1.8V VOUT 5.0V
60 115 µA 5.1V VOUT 12.0V
65 125 µA 12.1V VOUT 18.0V
Shutdown Current ISHDN 0.01 0.10 µA SHDN = 0V
Maximum Output
Current
IOUT_mA VIN = VR + 3.0V
100 mA VOUT <3.0V
150 mA VOUT 3.0V
Current Limiter ILIMIT 200 mA
Output Short Circuit
Current
IOUT_SC —40 mA
Output Voltage
Regulation
VOUT VR-2.0% VRVR+2.0% V IOUT =10mA, Note 2
VOUT Temperature
Coefficient
TCVOUT ±100 ppm/°C IOUT =20mA,
-40°C TA≤+85°C, Note 3
Line Regulation ΔVOUT/
(VOUTXΔVIN)
(VR+2V)VIN 28V, Note 1
0.05 0.10 %/V IOUT = 5 mA
0.15 0.30 %/V IOUT = 13 mA
Load Regulation ΔVOUT/VOUT IL = 1.0 mA to 50 mA, Note 4
—5090 mV1.8V VOUT 5.0V
110 175 mV 5.1V VOUT 12.0V
180 275 mV 12.1V VOUT 18.0V
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.
Changes in output voltage due to heating effects are determined using thermal regulation specification
TCVOUT.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its
measured value with an applied input voltage of VR + 2.0V.
MCP1804
DS22200C-page 4 © 2011 Microchip Technology Inc.
Dropout Voltage
Note 1, Note 5 VDROPOUT IL = 20 mA
—550710 mV1.8V VR 1.9V
450 600 mV 2.0V VR 2.1V
390 520 mV 2.2V VR 2.4V
310 450 mV 2.5V VR 2.9V
260 360 mV 3.0V VR 3.9V
220 320 mV 4.0V VR 4.9V
190 280 mV 5.0V VR 6.4V
170 230 mV 6.5V VR 8.0V
130 190 mV 8.1V VR 10.0V
120 170 mV 10.1V VR 18.0V
IL = 100 mA
2200 2700 mV 1.8V VR 1.9V
1900 2600 mV 2.0V VR 2.1V
1700 2200 mV 2.2V VR 2.4V
1500 1900 mV 2.5V VR 2.9V
1300 1700 mV 3.0V VR 3.9V
1100 1500 mV 4.0V VR 4.9V
1000 1300 mV 5.0V VR 6.4V
800 1150 mV 6.5V VR 8.0V
700 950 mV 8.1V VR 10.0V
650 850 mV 10.1V VR 18.0V
SHDN “H” Voltage VSHDN_H 1.1 VIN VV
IN = 28V
SHDN “L” Voltage VSHDN_L 0 0.35 V VIN = 28V
SHDN Current ISHDN -0.1 0.1 µA VIN = 28V, VSHDN = GND or VIN
Power Supply Ripple
Rejection Ratio
PSRR 50 dB f = 1 kHz, IL = 20 mA,
VINAC = 0.5V pk-pk, CIN = 0 µF
Thermal Shutdown
Protection
TSD 150 °C TJ
Thermal Shutdown
Hysteresis
ΔTSD 25 °C
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C
Parameters Sym Min Typ Max Units Conditions
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.
Changes in output voltage due to heating effects are determined using thermal regulation specification
TCVOUT.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its
measured value with an applied input voltage of VR + 2.0V.
© 2011 Microchip Technology Inc. DS22200C-page 5
MCP1804
TEMPERATURE SPECIFICATIONS
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Operating Temperature Range TA-40 +85 °C
Storage Temperature Range Tstg -55 +125 °C
Thermal Package Resistance
Thermal Resistance, 5LD SOT-23 θJA
θJC
256
81
°C/W EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
Thermal Resistance, 3LD SOT-89
Thermal Resistance, 5LD SOT-89
θJA
θJC
180
100
°C/W EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
Thermal Resistance, 3LD SOT-223 θJA
θJC
62
15
°C/W EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
MCP1804
DS22200C-page 6 © 2011 Microchip Technology Inc.
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-1: Output Voltage vs. Output
Current.
FIGURE 2-2: Output Voltage vs. Output
Current.
FIGURE 2-3: Output Voltage vs. Output
Current.
FIGURE 2-4: Output Voltage vs. Output
Current.
FIGURE 2-5: Output Voltage vs. Output
Current.
FIGURE 2-6: Output Voltage vs. Output
Current.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0 50 100 150 200 250 300
Output Current (mA)
Output Voltage (V)
Ta=-40
Ta=25
Ta=85
VR=2.8V
VIN=SHDN=4.8V
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 50 100 150 200 250 300
Output Current (mA)
Output Voltage (V)
Ta=-40
Ta=25
Ta=85
VR=5VVIN=SHDN=8.0V
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
0 50 100 150 200 250 300
Output Current (mA)
Output Voltage (V)
Ta=-40
Ta=25
Ta=85
VR=12V
VIN=SHDN=15V
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0 50 100 150 200 250 300
Output Curren t (mA)
Output Voltage (V)
VIN=2.8V
VIN=3.8V
VIN=4.8V
VR=1.8V
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 50 100 150 200 250 300
Output Current (mA)
Output Voltage (V)
VIN=6V
VIN=7V
VIN=8V
VR=5.0V
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
0 50 100 150 200 250 300
Output Current (mA)
Output Voltage (V)
VIN=13V
VIN=14V
VIN=15V
VR=12V
© 2011 Microchip Technology Inc. DS22200C-page 7
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-7: Output Voltage vs. Input
Voltage.
FIGURE 2-8: Output Voltage vs. Input
Voltage.
FIGURE 2-9: Output Voltage vs. Input
Voltage.
FIGURE 2-10: Output Voltage vs. Input
Voltage.
FIGURE 2-11: Output Voltage vs. Input
Voltage.
FIGURE 2-12: Output Voltage vs. Input
Voltage.
1.5
1.6
1.7
1.8
1.9
2.0
2.1
0.8 1.3 1.8 2.3 2.8 3.3 3.8
Input Vo ltag e (V)
Output Vo ltage (V)
IOUT=1mA
IOUT=10mA
IOUT=30mA
VR=1.8V
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
4.0 4.5 5.0 5.5 6.0
Input Vo ltage (V )
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=30mA
VR=5V
9.0
10.0
11.0
12.0
13.0
14.0
15.0
10 11 12 13 14
In put V oltage (V)
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=30mA
VR=12V
1.5
1.6
1.7
1.8
1.9
2.0
2.1
4 8 12 16 20 24 28
Input Voltage (V)
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=30mA
VR=1.8V
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
8 1216202428
Input Volta ge (V)
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=30mA
VR=5V
9.0
10.0
11.0
12.0
13.0
14.0
15.0
14 16 18 20 22 24 26 28
Input Voltage (V )
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=30mA
VR=12V
MCP1804
DS22200C-page 8 © 2011 Microchip Technology Inc.
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-13: Dropout Voltage vs. Load
Current.
FIGURE 2-14: Dropout Voltage vs. Load
Current.
FIGURE 2-15: Dropout Voltage vs. Load
Current.
FIGURE 2-16: Supply Current vs. Input
Voltage.
FIGURE 2-17: Supply Current vs. Input
Voltage.
FIGURE 2-18: Supply Current vs. Input
Voltage.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 25 50 75 100 125 150
Output Current (mA)
Dropout Voltage (V)
Ta=85
Ta=25
Ta=-40
VR=1.8V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 25 50 75 100 125 150
Output Current (mA)
Dropout Voltag e (V )
Ta=85
Ta=25
Ta=-40
VR=5V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 25 50 75 100 125 150
Output Current (mA)
Dropout Voltag e (V )
Ta=85
Ta=25
Ta=-40
VR=12V
0
10
20
30
40
50
60
70
0 4 8 1216202428
Input Voltag e (V)
Supply Cu rr ent (µA)
Ta=85
Ta=25
Ta=-40
VR=1.8V
0
10
20
30
40
50
60
70
0 4 8 12 16 20 24 28
Input Voltag e (V)
Supply Current (µA)
Ta=85
Ta=25
Ta=-40
VR=5V
0
10
20
30
40
50
60
70
0 4 8 1216202428
Input Voltage (V)
Suppl y Current (µA)
Ta=85
Ta=25
Ta=-40
VR=12V
© 2011 Microchip Technology Inc. DS22200C-page 9
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-19: Supply Current vs. Input
Voltage.
FIGURE 2-20: Supply Current vs. Input
Voltage.
FIGURE 2-21: Supply Current vs. Input
Voltage.
FIGURE 2-22: Output Voltage vs. Ambient
Temperature.
FIGURE 2-23: Output Voltage vs. Ambient
Temperature.
FIGURE 2-24: Output Voltage vs. Ambient
Temperature.
0
10
20
30
40
50
60
70
-40-200 20406080100
A m bient Temperature (°C )
Supply Current (µA)
VR=1.8V
0
10
20
30
40
50
60
70
-40-200 20406080100
A m bient Temperature (°C )
Sup ply Curre n t (µA)
VR=5V
0
10
20
30
40
50
60
70
-40-200 20406080100
Ambient Temperat ure (°C)
Supply Current (µA)
VR=12V
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
-50-250 255075100
A m bient Tem peratu re (°C
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=20mA
VR=1.8V
4.80
4.85
4.90
4.95
5.00
5.05
5.10
5.15
5.20
-50-250 255075100
Ambient Temperature (°C
Output Voltage (V)
IOUT=1mA
IOUT=10mA
IOUT=20mA
VR=5V
11.5
11.6
11.7
11.8
11.9
12.0
12.1
12.2
12.3
12.4
12.5
-50 -25 0 25 50 75 100
Am bient Temperature (°C
Output Vol t a ge (V)
IOUT=1mA
IOUT=10mA
IOUT=20mA
VR=12V
MCP1804
DS22200C-page 10 © 2011 Microchip Technology Inc.
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-25: Dynamic Line Response.
FIGURE 2-26: Dynamic Line Response.
FIGURE 2-27: Dynamic Line Response.
FIGURE 2-28: Dynamic Line Response.
FIGURE 2-29: Dynamic Line Response.
FIGURE 2-30: Dynamic Line Response.
1.3
2.3
3.3
4.3
5.3
6.3
7.3
Time (1ms/div)
Input Voltag e (V)
3.26
3.28
3.30
3.32
3.34
3.36
3.38
Output Vo ltage (V)
VOUT
VIN
VR=3.3V
IOUT=1 mA
3
4
5
6
7
8
9
Time (1 ms/div)
Input Volt age (V)
4.96
4.98
5.00
5.02
5.04
5.06
5.08
Output Voltage (V)
VOUT
VIN
V
R=5V
IOUT 1 mA
10
11
12
13
14
15
16
Time (1ms/div)
In put Voltage (V )
11.96
11.98
12.00
12.02
12.04
12.06
12.08
Output Voltage (V)
VOUT
VIN
VR=12V
IOUT=1 mA
1.3
2.3
3.3
4.3
5.3
6.3
7.3
Time (1ms/div)
Input Volt age (V)
3.26
3.28
3.30
3.32
3.34
3.36
3.38
Out put Vo ltag e (V)
VOUT
VIN
VR=3.3V
IOUT=30 mA
3
4
5
6
7
8
9
Ti me (1 ms/div)
Input Voltage (V)
4.96
4.98
5.00
5.02
5.04
5.06
5.08
Output Voltage (V)
VOUT
VIN
VR=5V
IOUT=30 mA
10
11
12
13
14
15
16
Time (1ms/div)
Input Voltage (V)
11.96
11.98
12.00
12.02
12.04
12.06
12.08
Output Vo ltage (V)
VR=12V
IOUT=30 mA
VOUT
VIN
© 2011 Microchip Technology Inc. DS22200C-page 11
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-31: Dynamic Load Response.
FIGURE 2-32: Dynamic Load Response.
FIGURE 2-33: Dynamic Load Response.
FIGURE 2-34: Startup Response.
FIGURE 2-35: Startup Response.
FIGURE 2-36: Startup Response.
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
Time (1ms/div)
Output Voltage (V)
0
30
60
90
120
150
Output Curr e nt (mA)
Output Current
VOUT
VR=3.3V
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
Time (1ms/div)
Output Voltage (V)
0
30
60
90
120
150
Output Curr e nt (m A)
Output Current
VOUT
VR = 5V
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
12.6
Tim e (1 m s /di v )
Output Voltage (V)
0
30
60
90
120
150
Output Curr e nt (m A)
VOUT
VR = 12V
IOUT
-8
-6
-4
-2
0
2
4
6
8
Tim e (1 m s /di v )
Input Voltage (V)
0
1
2
3
4
5
6
7
8
Output Voltage (V)
VOUT
VR=3.3V
IOUT=1 mA
VIN
-8
-6
-4
-2
0
2
4
6
8
Time (1ms/div)
Input Voltage (V)
0
1
2
3
4
5
6
7
8
Output Vo ltage (V )
VOUT
VR=3.3V
IOUT=30 mA
VIN
-8
-6
-4
-2
0
2
4
6
8
Tim e (1 m s /div)
Input Vo ltage (V)
0
1
2
3
4
5
6
7
8
Output Voltage (V)
VOUT
VR=5.0V
IOUT=1 mA
VIN
MCP1804
DS22200C-page 12 © 2011 Microchip Technology Inc.
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-37: Startup Response.
FIGURE 2-38: Startup Response.
FIGURE 2-39: Startup Response.
FIGURE 2-40: SHDN Response.
FIGURE 2-41: SHDN Response.
FIGURE 2-42: SHDN Response.
-8
-6
-4
-2
0
2
4
6
8
Time (1ms/div)
Input Volta ge (V)
0
1
2
3
4
5
6
7
8
Output Voltage (V)
VOUT
VR=5.0V
IOUT=30 mA
VIN
-15
-10
-5
0
5
10
15
Time (1ms/div)
Input Volta ge (V)
0
3
6
9
12
15
18
Output Voltage (V)
VR=12V
IOUT=1 mA
VOUT
VIN
-15
-10
-5
0
5
10
15
Time (1ms/div)
Input Voltage (V)
0
3
6
9
12
15
18
Output Voltage (V)
VR=12V
IOUT=30 mA
VIN
VOUT
-8
-6
-4
-2
0
2
4
6
8
Tim e (1 m s /di v )
SHD N Voltage (V)
0
1
2
3
4
5
6
7
8
VOUT (V)
VR=3.3V
IOUT=1 mA
VOUT
SHDN
-8
-6
-4
-2
0
2
4
6
8
Time (1ms/div)
SH DN Volt ag e (V )
0
1
2
3
4
5
6
7
8
VOUT (V)
VR=5V
IOUT=1 mA
VOUT
SHDN
-15
-10
-5
0
5
10
15
Time (1ms/div)
SHDN Voltage (V)
0
3
6
9
12
15
18
VOU T ( V)
VR=12V
IOUT=1 mA
VOUT
SHDN
© 2011 Microchip Technology Inc. DS22200C-page 13
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-43: SHDN Response.
FIGURE 2-44: SHDN Response.
FIGURE 2-45: SHDN Response.
FIGURE 2-46: PSRR 3.3V @ 1 mA.
FIGURE 2-47: PSRR 5.0V @ 1 mA.
FIGURE 2-48: PSRR 12.0V @ 1 mA.
-8
-6
-4
-2
0
2
4
6
8
Time (1ms/div)
SHDN Voltage (V)
0
1
2
3
4
5
6
7
8
VOUT (V)
VR=3.3V
IOUT=30 mA
VOUT
SHDN
-8
-6
-4
-2
0
2
4
6
8
Time (1ms/div)
SHDN Voltage (V)
0
1
2
3
4
5
6
7
8
VOUT (V)
VR=5V
IOUT=30 mA
VOUT
SHDN
-15
-10
-5
0
5
10
15
Tim e (1 m s /di v )
SHDN Vo lta ge (V)
0
3
6
9
12
15
18
VOUT (V )
VOUT
VR=12V
IOUT=30 mA
SHDN
0
10
20
30
40
50
60
70
80
90
0.01 0.1 1 10 100
Ripple Frequenc y: f (kHz)
Ripple Rejection Ra te: PSRR
(dB)
VOUT=3.3V
CIN=0
IOUT=1 mA
VIN_AC=0.5Vp-p
0
10
20
30
40
50
60
70
80
90
0.01 0.1 1 10 100
Ripple Frequency: f (kHz)
Ripple Rejection Rate: PSRR
(dB)
V
OUT=5V
CIN=0
IOUT=1 mA
V
IN_AC=0.5Vp-p
0
10
20
30
40
50
60
70
80
90
0.01 0.1 1 10 100
Ripple Frequency: f (kHz)
Ripple Rejection Rate: PSRR
(dB)
VOUT=12V
CIN=0
IOUT=1 mA
VIN_AC=0.5Vp-p
MCP1804
DS22200C-page 14 © 2011 Microchip Technology Inc.
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-49: PSRR 3.3V @ 30 mA.
FIGURE 2-50: PSRR 5.0V @ 30 mA.
FIGURE 2-51: PSRR 12V @ 30 mA.
FIGURE 2-52: PSRR 5V @ 30 mA.
FIGURE 2-53: Ground Current vs. Output
Current.
FIGURE 2-54: Ground Current vs. Output
Current.
Output Current: Iout (mA)
© 2011 Microchip Technology Inc. DS22200C-page 15
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
FIGURE 2-55: Ground Current vs. Output
Current.
0.01 0.1 1
Ripple Frequency f [kHz]
10.00
1.00
0.10
0.01
Output Noise Density [µV Hz]
VR = 3.3V
VIN = 5.0V
IOUT = 50 mA
10 100
MCP1804
DS22200C-page 16 © 2011 Microchip Technology Inc.
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Tabl e 3- 1.
TABLE 3-1: MCP1804 PIN FUNCTION TABLE
3.1 Unregulat ed Input Voltage (VIN)
Connect VIN to the input unregulated source voltage.
Like all low dropout linear regulators, low source
impedance is necessary for the stable operation of the
LDO. The amount of capacitance required to ensure
low source impedance will depend on the proximity of
the input source capacitors or battery type. For most
applications, 0.1 µF to 1.0 µF of capacitance will
ensure stable operation of the LDO circuit. The type of
capacitor used can be ceramic, tantalum or aluminum
electrolytic. The low ESR characteristics of the ceramic
will yield better noise and PSRR performance at
high-frequency.
3.2 Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (50 to 60 µA typical) flows
out of this pin; there is no high current. The LDO output
regulation is referenced to this pin. Minimize voltage
drops between this pin and the negative side of the
load.
3.3 Shutdown Input (SHDN)
The SHDN input is used to turn the LDO output voltage
on and off. When the SHDN input is at a logic-high
level, the LDO output voltage is enabled. When the
SHDN input is pulled to a logic-low level, the LDO
output voltage is disabled and the LDO enters a low
quiescent current shutdown state where the typical
quiescent current is 0.01 µA. The SHDN pin does not
have an internal pullup or pulldown resistor. The SHDN
pin must be connected to either VIN or GND to prevent
the device from becoming unstable.
3.4 Regulated Output Voltage (VOUT)
Connect VOUT to the positive side of the load and the
positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close to the LDO VOUT pin as is practical.
The current flowing out of this pin is equal to the DC
load current. For most applications, 0.1 µF to 1.0 µF of
capacitance will ensure stable operation of the LDO
circuit. Larger values may be used to improve dynamic
load response. The type of capacitor used can be
ceramic, tantalum or aluminum electrolytic. The low
ESR characteristics of the ceramic will yield better
noise and PSRR performance at high-frequency.
MCP1804 Symbol Description
SOT-23-5 SOT-89-5 SOT-89-3 SOT-223-3
15 3 3V
IN Unregulated Supply Voltage
2 2,TAB 2, TAB 2 GND Ground Terminal
34 TAB NC No connection
43 ——SHDN Shutdown
51 1 1V
OUT Regulated Voltage Output
© 2011 Microchip Technology Inc. DS22200C-page 17
MCP1804
4.0 DETAILED DESCRIPTION
4.1 Output Regulation
A portion of the LDO output voltage is fed back to the
internal error amplifier and compared with the precision
internal bandgap reference. The error amplifier output
will adjust the amount of current that flows through the
P-Channel pass transistor, thus regulating the output
voltage to the desired value. Any changes in input
voltage or output current will cause the error amplifier
to respond and adjust the output voltage to the target
voltage (refer to Figure 4-1).
4.2 Overcurrent
The MCP1804 internal circuitry monitors the amount of
current flowing through the P-Channel pass transistor.
In the event that the load current reaches the current
limiter level of 200 mA (typical), the current limiter
circuit will operate and the output voltage will drop. As
the output voltage drops, the internal current foldback
circuit will further reduce the output voltage causing the
output current to decrease. When the output is shorted,
a typical output current of 50 mA flows.
4.3 Shutdown
The SHDN input is used to turn the LDO output voltage
on and off. When the SHDN input is at a logic-high
level, the LDO output voltage is enabled. When the
SHDN input is pulled to a logic-low level, the LDO
output voltage is disabled and the LDO enters a low
quiescent current shutdown state where the typical
quiescent current is 0.01 µA. The SHDN pin does not
have an internal pullup or pulldown resistor. Therefore
the SHDN pin must be pulled either high or low to
prevent the device from becoming unstable. The
internal device current will increase when the device is
operational and current flows through the pullup or
pull-down resistor to the SHDN pin internal logic. The
SHDN pin internal logic is equivalent to an inverter
input.
4.4 Output Capaci tor
The MCP1804 requires a minimum output capacitance
of 0.1 µF to 1.0 µF for output voltage stability. Ceramic
capacitors are recommended because of their size,
cost and environmental robustness qualities.
Aluminum-electrolytic and tantalum capacitors can be
used on the LDO output as well. The output capacitor
should be located as close to the LDO output as is
practical. Ceramic materials X7R and X5R have low
temperature coefficients.
Larger LDO output capacitors can be used with the
MCP1804 to improve dynamic performance and power
supply ripple rejection performance. Aluminum-
electrolytic capacitors are not recommended for low
temperature applications of < -25°C.
4.5 Input Capacitor
Low input source impedance is necessary for the LDO
output to operate properly. When operating from
batteries, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 0.1 µF to 1.0 µF is recommended for most
applications.
For applications that have output step load
requirements, the input capacitance of the LDO is very
important. The input capacitance provides the LDO
with a good local low-impedance source to pull the
transient currents from in order to respond quickly to
the output load step. For good step response
performance, the input capacitor should be of
equivalent or higher value than the output capacitor.
The capacitor should be placed as close to the input of
the LDO as is practical. Larger input capacitors will also
help reduce any high-frequency noise on the input and
output of the LDO and reduce the effects of any
inductance that exists between the input source
voltage and the input capacitance of the LDO.
4.6 Thermal Shutdown
The MCP1804 thermal shutdown circuitry protects the
device when the internal junction temperature reaches
the typical thermal limit value of +150°C. The thermal
limit shuts off the output drive transistor. Device output
will resume when the internal junction temperature falls
below the thermal limit value by an amount equal to the
thermal limit hysteresis value of +25°C.
MCP1804
DS22200C-page 18 © 2011 Microchip Technology Inc.
FIGURE 4-1: Bl ock Diagram.
Thermal
+
-
VIN VOUT
GND
Error Amplifier
Voltage
Reference Current Limiter
Shutdown
Control
SHDN
Protection
5-Pin Versions Only
*
*
© 2011 Microchip Technology Inc. DS22200C-page 19
MCP1804
5.0 FUNCTIONAL DESCRIPTION
The MCP1804 CMOS linear regulator is intended for
applications that need the low current consumption
while maintaining output voltage regulation. The
operating continuous load range of the MCP1804 is
from 0 mA to 150 mA. The input operating voltage
range is from 2.0V to 28.0V, making it capable of
operating from a single 12V battery or single and
multiple Li-Ion cell batteries.
5.1 Input
The input of the MCP1804 is connected to the source
of the P-Channel PMOS pass transistor. As with all
LDO circuits, a relatively low source impedance
(< 10Ω) is needed to prevent the input impedance from
causing the LDO to become unstable. The size and
type of the capacitor needed depends heavily on the
input source type (battery, power supply) and the
output current range of the application. For most
applications a 0.1 µF ceramic capacitor will be
sufficient to ensure circuit stability. Larger values can
be used to improve circuit AC performance.
5.2 Output
The maximum rated continuous output current for the
MCP1804 is 150 mA.
A minimum output capacitance of 0.1 µF to 1.0 µF is
required for small signal stability in applications that
have up to 150 mA output current capability. The
capacitor type can be ceramic, tantalum or aluminum
electrolytic.
MCP1804
DS22200C-page 20 © 2011 Microchip Technology Inc.
6.0 APPLICATION CIRCUITS AND
ISSUES
6.1 Typical Application
The MCP1804 is most commonly used as a voltage
regulator. It’s low quiescent current and wide input volt-
age make it ideal for Li-Ion and 12V battery-powered
applications.
FIGURE 6-1: Typical App li cat io n Circui t.
6.1.1 APPLICATION INPUT CONDITIONS
6.2 Power Calculations
6.2.1 POWER DISSIPATION
The internal power dissipation of the MCP1804 is a
function of input voltage, output voltage and output
current. The power dissipation, as a result of the
quiescent current draw, is so low, it is insignificant
(50.0 µA x VIN). The following equation can be used to
calculate the internal power dissipation of the LDO.
EQUATION 6-1:
The maximum continuous operating temperature
specified for the MCP1804 is +85°C. To estimate the
internal junction temperature of the MCP1804, the total
internal power dissipation is multiplied by the thermal
resistance from junction to ambient (RθJA). The thermal
resistance from junction to ambient for the SOT-23 pin
package is estimated at 256°C/W.
EQUATION 6-2:
The maximum power dissipation capability for a
package can be calculated given the junction-
to-ambient thermal resistance and the maximum
ambient temperature for the application. The following
equation can be used to determine the package
maximum internal power dissipation.
EQUATION 6-3:
EQUATION 6-4:
EQUATION 6-5:
Package Type = SOT-23
Input Voltage Range = 3.8V to 4.2V
VIN maximum = 4.6V
VOUT typical = 1.8V
IOUT = 50 mA maximum
GND
VOUT VIN
CIN
F
COUT
F Ceramic
VOUT VIN
4.2V
1.8V
IOUT
50 mA
Ceramic
SHDN NC
MCP1804
PLDO VIN MAX)()
VOUT MIN()
()IOUT MAX)()
×
=
Where:
PLDO = LDO Pass device internal power
dissipation
VIN(MAX) = Maximum input voltage
VOUT(MIN) = LDO minimum output voltage
TJMAX()
PTOTAL R
θ
JA
×
TAMAX
+=
Where:
TJ(MAX) = Maximum continuous junction
temperature.
PTOTAL = Total device power dissipation.
RϴJA = Thermal resistance from junction to
ambient.
TAMAX = Maximum ambient temperature.
PDMAX()
TJMAX()
TAMAX()
()
R
θ
JA
---------------------------------------------------=
Where:
PD(MAX) = Maximum device power dissipation.
TJ(MAX) = Maximum continuous junction
temperature.
TA(MAX) = Maximum ambient temperature.
RϴJA = Thermal resistance from junction to
ambient.
TJRISE()
PDMAX()
R
θ
JA
×
=
Where:
TJ(RISE) = Rise in device junction temperature over
the ambient temperature.
PD(MAX) = Maximum device power dissipation.
RϴJA = Thermal resistance from junction to
ambient.
TJTJRISE()
TA
+=
Where:
TJ= Junction Temperature.
TJ(RISE) = Rise in device junction temperature over
the ambient temperature.
TA= Ambient temperature.
© 2011 Microchip Technology Inc. DS22200C-page 21
MCP1804
6.3 Voltage Regulator
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation, as a result of ground current, is small
enough to be neglected.
6.3.1 POWER DISSIPATION EXAMPLE
6.3.1.1 Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction to ambient for the application. The thermal
resistance from junction to ambient (RθJA) is derived
from an EIA/JEDEC standard for measuring thermal
resistance for small surface mount packages. The EIA/
JEDEC specification is JESD51-7, “High Effective Ther-
mal Conductivity Test Board for Leaded Surface Mount
Packages”. The standard describes the test method
and board specifications for measuring the thermal
resistance from junction to ambient. The actual thermal
resistance for a particular application can vary depend-
ing on many factors, such as copper area and thick-
ness. Refer to AN792, “A Method to Determine How
Much Power a SOT 23 Can Dissipate in an Application”
(DS00792), for more information regarding this subject.
6.3.1.2 Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below.
Maximum Package Power Dissipation at +25°C
Ambient Temperature (minimum PCB footprint)
6.4 Voltage Reference
The MCP1804 can be used not only as a regulator, but
also as a low quiescent current voltage reference. In
many microcontroller applications, the initial accuracy
of the reference can be calibrated using production test
equipment or by using a ratio measurement. When the
initial accuracy is calibrated, the thermal stability and
line regulation tolerance are the only errors introduced
by the MCP1804 LDO. The low-cost, low quiescent
current and small ceramic output capacitor are all
advantages when using the MCP1804 as a voltage
reference.
FIGURE 6-2: Using the MCP1804 as a
Voltage Reference.
6.5 Pulsed Load Applications
For some applications, there are pulsed load current
events that may exceed the specified 150 mA
maximum specification of the MCP1804. The internal
current limit of the MCP1804 will prevent high peak
load demands from causing non-recoverable damage.
The 150 mA rating is a maximum average continuous
rating. As long as the average current does not exceed
150 mA nor the max power dissipation of the packaged
device, pulsed higher load currents can be applied to
the MCP1804. The typical current limit for the
MCP1804 is 200 mA (TA = +25°C).
Package:
Package Type = SOT-23
Input Voltage:
VIN = 3.8V to 4.6V
LDO Output Voltages and Currents:
VOUT = 1.8V
IOUT =50mA
Maximum Ambient Temperature:
TA(MAX) =+40°C
Internal Power Dissipation:
Internal Power dissipation is the product of the LDO
output current times the voltage across the LDO
(VIN to VOUT).
PLDO(MAX) =(V
IN(MAX) - VOUT(MIN)) x
IOUT(MAX)
PLDO = (4.6V - (0.98 x 1.8V)) x 50 mA
PLDO = 141.8 milli-Watts
TJ(RISE) =P
TOTAL x RqJA
TJRISE = 141.8 milli-Watts x 256.0°C/Watt
TJRISE =36.3°C
TJ =T
JRISE + TA(MAX)
TJ = 76.3°C
SOT-23 (256°C/Watt = RθJA):
PD(MAX) = (85°C - 25°C) / 256°C/W
PD(MAX) = 234 milli-Watts
SOT-89 (180°C/Watt = RθJA):
PD(MAX) = (85°C - 25°C) / 180°C/W
PD(MAX) = 333 milli-Watts
PICmicro®
GND
VIN
CIN
F COUT
F
Bridge Sensor
VOUT VREF
ADO
AD1
Ratio Metric Reference
50 µA Bias Microcontroller
MCP1804
MCP1804
DS22200C-page 22 © 2011 Microchip Technology Inc.
7.0 PACKAGING INFORMATION
7.1 Package Marking Information
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
5-Lead SOT-89 Example:
5-Lead SOT-23 Example:
80K25
XXXXXXX
XXXYYWW
3-Lead SOT-223
NNN
XXXYYWW
Example:
80K25
Part Number Code
MCP1804T-1802I/OT 80KNN
MCP1804T-2502I/OT 80TNN
MCP1804T-3002I/OT 80ZNN
MCP1804T-3302I/OT 812NN
MCP1804T-5002I/OT 81MNN
MCP1804T-A002I/OT 839NN
MCP1804T-C002I/OT 83ZNN
Part Number Code
MCP1804T-1802I/MT 80KNN
MCP1804T-2502I/MT 80TNN
MCP1804T-3002I/MT 80ZNN
MCP1804T-3302I/MT 812NN
MCP1804T-5002I/MT 81MNN
MCP1804T-A002I/MT 839NN
MCP1804T-C002I/MT 83ZNN
Part Number Code
MCP1804T-1802I/DB 84KNN
MCP1804T-2502I/DB 84TNN
MCP1804T-3002I/DB 84ZNN
MCP1804T-3302I/DB 852NN
MCP1804T-5002I/DB 85MNN
MCP1804T-A002I/DB 879NN
MCP1804T-C002I/DB 87ZNN
3-Lead SOT-89 Example:
NNN
XXXYYWW 84K25
Part Number Code
MCP1804T-1802I/MB 84KNN
MCP1804T-2502I/MB 84TNN
MCP1804T-3002I/MB 84ZNN
MCP1804T-3302I/MB 852NN
MCP1804T-5002I/MB 85MNN
MCP1804T-A002I/MB 879NN
MCP1804T-C002I/MB 87ZNN
84K25
NNN
XXNN
© 2011 Microchip Technology Inc. DS22200C-page 23
MCP1804
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU27>627@
1RWHV
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
/HDG3LWFK H %6&
2XWVLGH/HDG3LWFK H %6&
2YHUDOO+HLJKW $  ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± 
6WDQGRII $  ± 
2YHUDOO:LGWK (  ± 
0ROGHG3DFNDJH:LGWK (  ± 
2YHUDOO/HQJWK '  ± 
)RRW/HQJWK /  ± 
)RRWSULQW /  ± 
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
φ
N
b
E
E1
D
123
e
e1
A
A1
A2 c
L
L1
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP1804
DS22200C-page 24 © 2011 Microchip Technology Inc.
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU+HDGHU0%>627@
1RWHV
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 0$;
1XPEHURI/HDGV 1
3LWFK H %6&
2XWVLGH/HDG3LWFK H %6&
2YHUDOO+HLJKW $  
2YHUDOO:LGWK +  
0ROGHG3DFNDJH:LGWKDW%DVH (  
0ROGHG3DFNDJH:LGWKDW7RS (  
2YHUDOO/HQJWK '  
7DE/HQJWK '  
)RRW/HQJWK /  
/HDG7KLFNQHVV F  
/HDG:LGWK E  
/HDGV:LGWK E  
D
D1
E
H
N
b1
e1
b
21
e
b1
L
A
C
E1
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
© 2011 Microchip Technology Inc. DS22200C-page 25
MCP1804
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU+HDGHU07>627@
1RWHV
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 0$;
1XPEHURI/HDGV 1
/HDG3LWFK H %6&
2XWVLGH/HDG3LWFK H %6&
2YHUDOO+HLJKW $  
2YHUDOO:LGWK +  
0ROGHG3DFNDJH:LGWK (  
2YHUDOO/HQJWK '  
7DE:LGWK '  
)RRW/HQJWK /  
/HDG7KLFNQHVV F  
/HDG:LGWK E  
/HDGV:LGWK E  
7DE/HDG:LGWK E  
b1
N
L
D1
b2
b1
L
12
b1
e
b
b1
e1
D
A
H
E
C
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP1804
DS22200C-page 26 © 2011 Microchip Technology Inc.
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU'%>627@
1RWHV
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI/HDGV 1
/HDG3LWFK H %6&
2XWVLGH/HDG3LWFK H %6&
2YHUDOO+HLJKW $ ± ± 
6WDQGRII $  ± 
0ROGHG3DFNDJH+HLJKW $   
2YHUDOO:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
/HDG7KLFNQHVV F   
/HDG:LGWK E   
7DE/HDG:LGWK E   
)RRW/HQJWK /  ± ±
/HDG$QJOH  ± 
D
b2
EE1
123
e
e1
AA2
A1
b
c
L
φ
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
© 2011 Microchip Technology Inc. DS22200C-page 27
MCP1804
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU'%>627@
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
MCP1804
DS22200C-page 28 © 2011 Microchip Technology Inc.
NOTES:
© 2011 Microchip Technology Inc. DS22200C-page 29
MCP1804
APPENDIX A: REVISION HISTORY
Revision C (June 2011)
The following is the list of modifications:
1. Added seven new characterization graphs to
Section 2.0 “Typical Performance Curves”
(Figure 2-49 - Figure 2-55).
2. Changed layout of Table 3-1. Added separate
column for SOT-223-3.
3. Updated Package Marking drawings and
examples in the Packaging Information section.
4. Added new voltage option to Product
Identification System table.
Revision B (November 2009)
The following is the list of modifications:
Electrical characteristics, SHDN “H” Voltage item:
Changed to SHDN “L” Voltage.
Revision A (September 2009)
Original Release of this Document.
© 2011 Microchip Technology Inc. DS22200C-page 30
MCP1804
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX
-XX
Voltage PackageTemperature
Range
Device
Device MCP1804T: LDO Voltage Regulator (Tape and Reel)
Voltage Options 18 = 1.8V
25 = 2.5V
30 = 3.0V
33 = 3.3V
50 = 5.0V
A0 = 10V
C0 = 12V
J0 = 18V
Output Voltage
Tolerance
02 = ±2%
Temperature Range I = -40°C to +85°C (Industrial)
Package DB = 3-lead Plastic Small OutlineTransistor (SOT-223)
MB = 3-lead Plastic Small OutlineTransistor (SOT-89)
MT = 5-lead Plastic Small OutlineTransistor (SOT-89)
OT = 5-lead Plastic Small OutlineTransistor (SOT-23)
Examples:
a) MCP1804T-1802I/OT: 1.8V, 5-LD SOT-23
b) MCP1804T-2502I/OT: 2.5V, 5-LD SOT-23
c) MCP1804T-3002I/OT: 3.0V, 5-LD SOT-23
d) MCP1804T-3302I/OT: 3.3V, 5-LD SOT-23
e) MCP1804T-5002I/OT: 5.0V, 5-LD SOT-23
f) MCP1804T-A002I/OT: 10V, 5-LD SOT-23
g) MCP1804T-C002I/OT: 12V, 5-LD SOT-23
a) MCP1804T-1802I/MB: 1.8V, 5-LD SOT-89
b) MCP1804T-2502I/MB: 2.5V, 5-LD SOT-89
c) MCP1804T-3002I/MB: 3.0V, 5-LD SOT-89
d) MCP1804T-3302I/MB: 3.3V, 5-LD SOT-89
e) MCP1804T-5002I/MB: 5.0V, 5-LD SOT-89
f) MCP1804T-A002I/MB: 10V, 5-LD SOT-89
g) MCP1804T-C002I/MB: 12V, 5-LD SOT-89
a) MCP1804T-1802I/MT: 1.8V, 5-LD SOT-89
b) MCP1804T-2502I/MT: 2.5V, 5-LD SOT-89
c) MCP1804T-3002I/MT: 3.0V, 5-LD SOT-89
d) MCP1804T-3302I/MT: 3.3V, 5-LD SOT-89
e) MCP1804T-5002I/MT: 5.0V, 5-LD SOT-89
f) MCP1804T-A002I/MT: 10V, 5-LD SOT-89
g) MCP1804T-C002I/MT: 12V, 5-LD SOT-89
a) MCP1804T-1802I/DB: 1.8V, 3-LD SOT-223
b) MCP1804T-2502I/DB: 2.5V, 3-LD SOT-223
c) MCP1804T-3002I/DB: 3.0V, 3-LD SOT-223
d) MCP1804T-3302I/DB: 3.3V, 3-LD SOT-223
e) MCP1804T-5002I/DB: 5.0V, 3-LD SOT-223
f) MCP1804T-A002I/DB: 10V, 3-LD SOT-223
g) MCP1804T-C002I/DB: 12V, 3-LD SOT-223
T
Tape
and
Reel
XX
Output
Voltage
Tolerance
© 2011 Microchip Technology Inc. DS22200CA-page 31
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2011, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-61341-301-2
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperiph erals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS22200C-page 32 © 2011 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los A n ge les
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsi ung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangko k
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Cop e nha gen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Worldwide Sales and Service
05/02/11