TSH70, TSH71, TSH72, TSH73, TSH74, TSH75 Rail-to-rail, wide-band, low-power operational amplifiers Datasheet - production data Features TSH70 : SOT23-5/SO8 Output 1 VCC - 2 +4 Inv. In. Non-Inv. In. 3 Inv. In. 2 _ 7 VCC + Non-Inv. In. 3 + 6 Output 5 NC VCC - 4 TSH71 : SO8/TSSOP8 NC 1 8 STANDBY Inverting Input 2 _ 7 VCC + Non Inverting Input 3 + 6 Output 5 NC VCC - 4 TSH72 : SO8/TSSOP8 Output1 1 8 VCC + Inverting Input1 2 _ Non Inverting Input1 3 + VCC - 4 7 Output2 _ 6 Inverting Input2 + 5 Non Inverting Input2 TSH73 : SO14/TSSOP14 STANDBY1 1 14 Output3 STANDBY2 2 _ 13 Inverting Input3 STANDBY3 3 + 12 Non Inverting Input3 VCC + 4 Non Inverting Input1 5 Inverting Input1 6 11 VCC + _ + _ Output1 7 9 Inverting Input2 8 Output2 Output1 1 14 Output4 Inverting Input1 2 _ _ 13 Inverting Input4 Non Inverting Input1 3 + + 12 Non Inverting Input4 + _ + _ 10 Non Inverting Input3 VCC + 4 Inverting Input2 6 11 VCC - Output2 7 9 Inverting Input3 8 Output3 TSH75 : SO16/TSSOP16 Output1 1 16 Output4 Inverting Input1 2 _ _ 15 Inverting Input4 Non Inverting Input1 3 + + 14 Non Inverting Input4 + _ + _ 12 Non Inverting Input3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 Output2 7 STANDBY 8 * 3 dB bandwidth: 90 MHz * Gain bandwidth product: 70 MHz * Slew rate: 100 V/s (typical for 5 V) * Output current: up to 55 mA * Input single supply voltage * Output rail-to-rail * Specified for 150 loads * Low distortion, THD: 0.1 % * SOT23-5, TSSOP, and SO packages Applications * Video buffers * ADC driver * Hi-fi applications 10 Non Inverting Input2 TSH74 : SO14/TSSOP14 Non Inverting Input2 5 * 3 V, 5 V, 5 V specifications 8 NC NC 1 5 VCC + 13 VCC - 11 Inverting Input3 10 Output3 9 STANDBY December 2013 This is information on a product in full production. Description The TSH7x series offers single, dual, triple, and quad operational amplifiers featuring high video performances with large bandwidth, low distortion, and excellent supply voltage rejection. Running with a single supply voltage from 3 V to 12 V, these amplifiers feature a large output voltage swing and high output current capable of driving standard 150 loads. A low operating voltage makes TSH7x amplifiers ideal for use in portable equipment. The TSH71, TSH73, and TSH75 also feature standby inputs, each of which allows the op-amp to be put into a standby mode with low-power consumption and high-output impedance. This function allows power saving or signal switching/multiplexing for high-speed applications and video applications. To economize both board space and weight, the TSH7x series is proposed in SOT23-5, SO, and TSSOP packages. DocID7502 Rev 4 1/36 www.st.com Contents TSH7x Contents 1 Typical application: video driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics 4 5 .................................... 5 3.1 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Characteristic curves for VCC = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Characteristic curves for VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Characteristic curves for VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Maximum input level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Precautions when operating on an asymmetrical supply . . . . . . . . . . . . . 24 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4 SO14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.5 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.6 SO16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.7 TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Order information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2/36 DocID7502 Rev 4 TSH7x 1 Typical application: video driver Typical application: video driver A typical application for the TSH7x family is that of a video driver for driving STi7xxx DAC outputs on 75-ohm lines. Figure 1 show the benefits of the TSH7x family as single supply drivers. Figure 1. Benefits of TSH7x family: +3 V or +5 V single supply solution +5V Video DAC's outputs: Bottom of synchronization tip around 50mV VOH=4.2Vmin. (Tested) Vcc=+5V Vcc=+3V 1Vp-p + GND _ 2Vp-p GND GND 1k VOH=2.45Vmin. (Tested) 2.1V 2.1V Gain=2 50mV +3V 2Vp-p VOL=40mVmax. (Tested) 100mV GND VOL=30mVmax. (Tested) 100mV 1k -5V GND Video DAC Y,G +5V Reconstruction Filtering 75 + _ LPF 75 Cable 1Vpp TV 75 2Vpp Video DAC Pb,B Reconstruction Filtering LPF 75 + _ 75 Cable 0.7Vpp 75 1.4Vpp Video DAC Pr,R Reconstruction Filtering LPF 75 + _ 75 Cable 0.7Vpp 75 TSH73 1.4Vpp GND DocID7502 Rev 4 3/36 36 Absolute maximum ratings and operating conditions 2 TSH7x Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Vid Vi Parameter Value Supply Voltage (1) 14 Differential Input Voltage Input Voltage (2) 2 (3) V 6 Toper Operating Free Air Temperature Range Tstg Storage Temperature Tj Unit 0 to +70 -65 to +150 Maximum Junction Temperature C 150 (4) Rthjc Thermal resistance junction to case SOT23-5 SO8 TSSOPO8 SO14 TSSOP14 SO16 TSSOP16 Rthja Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 SO14 TSSOP14 SO16 TSSOP16 ESD Human body model 80 28 37 22 32 35 35 C/W 250 157 130 125 110 110 110 2 kV 1. All voltages values, except differential voltage are with respect to the network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal 3. The magnitude of the input and output must never exceed VCC +0.3V 4. Short-circuits can cause excessive heating Table 2. Operating conditions Symbol Parameter VCC Supply voltage VIC Common mode input voltage range Unit 3 to 12 VCC- to (VCC+ -1.1) -) Standby 4/36 Value (VCC to DocID7502 Rev 4 (VCC+) V TSH7x 3 Electrical characteristics Electrical characteristics Table 3. VCC+ = 3 V, VCC- = GND, VIC = 1.5 V, Tamb = 25 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV |Vio| Input offset voltage Tamb = 25 C Tmin. < Tamb < Tmax. 1.2 Vio Input offset voltage drift vs. temp. Tmin. < Tamb < Tmax. 4 Iio Input offset current Tamb = 25 C Tmin. < Tamb < Tmax. 0.1 3.5 5 Iib Input bias current Tamb = 25 C Tmin. < Tamb < Tmax. 6 15 20 Cin Input capacitance 0.2 Supply current per operator Tamb = 25 C Tmin. < Tamb < Tmax. CMRR Common mode rejection ratio (VIC/Vio) +0.1 < VIC <+1.9 V and Vout = 1.5 V Tamb = 25 C Tmin. < Tamb < Tmax. 65 64 90 SVRR Supply voltage rejection ratio (VCC/Vio) Tamb = 25 C Tmin. < Tamb < Tmax. 66 65 74 PSRR Power supply rejection ratio (VCC/Vout) Positive and negative rail Large signal voltage gain RL = 150 to 1.5 V, Vout = 1 V to 2 V Tamb = 25 C Tmin. < Tamb < Tmax. Output short circuit current source Tamb=25 C, Vid = +1, Vout to 1.5 V, Vid = -1, Vout to 1.5 V |Source |Sink Tmin. < Tamb < Tmax. Vid = +1, Vout to 1.5 V Vid = -1, Vout to 1.5 V |Source |Sink ICC Avd Io Tamb = 25 C RL = 150 to GND RL = 600 to GND RL = 2 k to GND RL = 10 k to GND VOH High level output voltage V/C RL = 150 to 1.5 V RL = 600 to 1.5 V RL = 2 k to 1.5 V RL = 10 k to 1.5 V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 1.5V DocID7502 Rev 4 7.2 A pF 9.8 11 mA dB 75 70 65 81 30 20 43 33 mA 22 19 2.45 2.60 2.87 2.91 2.93 2.65 2.77 2.90 2.92 2.93 V 2.4 2.6 5/36 36 Electrical characteristics TSH7x Table 3. VCC+ = 3 V, VCC- = GND, VIC = 1.5 V, Tamb = 25 C (unless otherwise specified) (continued) Symbol VOL Parameter Low level output voltage Test conditions Min. Typ. Max. Tamb = 25 C RL = 150 to GND RL = 600 to GND RL = 2 k to GND RL = 10 k to GND 10 11 11 11 30 RL = 150 to 1.5 V RL = 600 to 1.5 V RL = 2 k to 1.5 V RL = 10 k to 1.5 V 140 90 68 57 300 Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 1.5 V mV 40 350 Gain bandwidth product F = 10 MHz AVCL = +11 AVCL = -10 65 55 Bw Bandwidth @-3dB AVCL=+1, RL=150 to 1.5 V 87 SR Slew rate AVCL=+2, RL=150 // CL to 1.5 V CL = 5 pF CL = 30 pF GBP Unit 45 80 85 MHz V/s m Phase margin RL=150 // 30 pF to 1.5 V 40 en Equivalent input noise voltage F=100 kHz 11 nV/Hz THD Total harmonic distortion AVCL = +2, F = 4 MHz, RL=150 // 30pF to 1.5 V Vout = 1 Vpp Vout = 2 Vpp -61 -54 IM2 Second order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 to 1.5 V Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurements @100 kHz -76 IM3 AVCL = +2, Vout = 2 Vpp R = 150 to 1.5 V Third order inter modulation product L Fin1 = 180kHz, Fin2 = 280 kHz spurious measurements @400 kHz -68 G Differential gain AVCL=+2, RL = 150 to 1.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 to 1.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 F = 1 MHz to 10 MHz 65 Vo1/Vo2 Channel separation 6/36 DocID7502 Rev 4 dB dBc dB TSH7x Electrical characteristics Table 4. VCC+ = 5 V, VCC- = GND, VIC = 2.5 V, Tamb = 25 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV |Vio| Input offset voltage Tamb = 25 C Tmin. < Tamb < Tmax. 1.1 Vio Input offset voltage drift vs. temp. Tmin. < Tamb < Tmax. 3 Iio Input offset current Tamb = 25 C Tmin. < Tamb < Tmax. 0.1 3.5 5 Iib Input bias current Tamb = 25 C Tmin. < Tamb < Tmax. 6 15 20 Cin Input capacitance Supply current per operator Tamb = 25 C Tmin. < Tamb < Tmax. 8.2 CMRR Common mode rejection ratio (VIC/Vio) +0.1 < VIC < 3.9 V and Vout = 2.5 V Tamb = 25 C Tmin. < Tamb < Tmax. 72 71 97 SVRR Supply voltage rejection ratio (VCC/Vio) Tamb = 25C Tmin. < Tamb < Tmax. 68 67 75 PSRR Power supply rejection ratio (VCC/Vout) Positive and negative rail Large signal voltage gain RL = 150 to 1.5 V, Vout = 1 V to 4 V Tamb = 25 C Tmin. < Tamb < Tmax. Output short circuit current source Tamb = 25 C, Vid = +1, Vout to 1.5 V, Vid = -1, Vout to 1.5 V |Source |Sink Tmin. < Tamb < Tmax. Vid = +1, Vout to 1.5 V Vid = -1, Vout to 1.5 V |Source |Sink ICC Avd Io 0.3 Tamb = 25 C RL = 150 to GND RL = 600 to GND RL = 2 k to GND RL = 10 k to GND VOH High level output voltage V/C RL = 150 to 2.5 V RL = 600 to 2.5 V RL = 2 k to 2.5 V RL = 10 k to 2.5 V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5 V DocID7502 Rev 4 75 75 70 84 35 33 55 55 A pF 10.5 11.5 mA dB mA 34 32 4.2 4.36 4.85 4.90 4.93 4.5 4.66 4.90 4.92 4.93 V 4.1 4.4 7/36 36 Electrical characteristics TSH7x Table 4. VCC+ = 5 V, VCC- = GND, VIC = 2.5 V, Tamb = 25 C (unless otherwise specified) (continued) Symbol VOL Parameter Low level output voltage Test conditions Min. Typ. Max. Tamb=25 C RL = 150 to GND RL = 600 to GND RL = 2 k to GND RL = 10 k to GND 20 23 23 23 40 RL = 150 to 2.5 V RL = 600 to 2.5 V RL = 2 k to 2.5 V RL = 10 k to 2.5 V 220 105 76 61 400 Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5 V Unit mV 60 450 Gain bandwidth product F = 10 MHz AVCL = +11 AVCL = -10 65 55 Bandwidth @-3 dB AVCL = +1, RL = 150 to 2.5 V 87 SR Slew rate AVCL = +2, RL = 150 // CL to 2.5 V CL = 5 pF CL = 30 pF 104 105 m Phase margin RL = 150 // 30 pF to 2.5 V 40 en Equivalent input noise voltage F = 100 kHz 11 nV/Hz THD Total harmonic distortion AVCL = +2, F = 4 MHz RL = 150 // 30 pF to 2.5 V Vout = 1 Vpp Vout = 2 Vpp -61 -54 IM2 Second order intermodulation product AVCL = +2, Vout = 2Vpp RL = 150 to 2.5 V Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurements @100 kHz -76 IM3 AVCL = +2, Vout = 2 Vpp RL = 150 to 2.5 V Third order inter modulation product Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurements @400 kHz -68 G Differential gain AVCL = +2, RL = 150 to 2.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 to 2.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 F = 1 MHz to 10 MHz 65 GBP Bw Vo1/Vo2 Channel separation 8/36 DocID7502 Rev 4 60 MHz V/s dB dBc dB TSH7x Electrical characteristics Table 5. VCC+ = 5 V, VCC- = -5V, VIC = GND, Tamb = 25 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. |Vio| Input offset voltage Tamb = 25 C Tmin. < Tamb < Tmax. 0.8 Vio Input offset voltage drift vs. temp. Tmin. < Tamb < Tmax. 2 Iio Input offset current Tamb = 25C Tmin. < Tamb < Tmax. 0.1 3.5 5 Iib Input bias current Tamb = 25C Tmin. < Tamb < Tmax. 6 15 20 Cin Input capacitance Supply current per operator CMRR Common mode rejection ratio (VIC/Vio) -4.9 < VIC < 3.9 V and Vout = GND Tamb = 25 C Tmin. < Tamb < Tmax. 81 80 106 SVRR Supply voltage rejection ratio (VCC/Vio) Tamb = 25 C Tmin. < Tamb < Tmax. 71 70 77 PSRR Power supply rejection ratio (VCC/Vout) Positive and negative rail Large signal voltage gain RL = 150 to GND Vout = -4 to +4 Tamb = 25 C Tmin. < Tamb < Tmax. Output short circuit current source Tamb = 25 C Vid = +1, Vout to 1.5 V Vid = -1, Vout to 1.5 V |Source |Sink Tmin. < Tamb < Tmax. Vid = +1, Vout to 1.5 V Vid = -1, Vout to 1.5 V |Source |Sink Avd Io VOH VOL High level output voltage Low level output voltage Tamb = 25 C RL = 150 to GND RL = 600 to GND RL = 2 k to GND RL = 10 k to GND Tmin. < Tamb < Tmax. RL = 150 to GND Tamb = 25 C RL = 150 to GND RL = 600 to GND RL = 2 k to GND RL = 10 k to GND Tmin. < Tamb < Tmax. RL = 150 to GND DocID7502 Rev 4 9.8 86 35 30 55 55 A pF 12.3 13.4 mA dB 75 75 70 mV V/C 0.7 Tamb = 25C Tmin. < Tamb < Tmax. ICC 10 12 Unit mA 34 29 4.2 4.36 4.85 4.9 4.93 V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 V -4.3 9/36 36 Electrical characteristics TSH7x Table 5. VCC+ = 5 V, VCC- = -5V, VIC = GND, Tamb = 25 C (unless otherwise specified) (continued) Symbol GBP Bw SR Parameter Test conditions Gain bandwidth product F = 10 MHz AVCL = +11 AVCL = -10 Bandwidth @-3dB AVCL = +1 RL = 150 // 30 pF to GND Slew rate AVCL = +2, RL = 150 // CL to GND CL = 5 pF CL = 30 pF Min. 68 Typ. Max. Unit 65 55 MHz 100 MHz 117 118 V/s m Phase margin RL = 150 to GND 40 en Equivalent input noise voltage F = 100 kHz 11 nV/Hz THD Total harmonic distortion AVCL = +2, F = 4 MHz RL = 150 // 30 pF to GND Vout = 1 Vpp Vout = 2 Vpp -61 -54 IM2 AVCL = +2, Vout = 2 Vpp RL = 150 to GND Second order intermodulation product Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurements @100 kHz -76 IM3 Third order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 to GND Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurements @400 kHz -68 G Differential gain AVCL = +2, RL = 150 to GND F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 to GND F = 4.5 MHz, Vout = 2 Vpp 0.5 Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 F = 1 MHz to 10 MHz 65 Vo1/Vo2 Channel separation 10/36 DocID7502 Rev 4 dB dBc dB TSH7x Electrical characteristics 3.1 Standby mode Table 6. VCC+, VCC-, Tamb = 25 C (unless otherwise specified) Symbol Parameter Test conditions Min. Vhigh (VCC- Standby high level Unit +0.8) V (VCC+) +2) Current consumption per operator when STANDBY is active Pin 8 (TSH71) to VCCPin 1, 2 or 3 (TSH73) to VCCPin 8 (TSH75) to VCC+ Pin 9 (TSH75) to VCC- 20 Zout Output impedance (Rout//Cout) Rout Cout 10 17 Ton Time from standby mode to active mode Toff Time from active mode to standby mode ICC STBY Max. (VCC- VCC- Standby low level Vlow Typ. A 55 M pF 2 s Down to ICC STBY = 10 A 10 Table 7. TSH71 standby function table TSH71 standby control pin 8 (STBY) Operator status Vlow Standby Vhigh Active Table 8. TSH73 standby function table TSH73 standby control Operator status Pin 1 (STBY OP1) Pin 2 (STBY OP2) Pin 3 (STBY OP3) OP1 OP1 OP3 Vlow x x Standby x x Vhigh x x Active x x x Vlow x x Standby x x Vhigh x Active x x x Vlow x x Standby x x Vhigh x x Active DocID7502 Rev 4 11/36 36 Electrical characteristics TSH7x Table 9. TSH75 standby function table TSH75 standby control Operator status Pin 8 (STBY OP2) Pin 9 (STBY OP3) Vhigh Vlow Vhigh Vhigh Vlow Vlow Vlow Vhigh 3.2 OP1 OP2 OP3 OP4 Standby Standby Active Active Active Standby Active Active Characteristic curves for VCC = 3 V Figure 2. Closed loop gain and phase vs. frequency (gain = +2, VCC = 1.5 V, RL = 150 , Tamb = 25 C) 10 Figure 3. Overshoot function of output capacitance (gain = +2, VCC = 1.5 V, Tamb = 25 C) 200 10 150//33pF 5 150//22pF 100 Gain 150//10pF -5 0 Phase -10 Gain (dB) 5 Phase () Gain (dB) 0 150 0 -100 -15 -20 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 -200 1E+9 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Figure 4. Closed loop gain and phase vs. frequency (gain = -10, VCC = 1.5 V, RL = 150 , Tamb = 25 C) Figure 5. Closed loop gain and phase vs. frequency (gain = +11, VCC = 1.5 V, RL = 150 , Tamb = 25 C) 200 30 Phase 30 0 Phase 150 20 20 0 Phase () 50 10 -50 Gain Gain (dB) Phase () Gain (dB) 100 Gain 10 -100 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -100 1E+9 -10 1E+4 Frequency (Hz) 12/36 1E+5 1E+6 1E+7 Frequency (Hz) DocID7502 Rev 4 1E+8 -150 1E+9 TSH7x Electrical characteristics Figure 7. Large signal measurement - negative slew rate (gain = 2, VCC = 1.5 V, ZL = 150 // 5.6 pF) 1 1 0.5 0.5 Vout (V) Vout (V) Figure 6. Large signal measurement positive slew rate (gain = 2, VCC = 1.5 V, ZL = 150 // 5.6 pF 0 -0.5 0 -0.5 -1 -1 0 10 20 30 40 50 0 60 10 20 0.06 0.06 0.04 0.04 0.02 0.02 Vout Vin 40 50 Figure 9. Small signal measurement - fall time (gain = 2, VCC = 1.5 V, ZL = 150 ) Vin, Vout (V) Vin, Vout (V) Figure 8. Small signal measurement - rise time (gain = 2, VCC = 1.5 V, ZL = 150 ) 0 30 Time (ns) Time (ns) -0.02 Vout Vin 0 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 60 0 10 20 Time (ns) 30 40 50 60 Time (ns) Figure 10. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20 log (V0/V1)) Figure 11. Channel separation (Xtalk) vs. frequency (gain = +11, VCC = 1.5 V, ZL = 150 // 27 pF) VIN -20 ++ -- 100 1k -30 -50 150 + 49.9 100 1k -40 V1 Xtalk (dB) 49.9 3/1output 4/1output -60 -70 -80 2/1output -90 VO -100 150 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) DocID7502 Rev 4 13/36 36 Electrical characteristics TSH7x Figure 12. Equivalent noise voltage (gain = 100, VCC = 1.5 V, No load) Figure 13. Maximum output swing (gain = 11, VCC = 5 V, RL = 150 30 5 4 + _ 25 Vout 3 10k 100 Vin, Vout (V) en (nV/Hz) 2 20 15 1 Vin 0 -1 -2 -3 10 -4 -5 0.0E+0 5 0.1 1 10 100 1000 5.0E-2 2.0E-1 Vin Gain 1 Vin, Vout (V) 1.5E-1 Figure 15. Group delay gain = 2 (VCC = 1.5 V, ZL = 150 // 27 pF, Tamb = 25 C) Figure 14. Standby mode - Ton, Toff (VCC = 1.5 V, open loop) 2 1.0E-1 Time (ms) Frequency (kHz) 0 Vout -1 Group Delay -2 Standby Ton 0 2E-6 4E-6 5.87ns Toff 6E-6 8E-6 1E-5 Time (s) Figure 16. Third order intermodulation (gain = 2, VCC = 1.5 V, ZL = 150 // 27 pF, Tamb = 25 C) 0 -10 -20 IM3 (dBc) -30 -40 80kHz -50 740kHz -60 -70 640kHz -80 -90 380kHz -100 0 1 2 3 4 Vout peak(V) 1. Note on intermodulation products: The IFR2026 synthesizer generates a two tone signal (F1 = 180 kHz, F2 = 280 kHz); each tone has the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 14/36 DocID7502 Rev 4 TSH7x Electrical characteristics 3.3 Characteristic curves for VCC = 5 V Figure 17. Closed loop gain and phase vs. frequency (gain = +2, VCC = 2.5 V, RL = 150 , Tamb = 25 C) Figure 18. Overshoot function of output capacitance (gain = +2, VCC = 2.5 V, Tamb = 25 C) 10 200 10 150//33pF 5 Gain 100 150//22pF 0 -5 Phase 150//10pF Gain (dB) Gain (dB) 0 Phase () 5 150 0 -100 -10 -200 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 1E+9 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Figure 19. Closed loop gain and phase vs. Figure 20. Closed loop gain and phase vs. frequency (gain = -10, VCC = 2.5 V, RL = 150 , frequency (gain = +11, VCC = 2.5 V, RL = 150 , Tamb = 25 C) Tamb = 25 C) 200 30 Phase 0 30 Phase 150 20 20 -50 Gain Phase () Gain (dB) 50 10 Phase () Gain (dB) 100 Gain 10 0 -100 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -10 1E+4 -100 1E+9 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) 3 3 2 2 1 1 Vout (V) Vout (V) Figure 21. Large signal measurement - positive Figure 22. Large signal measurement - negative slew rate (gain = 2, VCC = 2.5 V, ZL= 150 // slew rate (gain = 2, VCC = 2.5 V, ZL = 150 // 5.6 pF) 5.6 pF) 0 0 -1 -1 -2 -2 -3 -3 0 10 20 30 40 50 60 70 80 Time (ns) 0 10 20 30 40 50 60 70 Time (ns) DocID7502 Rev 4 15/36 36 Electrical characteristics TSH7x 0.06 0.06 0.04 0.04 0.02 0.02 0 Vin Vout (V) Vin, Vout (V) Figure 23. Small signal measurement - rise time Figure 24. Small signal measurement - fall time (gain = 2, VCC = 2.5 V, ZL = 150 ) (gain = 2, VCC = 2.5 V, ZL= 150 ) Vout Vin -0.02 Vout Vin 0 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 60 0 10 20 30 Time (ns) 40 50 60 Time (ns) Figure 25. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20 log (V0/V1)) Figure 26. Channel separation (Xtalk) vs. frequency (gain = +11, VCC = 2.5 V, ZL = 150 // 27 pF) -20 VIN -30 ++ -- -40 V1 100 1k 4/1output -50 150 Xtalk (dB) 49.9 3/1output -60 -70 -80 + 49.9 - 2/1output -90 VO 100 1k -100 150 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 27. Equivalent noise voltage (gain = 100, VCC = 2.5 V, no load) Figure 28. Maximum output swing (gain = 11, VCC = 2.5 V, RL = 150 ) 30 3 + _ 25 2 Vout 10k Vin, Vout (V) en (nV/Hz) 100 20 15 10 1 Vin 0 -1 -2 5 0.1 1 10 100 1000 -3 0.0E+0 16/36 5.0E-2 1.0E-1 Time (ms) Frequency (kHz) DocID7502 Rev 4 1.5E-1 2.0E-1 TSH7x Electrical characteristics Figure 30. Group delay (gain = 2, VCC = 2.5 V, ZL = 150 // 27 pF, Tamb = 25 C) Figure 29. Standby mode - Ton, Toff (VCC = 2.5 V, open loop) Vin 3 Vin, Vout (V) 2 Gain 1 0 Vout -1 Group Delay -2 5.32ns -3 Ton 0 2E-6 Standby 4E-6 Toff 6E-6 8E-6 1E-5 Time (s) Figure 31. Third order intermodulation (gain = 2, VCC = 2.5 V, ZL = 150 // 27 pF, Tamb = 25 C) 0 -10 -20 IM3 (dBc) -30 -40 -50 740kHz 80kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 3 4 Vout peak(V) 1. Note on intermodulation products: The IFR2026 synthesizer generates a two tone signal (F1 = 180 kHz, F2 = 280 kHz); each tone has the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. DocID7502 Rev 4 17/36 36 Electrical characteristics 3.4 TSH7x Characteristic curves for VCC = 10 V Figure 32. Closed loop gain and phase vs. frequency (gain = +2, VCC = 5 V, RL = 150 , Tamb = 25 C) 10 Figure 33. Overshoot function of output capacitance (gain = +2, VCC = 5 V, Tamb = 25 C) 200 10 150//33pF 5 Gain 100 150//22pF 0 -5 150//10pF Gain (dB) Phase () Gain (dB) 5 0 150 0 Phase -100 -10 1E+5 1E+6 1E+7 -5 1E+6 -200 1E+9 1E+8 1E+7 Figure 34. Closed loop gain and phase vs. frequency (gain = -10, VCC = 5 V, RL = 150 , Tamb = 25 C) 30 1E+9 Figure 35. Closed loop gain and phase vs. frequency (gain = +11, VCC = 5 V, RL = 150 , Tamb = 25 C) 30 200 0 Phase Phase 150 20 10 50 Gain (dB) 100 Gain Phase () 20 Gain (dB) 1E+8 Frequency (Hz) Frequency (Hz) -50 Gain Phase () -15 1E+4 10 -100 0 0 0 -10 1E+4 1E+5 1E+6 1E+7 -50 1E+9 1E+8 -10 1E+4 1E+5 Frequency (Hz) 1E+6 1E+7 -150 1E+9 1E+8 Frequency (Hz) 5 5 4 4 3 3 2 2 1 Vout (V) Vout (V) Figure 36. Large signal measurement - positive Figure 37. Large signal measurement - negative slew rate (gain = 2,VCC = 5 V, slew rate (gain = 2 ZL = 150 // 5.6 pF) VCC = 5 V, ZL = 150 // 5.6 pF) 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 80 100 0 20 40 60 Time (ns) Time (ns) 18/36 1 0 DocID7502 Rev 4 80 100 TSH7x Electrical characteristics 0.06 0.06 0.04 0.04 0.02 0.02 0 Vin, Vout (V) Vin, Vout (V) Figure 38. Small signal measurement - rise time Figure 39. Small signal measurement - fall time (gain = 2, VCC = 5 V, ZL = 150 ) (gain = 2, VCC = 5 V, ZL = 150 ) Vout Vin -0.02 Vout 0 Vin -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 Time (ns) 30 40 50 60 Time (ns) Figure 40. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20 log(V0/V1)) Figure 41. Channel separation (Xtalk) vs. frequency (gain = +11, VCC = 5 V, ZL = 150 // 27 pF) -20 VIN -30 ++ -- -40 V1 100 1k -50 150 Xtalk (dB) 49.9 -60 -70 -80 + 49.9 - 4/1output 3/1output 2/1output -90 VO 100 1k -100 150 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 42. Equivalent noise voltage (gain = 100, VCC = 5 V, no load) Figure 43. Maximum output swing (gain = 11, VCC = 5 V, RL = 150 ) 30 5 4 25 3 + _ 2 10k Vin, Vout (V) 100 en (nV/Hz) Vout 20 15 1 Vin 0 -1 -2 -3 10 -4 5 0.1 1 10 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Time (ms) Frequency (kHz) DocID7502 Rev 4 19/36 36 Electrical characteristics TSH7x Figure 45. Group delay (gain = 2, VCC= 5 V ZL = 150 // 27 pF, Tamb = 25 C) Figure 44. Standby mode - Ton, Toff (VCC = 5 V, open loop) Vin Vin, Vout (V) 5 Gain Vout 0 Group Delay -5 Standby Ton 0 2E-6 5.1ns Toff 4E-6 6E-6 8E-6 Time (s) Figure 46. Third order intermodulation (gain = 2, VCC = 5 V, ZL = 150 // 27 pF, Tamb = 25 C 0 -10 -20 IM3 (dBc) -30 -40 80kHz -50 740kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 3 4 Vout peak(V) 1. Note on intermodulation products: The IFR2026 synthesizer generates a two tone signal (F1 = 180 kHz, F2 = 280 kHz); each tone has the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 20/36 DocID7502 Rev 4 TSH7x Testing conditions 4 Testing conditions 4.1 Layout precautions To use the TSH7X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: * First of all, the implementation of a proper ground plane on both sides of the PCB is mandatory for high-speed circuit applications to provide low inductance and low resistance common return. * Power supply bypass capacitors (4.7 F and ceramic 100 pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. * Proper termination of all inputs and outputs must be in accordance with output termination resistors. In this way, the amplifier load is resistive only, and the stability of the amplifier is improved. * All leads must be wide and as short as possible (especially for op-amp inputs and outputs) in order to decrease parasitic capacitance and inductance. * For lower gain applications, care should be taken to avoid large feedback resistance (> 1 k) in order to reduce the time constant of parasitic capacitances. * Choose component sizes as small as possible (SMD) * Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize capacitance. DocID7502 Rev 4 21/36 36 Testing conditions 4.2 TSH7x Maximum input level Figure 47. CCIR330 video line The input level must not exceed the following values: * Negative peak: must be greater than -VCC+400 mV * Positive peak value: must be lower than +VCC-400 mV The electrical characteristics show the influence of the load on this parameter. 4.3 Video capabilities To characterize the differential phase and differential gain, a CCIR330 video line is used. The video line contains five (flat) levels of luma on which is superimposed a chroma signal. The first level contains no luma. The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rohde and Schwarz CCVS. The output measurement was made by the Rohde and Schwarz VSA. 22/36 DocID7502 Rev 4 TSH7x Testing conditions Figure 48. Measurement on Rohde and Schwarz VSA Table 10. Video results Parameter Value VCC = 2.5 V Value VCC = 5 V Lum NL 0.1 0.3 Lum NL step 1 100 100 Lum NL step 2 100 99.9 Lum NL step 3 99.9 99.8 Lum NL step 4 99.9 99.9 Lum NL step 5 99.9 99.7 Diff gain pos 0 0 Diff gain neg -0.7 -0.6 Diff gain pp 0.7 0.6 Diff gain step1 -0.5 -0.3 Diff gain step2 -0.7 -0.6 Diff gain step3 -0.3 -0.5 Diff gain step4 -0.1 -0.3 Diff gain step5 -0.4 -0.5 Diff phase pos 0 0.1 Diff phase neg -0.2 -0.4 Diff phase pp 0.2 0.5 Diff phase step1 -0.2 -0.4 Diff phase step2 -0.1 -0.4 Diff phase step3 -0.1 -0.3 Diff phase step4 0 0.1 Diff phase step5 -0.2 -0.1 DocID7502 Rev 4 Unit % deg 23/36 36 Testing conditions 4.4 TSH7x Precautions when operating on an asymmetrical supply The TSH7X can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15 A, you must carefully choose the resistance R1 so as not to introduce an offset mismatch at the amplifier inputs. Figure 49. Schematic of asymmetrical (single) supply IN Cin Cout OUT + R1 Vcc+ R2 - R3 C1 RL R5 C3 Cf C2 R4 R1 = 10 k is a typical and convenient value. C1, C2, C3 are bypass capacitors that filter perturbations on VCC, as well as for the input and output signals. We choose C1 = 100 nF and C2 = C3 = 100 F. R2, R3 are such that the current through them must be greater than 100 times the bias current. Therefore, we set R2 = R3 = 4.7 k. Cin, as Cout, is chosen to filter the DC signal by the low-pass filters (R1,Cin and Rout, Cout). By taking R1 = 10 k, RL = 150 , and Cin = 2 F, Cout = 220 F we provide a cut-off frequency below 10 Hz. Figure 50. Use of the TSH7x in gain = -1 configuration Cf 1k IN Cin 1k + Vcc+ R1 R2 R3 C1 Cout OUT RL C3 C2 Some precautions must be taken, especially for low-power supply applications. 24/36 DocID7502 Rev 4 TSH7x Testing conditions A feedback capacitance, Cf, should be added for better stability. Table 11 summarizes the impact of the capacitance Cf on the phase margin of the circuit. Table 11. Impact capacitance Cf Parameter Phase margin f-3 dB Phase margin f-3 dB Phase margin f-3 dB Phase margin f-3 dB Cf (pF) 0 5.6 22 33 VCC = 1.5 V VCC = 2.5 V VCC = 5 V Unit 28 43 56 deg 40 39.3 38.3 MHz 30 43 56 deg 40 39.3 38.3 MHz 37 52 67 deg 37 34 32 MHz 48 65 78 deg 33.7 30.7 27.6 MHz DocID7502 Rev 4 25/36 36 Package information 5 TSH7x Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. 26/36 DocID7502 Rev 4 TSH7x 5.1 Package information SOT23-5 package information Figure 51. SOT23-5 package mechanical drawing Table 12. SOT23-5 package mechanical data Dimensions Symbol Millimeters Min Typ Inches Max Min Typ Max A 0.90 1.45 0.035 0.057 A1 0.00 0.15 0.000 0.006 A2 0.90 1.30 0.035 0.051 b 0.35 0.50 0.014 0.020 C 0.09 0.20 0.004 0.008 D 2.80 3.00 0.110 0.118 E 2.60 3.00 0.102 0.118 E1 1.50 1.75 0.059 0.069 e 0.95 0.037 e1 1.9 0.075 L 0.35 0.55 DocID7502 Rev 4 0.014 0.022 27/36 36 Package information 5.2 TSH7x SO8 package information Figure 52. SO8 package mechanical drawing 0016023/C Table 13. SO8 package mechanical data Dimensions Symbol Millimeters Min Max Min Typ Max A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 28/36 Typ Inches 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 8 8 ddd 0.1 0.004 DocID7502 Rev 4 TSH7x 5.3 Package information TSSOP8 package information Figure 53. TSSOP8 package mechanical drawing 0079397/D Table 14. TSSOP8 package mechanical data Dimensions Symbol Millimeters Min Typ A Inches Max Min Typ 1.2 A1 0.05 A2 0.80 b Max 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 K 0 L 0.45 L1 1.00 0.60 0.006 0.039 0.041 0.0256 8 0 0.75 0.018 1 DocID7502 Rev 4 8 0.024 0.030 0.039 29/36 36 Package information 5.4 TSH7x SO14 package information Figure 54. SO14 package mechanical drawing PO13G Table 15. SO14 package mechanical data Dimensions Symbol Millimeters Min Typ A a1 Max Min Typ 1.75 0.1 0.2 a2 30/36 Inches Max 0.068 0.003 0.007 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45 45 D 8.55 8.75 0.336 0.344 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 7.62 0.300 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M 0.68 0.026 S 8 8 DocID7502 Rev 4 TSH7x 5.5 Package information TSSOP14 package information Figure 55. TSSOP14 package mechanical drawing A A2 A1 b e K L c E D E1 PIN 1 IDENTIFICATION 1 0080337D Table 16. TSSOP14 package mechanical data Dimensions Symbol Millimeters Min Typ A Inches Max Min Typ 1.2 A1 0.05 A2 0.8 b Max 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 e 1 0.65 K 0 L 0.45 0.60 0.0256 8 0 0.75 0.018 DocID7502 Rev 4 8 0.024 0.030 31/36 36 Package information 5.6 TSH7x SO16 package information Figure 56. SO16 package mechanical drawing PO13H Table 17. SO16 package mechanical data Dimensions Symbol Millimeters Min Typ A a1 Max Min Typ 1.75 0.1 0.2 a2 32/36 Inches Max 0.068 0.004 0.008 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45 45 D 9.8 E 5.8 10 e 1.27 e3 8.89 0.385 0.393 0.228 0.244 6.2 0.050 0.350 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M 0.62 0.024 S 8 8 DocID7502 Rev 4 TSH7x 5.7 Package information TSSOP16 package information Figure 57. TSSOP16 package mechanical drawing A A2 A1 b K e L c E D E1 PIN 1 IDENTIFICATION 1 0080338D Table 18. TSSOP16 package mechanical data Dimensions Symbol Millimeters Min Typ A Inches Max Min Typ 1.2 A1 0.05 A2 0.8 b Max 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 e 1 0.65 K 0 L 0.45 0.60 0.006 0.039 0.041 0.0256 8 0 0.75 0.018 DocID7502 Rev 4 8 0.024 0.030 33/36 36 Order information 6 TSH7x Order information Table 19. Order codes Part number Temperature range TSH70CLT TSH70CD/CDT TSH71CD/CDT TSH71CPT TSH72CD/CDT TSH72CPT TSH73CD/CDT TSH73CPT TSH74CD/CDT TSH74CPT TSH75CD/CDT TSH75CPT 34/36 0 C to 70 C Package Packing Marking SOT23-5 Tape and reel K301 SO8 Tube or tape and reel TSSOP8 Tape and reel SO8 Tube or tape and reel TSSOP8 Tape and reel SO14 Tube or tape and reel TSSOP14 Tape and reel SO14 Tube or tape and reel TSSOP14 Tape and reel SO16 Tube or tape and reel TSSOP16 Tape and reel DocID7502 Rev 4 70C 71C 72C 73C 74C 75C TSH7x 7 Revision history Revision history Table 20. Document revision history Date Revision Changes Nov. 2000 1 First Release. Aug. 2002 2 Limit min. of Isink from 24mA to 20mA (only on 3V power supply). Reason: yield improvement. May 2006 3 Improvement of VOL max. at 3V and 5V power supply on 150ohm load connected to GND (pages 6 and 8). Reason: TSH7x can drive video signals from DACs to lines in single supply (3V or 5V) without any DC level change of the video signals. Grammatical and typographical changes throughout. Package mechanical data updated. 05-Dec-2013 4 Updated slew rate in Features Table 12: SOT23-5 package mechanical data: added information for inches. DocID7502 Rev 4 35/36 36 TSH7x Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 36/36 DocID7502 Rev 4