HEXFET® Power MOSFET
Description
Specifically designed for Automotive applications, this Stripe Planar
design of HEXFET® Power MOSFET utilizes the lastest processing
techniques to achieve extremely low on-resistance per silicon area.
Additional features of this design are a 175°C junction operating
temperature, fast switching speed and improved repetitive avalanche
rating. These benefits combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide variety
of other applications.
S
D
G
VDSS = 20V
RDS(on) = 4.0m
ID = 180A
10/31/02
www.irf.com 1
Benefits
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
AUTOMOTIVE MOSFET
PD - 94591
IRF1302
TO-220AB
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 180
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 130A
IDM Pulsed Drain Current 700
PD @TC = 25°C Power Dissipation 230 W
Linear Derating Factor 1.5 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy350 mJ
IAR Avalanche CurrentSee Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche EnergymJ
dv/dt Peak Diode Recovery dv/dt TBD V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Absolute Maximum Ratings
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.65
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient (PCB mount)––– 62
IRF1302
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 20 –– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 3.3 4.0 mVGS = 10V, ID = 104A
VGS(th) Gate Threshold Voltage 2.0 –– 4.0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 59 ––– ––– S VDS = 15V, ID = 104A
––– ––– 20 µA VDS = 20V, VGS = 0V
––– ––– 250 VDS = 16V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– –– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge –– 79 120 ID = 104A
Qgs Gate-to-Source Charge ––– 18 27 nC VDS = 16V
Qgd Gate-to-Drain ("Miller") Charge ––– 31 46 VGS = 10V
td(on) Turn-On Delay Time ––– 28 –– VDD = 11V
trRise Time ––– 130 ––– ID = 104A
td(off) Turn-Off Delay Time ––– 47 ––– RG = 4.5
tfFall Time ––– 16 ––– VGS = 10V
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 3600 ––– VGS = 0V
Coss Output Capacitance ––– 2370 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 520 ––– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 5710 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 2370 ––– VGS = 0V, VDS = 16V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 3540 ––– VGS = 0V, VDS = 0V to 16V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 104A, VGS = 0V
trr Reverse Recovery Time –– 66 100 ns TJ = 25°C, IF = 104A
Qrr Reverse RecoveryCharge ––– 130 200 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
180
700
A
IRF1302
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
174A
4.0 5.0 6.0 7.0
VGS, Gate-to-Source Voltage (V)
10.00
100.00
1000.00
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 15V
20µs PULSE WIDTH
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
IRF1302
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
020 40 60 80 100
0
2
5
7
10
12
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D104A V = 16V
DS
0.1
1
10
100
1000
0.2 0.7 1.2 1.7 2.2
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 175 C
J°
T = 25 C
J°
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss
= C
gs
+ C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
1 10 100
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
IRF1302
www.irf.com 5
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25 50 75 100 125 150 175
0
50
100
150
200
I , Drain Current (A)
D
LIMITED BY PACKAGE
TC, Case Temperature (°C)
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF1302
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
140
280
420
560
700
Starting Tj, Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
AS
°
ID
TOP
BOTTOM
43A
74A
104A
Fig 14. Threshold Voltage Vs. Temperature
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRF1302
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) =
T/ ZthJC
Iav = 2
T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
10
60
110
160
210
260
310
360
410
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 104A
IRF1302
8www.irf.com
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
RG
VDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 17. For N-channel HEXFET® power MOSFETs
IRF1302
www.irf.com 9
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.055)
1.15 (.045)
2.54 (.100)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLER ANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
EXAMPLE:THIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY
LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TO-220 package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/02
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting TJ = 25°C, L = 0.063mH
RG = 25, IAS = 104A. (See Figure 12).
ISD 104A, di/dt 100A/µs, VDD V(BR)DSS,
TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging
time as Coss while VDS is rising from 0 to 80% VDSS .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This is applied to D2Pak, when mounted on 1" square PCB ( FR-
4 or G-10 Material ). For recommended footprint and soldering
techniques refer to application note #AN-994.