www.irf.com 1
04/30/09
IRF6720S2TRPbF
IRF6720S2TR1PbF
DirectFET Power MOSFET
Applicable DirectFET Outline and Substrate Outline
Typical values (unless otherwise specified)
DirectFET ISOMETRIC
S1
Description
The IRF6720S2PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
improved performance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering tech-
niques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6720S2PbF has low gate resistance and low charge along with ultra low package inductance providing significant reduction in
switching losses. The reduced losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6720S2PbF has been optimized for the control FET socket of synchronous buck oper-
ating from 12 volt bus converters.
Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 2.0mH, RG = 25, IAS = 8.8A.
Notes:
0 5 10 15 20
VGS, Gate -to -Source Voltage (V)
4
8
12
16
20
Typical RDS(on) (m)
ID = 11A
TJ = 25°C
TJ = 125°C
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
7.9nC 2.8nC 0.9nC 14nC 5.1nC 2.0V
S1 S2 SB M2 M4 L4 L6 L8
V
DSS
V
GS
R
DS(on)
R
DS(on)
30V max ±20V max 6.0m@ 10V 9.8m@ 4.5V
0 2 4 6 8 101214161820
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 8.8A
Absolute Maximum Ratin
g
s
Parameter Units
V
DS
Drain-to-Source Voltage V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
A
= 70°C Continuous Drain Current, V
GS
@ 10V
e
A
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
77
Max.
9.2
35
92
±20
30
11
8.8
l RoHS Compliant and Halogen Free
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Optimized for High Frequency Switching
l Ideal for CPU Core DC-DC Converters
l Optimized for Control FET Application
l Compatible with existing Surface Mount Techniques
l 100% Rg tested
PD - 97315B
IRF6720S2TR/TR1PbF
2www.irf.com
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 30 ––– ––– V
∆ΒV
DSS
/T
J
Breakdown Voltage Temp. Coefficient ––– 19 ––– mV/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 6.0 8.0 m
––– 9.8 12.8
V
GS(th)
Gate Threshold Voltage 1.35 2.0 2.35 V
V
GS(th)
/T
J
Gate Threshold Voltage Coefficient ––– -6.9 ––– mV/°C
I
DSS
Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– ––– 150
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 21 ––– –– S
Q
g
Total Gate Charge ––– 7.9 12
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 2.2 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 0.9 –– nC
Q
gd
Gate-to-Drain Charge ––– 2.8 ––
Q
godr
Gate Charge Overdrive ––– 2.0 –– See Fig. 2
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)––– 3.7 ––
Q
oss
Output Charge ––– 5.1 –– nC
R
G
Gate Resistance ––– 0.30 ––
t
d(on)
Turn-On Delay Time ––– 13 –––
t
r
Rise Time –35–
t
d(off)
Turn-Off Delay Time ––– 11 ––– ns
t
f
Fall Time ––– 11 ––
C
iss
Input Capacitance ––– 1140 –––
C
oss
Output Capacitance ––– 240 –– pF
C
rss
Reverse Transfer Capacitance ––– 100 ––
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current ––– ––– 22
(Body Diode) A
I
SM
Pulsed Source Current ––– ––– 92
(Body Diode)
g
V
SD
Diode Forward Voltage ––– ––– 1.0 V
t
rr
Reverse Recovery Time ––– 16 24 ns
Q
rr
Reverse Recovery Charge ––– 14 21 nC
MOSFET symbol
R
G
= 6.2
V
DS
= 15V, I
D
=8.8A
Conditions
ƒ = 1.0MHz
V
DS
= 16V, V
GS
= 0V
V
GS
= 20V
V
GS
= -20V
V
DS
= 20V, V
GS
= 0V
V
DS
= 15V
V
DS
= 20V, V
GS
= 0V, T
J
= 125°C
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 11A
i
V
GS
= 4.5V, I
D
= 8.8A
i
V
DS
= V
GS
, I
D
= 25µA
T
J
= 25°C, I
F
=8.8A
V
GS
= 4.5V
I
D
= 8.8A
V
GS
= 0V
V
DS
= 15V
I
D
= 8.8A
V
DD
= 15V, V
GS
= 4.5V
i
di/dt = 200A/µs
i
T
J
= 25°C, I
S
= 8.8A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
IRF6720S2TR/TR1PbF
www.irf.com 3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple incontact with top (Drain) of part.
Used double sided cooling, mounting pad with large heatsink.
Notes:
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100 1000
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τ4
τ4
R4
R4
τA
τA
τ5
τ5
R5
R5
Ri (°C/W) τi (sec)
2.676 0.00017
9.578 0.007941
34.880 0.52375
22.105 4.978
16.766 84
Absolute Maximum Ratin
g
s
Parameter Units
P
D
@T
A
= 25°C Power Dissipation
e
W
P
D
@T
A
= 70°C Power Dissipation
e
P
D
@T
C
= 25°C Power Dissipation
f
T
P
Peak Soldering Temperature °C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
R
θJA
Junction-to-Ambient
el
––– 86
R
θJA
Junction-to-Ambient
jl
12.5 –––
R
θJA
Junction-to-Ambient
kl
20 ––– °C/W
R
θJC
Junction-to-Case
fl
––– 8.6
R
θJ-PCB
Junction-to-PCB Mounted 1.0 –––
Linear Derating Factor
e
W/°C
0.012
270
-55 to + 175
Max.
17
1.7
1.2
IRF6720S2TR/TR1PbF
4www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
Typical RDS(on) (Normalized)
ID = 11A
VGS = 10V
VGS = 4.5V
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
020 40 60 80 100
ID, Drain Current (A)
0
2
4
6
8
10
12
14
16
Typical RDS(on) (m)
TJ = 25°C
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
ID, Drain-to-Source Current (A)
2.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM 2.5V
1 2 3 4 5
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
TJ = 175°C
TJ = 25°C
TJ = -40°C
VDS = 15V
60µs PULSE WIDTH
IRF6720S2TR/TR1PbF
www.irf.com 5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig 11. Maximum Safe Operating Area
Fig 15. Maximum Avalanche Energy vs. Drain Current
Fig 14. Typ. Forward Transconductance vs. Drain Current
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
5
10
15
20
25
30
35
ID, Drain Current (A)
0 20406080100
ID,Drain-to-Source Current (A)
0
10
20
30
40
50
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 15V
2
380µs PULSE WIDTH
0.01 0.10 1.00 10.00 100.00
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TA = 25°C
TJ = 150°C
Single Pulse
100µsec
1msec
10msec
DC
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VSD, Source-to-Drain Voltage (V)
0
1
10
100
ISD, Reverse Drain Current (A)
TJ = 175°C
TJ = 25°C
TJ = -40°C
VGS = 0V
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Typical VGS(th) Gate threshold Voltage (V)
ID = 25µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
40
80
120
160
200
240
280
320
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 1.5A
2.4A
BOTTOM 8.8A
IRF6720S2TR/TR1PbF
6www.irf.com
Fig 16. Typical Avalanche Current vs.Pulsewidth
Fig 17. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 16, 17:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 16, 17).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
10
20
30
40
50
60
70
80
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 8.8A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.01
0.1
1
10
100
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 25°C
and Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming DTj = 150°C and
Tstart =25°C (Single Pulse)
IRF6720S2TR/TR1PbF
www.irf.com 7
Fig 18a. Gate Charge Test Circuit Fig 18b. Gate Charge Waveform
Fig 19b. Unclamped Inductive Waveforms
Fig 19a. Unclamped Inductive Test Circuit
Fig 20b. Switching Time Waveforms
Fig 20a. Switching Time Test Circuit
1K
VCC
DUT
0
L
S
20K
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS VDS
VGS
90%
10%
td(off) td(on)
tftr
IRF6720S2TR/TR1PbF
8www.irf.com
Fig 19. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
RGVDD
D.U.T
G = GATE
D = DRAIN
S = SOURCE
D
GS
DD
D
S
Optional additional pad to allow
interchangeability with S2
outline devices.
Mandatory pads to fit S1 outline.
DirectFET Board Footprint, S1 Outline (Small Size Can).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
CL
IRF6720S2TR/TR1PbF
www.irf.com 9
DirectFET Part Marking
DirectFET Outline Dimension, S1 Outline (Small Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
MAX
4.85
3.95
2.85
0.45
0.52
0.62
0.52
1.12
N/A
0.90
1.80
0.740
0.080
0.17
MIN
4.75
3.70
2.75
0.35
0.48
0.58
0.48
1.08
N/A
0.80
1.70
0.68
0.020
0.08
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
DIMENSIONS
METRIC IMPERIAL
MAX
0.191
0.156
0.112
0.018
0.020
0.024
0.020
0.044
N/A
0.035
0.070
0.029
0.003
0.007
MIN
0.187
0.146
0.108
0.014
0.019
0.023
0.019
0.042
N/A
0.031
0.066
0.027
0.001
0.003
LOGO
GATE MARKING
BATCH NUMBER
PART NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
IRF6720S2TR/TR1PbF
10 www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified to MSL1 rating for the Consumer market.
Additional storage requirement details for DirectFET products can be found in application note AN1035 on IRs Web site.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2009
DirectFET Tape & Reel Dimension (Showing component orientation).
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
DIMENSIONS
METRIC IMPERIAL
LOADED TAPE FEED DIRECTION
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6720S2TRPBF). For 1000 parts on 7"
reel, order IRF6720S2TR1PBF
STANDARD OPTION (QTY 4800)
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
METRIC IMPERIAL
TR1 OPTION (QTY 1000)
IMPERIAL
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
METRIC
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C