74ABT240 Octal Buffer/Line Driver with 3-STATE Outputs

FAIRCHILD

SEMICONDUCTOR

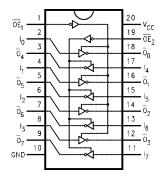
74ABT240 **Octal Buffer/Line Driver with 3-STATE Outputs**

General Description

The ABT240 is an inverting octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

Features

■ Output sink capability of 64 mA, source capability of 32 mA


March 1994

- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability

Ordering Code:

Order Number	Package Number	Package Description			
74ABT240CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body			
74ABT240CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74ABT240CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide			
74ABT240CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.					

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output
	Enable Inputs
I ₀ –I ₇	Inputs
$\overline{O}_0 - \overline{O}_7$	Outputs

Truth Tables

Inp	uts	Outputs				
OE ₁	I _n	(Pins 12, 14, 16, 18)				
L	L	н				
L	н	L				
Н	х	Z				
Inp	uts	Outputs (Pins 3, 5, 7, 9)				
OE ₂	I _n					
L	L	Н				
L	L	H L				

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 1)

PS(Note 1) Recommended Operating Conditions

		Conditione	
Storage Temperature	-65°C to +150°C	Conditions	
Junction Temperature under Bias	-55°C to +150°C	Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V	Supply Voltage	+4.5V to +5.5V
Input Voltage (Note 2)	-0.5V to +7.0V	Minimum Input Edge Rate (ΔV/Δt)	
Input Current (Note 2)	-30 mA to +5.0 mA	Data Input	50 mV/ns
Voltage Applied to Any Output		Enable Input	20 mV/ns
in the Disabled or			
Power-Off State	-0.5V to 5.5V		
in the HIGH State	–0.5V to V _{CC}		
Current Applied to Output			
in LOW State (Max)	twice the rated I_{OL} (mA)		
DC Latchup Source Current			
(Across Comm Operating Range)	–150 mA	Note 1: Absolute maximum ratings are value	
Over Voltage Latchup (I/O)	10V	may be damaged or have its useful life imp under these conditions is not implied.	paired. Functional operation
		Note 2: Either voltage limit or current limit is su	ifficient to protect inputs.

DC Electrical Characteristics

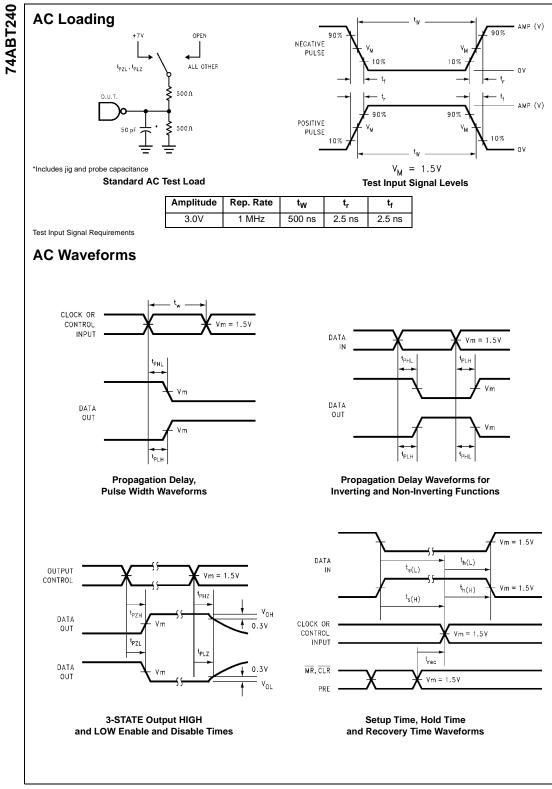
Symbol	Param	neter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage				0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current				1	μA	Max	V _{IN} = 2.7V (Note 3)
					1	μΛ	WidA	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current B	reakdown Test			7	μΑ	Max	V _{IN} = 7.0V
IIL	Input LOW Current				–1	μA	Max	V _{IN} = 0.5V (Note 3)
					-1	μΑ	WidA	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	ent			10	μΑ	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curre	ent			-10	μΑ	0-5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit C	Current	-100		-275	mA	Max	$V_{OUT} = 0.0V$
ICEX	Output HIGH Leakage	e Current			50	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	$V_{OUT} = 5.5V$; All Others GND
ICCH	Power Supply Current	t			50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current	t			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current	t			50	μA	Max	$\overline{OE}_n = V_{CC};$
								All Others at V _{CC} or Ground
ICCT	Additional I _{CC} /Input	Outputs Enabled			1.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			1.5	mA		Enable Input $V_I = V_{CC} - 2.1V$
	Outputs 3-STATE				50	μA	Max	Data Input V _I = V _{CC} - 2.1V
								All Others at V _{CC} or Ground
ICCD	Dynamic I _{CC}	No Load				mA/		Outputs Open
	(Note 3)			0.1	MHz	Max	$\overline{OE}_n = GND$, (Note 4)	
							One Bit Toggling, 50% Duty Cycle	

Note 3: Guaranteed, but not tested.

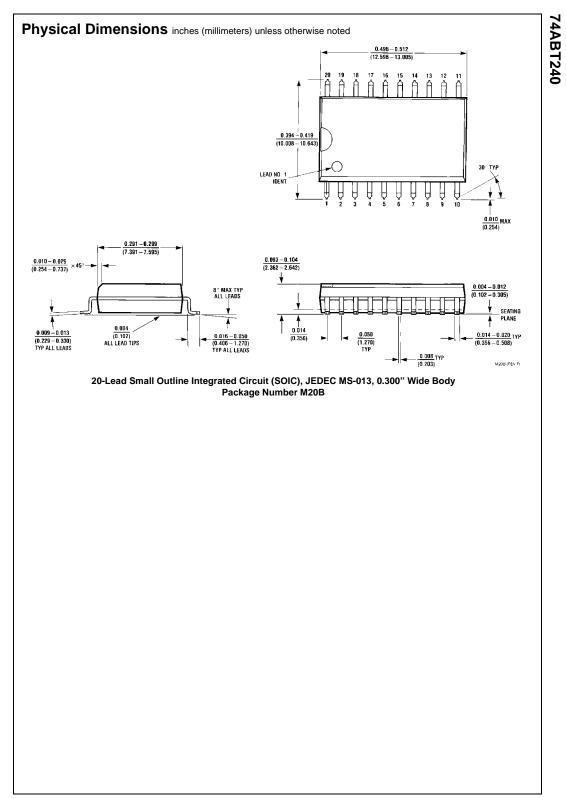
Note 4: For 8 bits toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

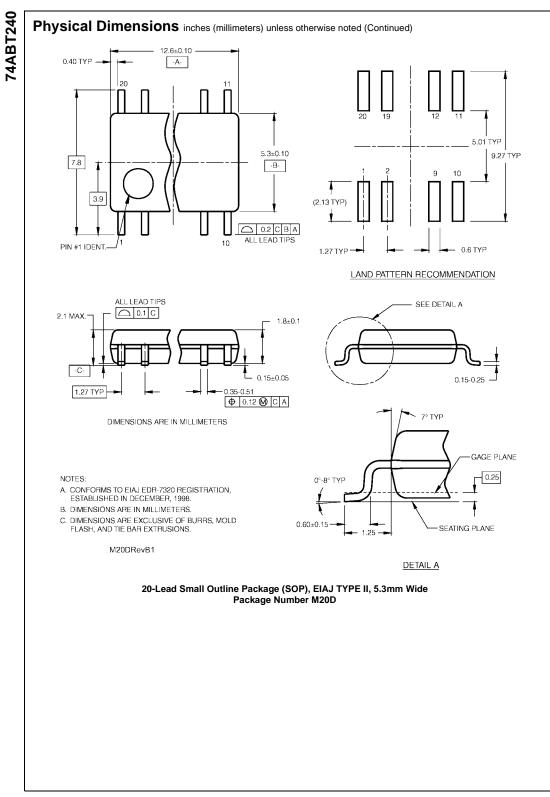
AC Electrical Characteristics

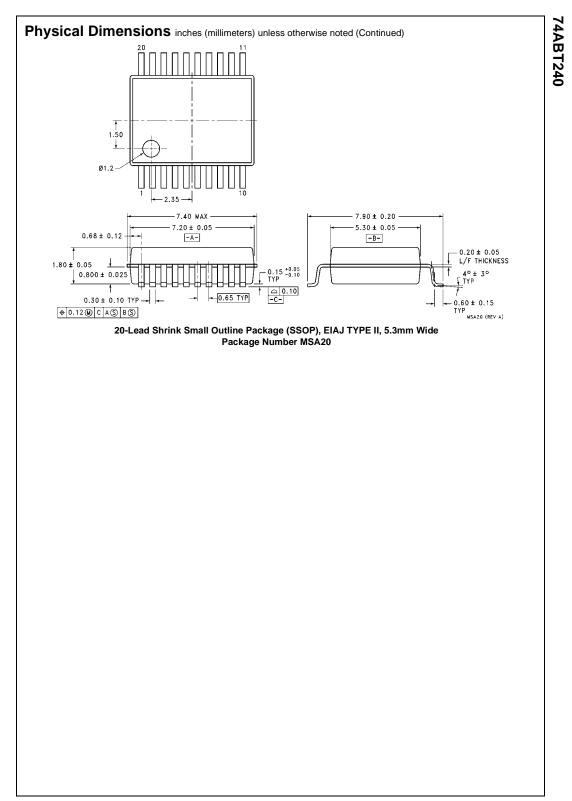
			$T_A = +25^{\circ}C$		$T_A = -55^{\circ}C$	C to +125°C	T _A = -40°	C to +85°C	
			$\textbf{V}_{\textbf{CC}}=+\textbf{5}\textbf{V}$		$V_{CC} = 4.$	5V–5.5V	$V_{CC} = 4$.5V–5.5V	
Symbol	Parameter	arameter C _L = 50 pF		$C_L = 50 \ pF$		C _L = 50 pF		Units	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.0		4.8	0.8	5.5	1.0	4.8	ns
t _{PHL}	Data to Outputs	1.6		4.8	1.0	5.5	1.6	4.8	115
t _{PZH}	Output Enable	1.1		6.2	0.8	7.5	1.1	6.2	ns
t _{PZL}	Time	1.1		6.2	0.8	7.7	1.1	6.2	113
t _{PHZ}	Output Disable	1.8		6.4	1.0	7.5	1.8	6.4	ns
t _{PLZ}	Time	1.6		5.8	1.0	7.2	1.6	5.8	115

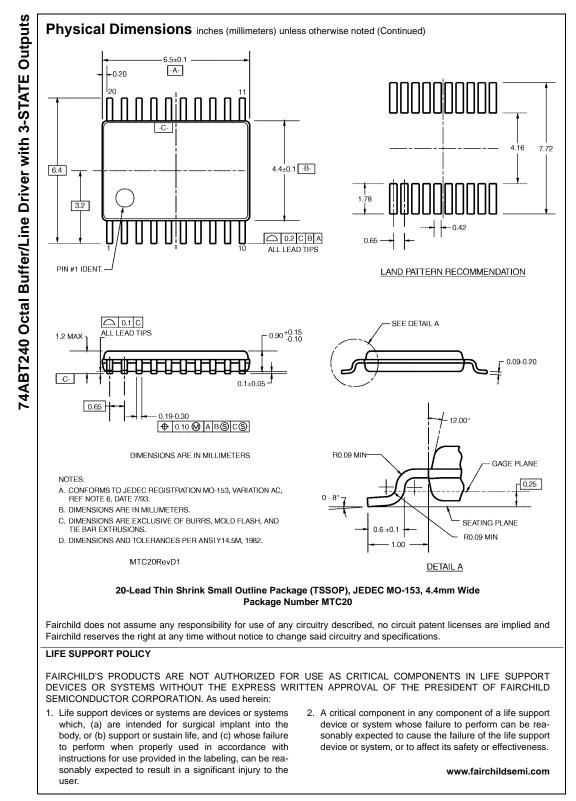

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$


Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.


www.fairchildsemi.com


74ABT240



4

