Precision Analog Microcontroller, 14-Bit Analog
I/O with MDIO Interface, Arm Cortex-M3
Data Sheet
ADuCM320i
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20152018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Analog input/output
Multichannel, 14-bit, 1 MSPS analog-to-digital
converter (ADC)
Up to 16 ADC input channels
0 V to VREF analog input range
Fully differential and single-ended modes
AVDD and IOVDD monitors
12-bit voltage output digital-to-analog converters (VDACs)
8 VDACs with a range of 0 V to 2.5 V or AVDD outputs
12-bit current output DACs (IDACs)
4 IDACS with a range of 0 mA to 150 mA outputs
Voltage comparator
Microcontroller
Arm Cortex-M3 processor, 32-bit RISC architecture
Serial wire port supports code download and debug
Clocking options
80 MHz PLL with programmable divider
Trimmed on-chip oscillator (±3%)
External 16 MHz crystal option
External clock source up to 80 MHz
Memory
2 × 128 kB independent Flash/EE memories
10,000 cycle Flash/EE endurance
20-year Flash/EE retention
32 kB SRAM
In circuit reprogrammability via I2C
On-chip peripherals
MDIO slave up to 4 MHz
2 × I2C, 2 × SPI, UART
Multiple general-purpose input/output (GPIO) pins: 3.6 V
compliant
7 × 1.2 V compatible when used for MDIO
32-element programmable logic array (PLA)
3 general-purpose timers
Wake-up timer
Watchdog timer
16-bit pulse width modulator (PWM)
Power
Supply range: 2.9 V to 3.6 V, and 1.8 V to 2.5 V for IDACs
Flexible operating modes for low power applications
Package and temperature range
6 mm × 6mm, 96-ball CSP_BGA package
Fully specified for 40°C to +105°C ambient operation
Tools
Low cost QuickStart development system
Full third party support
APPLICATIONS
Optical networking
ADuCM320i Data Sheet
Rev. A | Page 2 of 26
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Revision History ............................................................................... 2
Functional Block Diagram .............................................................. 3
General Description ......................................................................... 4
Specifications ..................................................................................... 5
Microcontroller Electrical Specifications .................................. 5
Timing Specifications ................................................................ 11
Absolute Maximum Ratings ..................................................... 17
ESD Caution................................................................................ 17
Pin Configuration and Function Descriptions ........................... 18
Typical Performance Characteristics ........................................... 23
Applications Information .............................................................. 24
Recommended Circuit and Component Values .................... 24
Packaging and Ordering Information ......................................... 26
Outline Dimensions ................................................................... 26
Ordering Guide .......................................................................... 26
REVISION HISTORY
4/2018—Rev. 0 to Rev. A
Change to Features Section ............................................................. 1
Change to Microcontroller Electrical Specifications Section ..... 5
Changes to Operating Ambient Temperature Range Parameter
and Operating Junction Temperature Range Parameter,
Table 9 .............................................................................................. 17
Changes to Ordering Guide .......................................................... 26
8/2015Revision 0: Initial Version
Data Sheet ADuCM320i
Rev. A | Page 3 of 26
FUNCTIONAL BLOCK DIAGRAM
MEMORY
128kB FLASH
32kB SRAM
ARM
CORTEX-M3
PROCESSOR
MUX
RESET
AIN0
AIN5
AIN6
AIN15
BUF_VREF2V5
VDAC7
IDAC0
ADuCM320i
PVDDx
AGNDx
IOVDDx
IOGNDx
GENERAL-
PURPOSE
I/O PORTS
SWDIO
SWCLK
GPIO PORTS
UART
2 × SPI
2×I
2
C
EXT IRQS
MDIO
PLA
INTERNAL
CHANNELS:
TEMPERATURE,
AV
DD
, IOV
DD
2.5V BAND GAP
DMA
NVIC
RESET SYSTEM
SE RIAL WIRE
CLOCK SYSTEM
32.768kHz
16MHz OSC
80MHz P LL
GP TIMER
WD TIMER
WAKE-UP TIMER
PWM
VDAC
IDAC3
14-BIT
SAR ADC
IDAC
IDAC
COMPA-
RATOR
XTALO XTALI ECLKIN
PGND
AVDDx
DGNDx
PWM0 TO
PWM6
1.8 V LDO
VDAC0 VDAC
13422-001
Figure 1.
ADuCM320i Data Sheet
Rev. A | Page 4 of 26
GENERAL DESCRIPTION
The ADuCM320i is a fully integrated single package device that
incorporates high performance analog peripherals together
with digital peripherals controlled by an 80 MHz Arm®
Cortex™-M3 processor and integral flash for code and data.
The ADC on the ADuCM320i provides 14-bit, 1 MSPS data
acquisition on up to 16 input pins that can be programmed for
single-ended or differential operation. The voltage at the IDAC
output pins can also be measured by the ADC, which is useful for
controlling the power consumption of the current DACs.
Additionally, chip temperature and supply voltages can be
measured.
The ADC input voltage is 0 V to VREF. A sequencer is provided,
which allows a user to select a set of ADC channels to be measured
in sequence without software involvement during the sequence.
The sequence can optionally repeat automatically at a user
selectable rate.
Up to eight VDACs are provided with output ranges that are
programmable to one of two voltage ranges.
Four IDAC sources are provided. The output currents are
programmable with a range of 0 mA to 150 mA. A low drift
band gap reference and voltage comparator completes the
analog input peripheral set.
The ADuCM320i can be configured so that the digital and analog
outputs retain their output voltages and currents through a
watchdog or software reset sequence. Thus, a product can remain
functional even while the ADuCM320i is resetting itself.
The ADuCM320i has a low power Arm Cortex-M3 processor
and a 32-bit RISC machine that offers up to 100 MIPS peak
performance. Also integrated on chip are 2 × 128 kB Flash/EE
memory and 32 kB of SRAM. The flash comprises two separate
128 kB blocks supporting execution from one flash block and
simultaneous writing/erasing of the other flash block.
The ADuCM320i operates from an on-chip oscillator or a
16 MHz external crystal and a PLL at 80 MHz. This clock can
optionally be divided down to reduce current consumption.
Additional low power modes can be set via software. In normal
operating mode, the ADuCM320i digital core consumes about
300 µA per MHz.
The device includes an MDIO interface capable of operating at
up to 4 MHz. The capability to simultaneously execute from
one flash block and write/erase the other flash block makes the
ADuCM320i ideal for 10G, 40G, and 100G optical applications.
User programming is eased by incorporating PHYA DR and
DEVADD hardware comparators. In addition, the nonerasable
kernel code plus flags in user flash provide assistance by
allowing user code to robustly switch between the two blocks
of user flash code and data spaces.
The ADuCM320i integrates a range of on-chip peripherals that
can be configured under software control, as required in the appli-
cation. These peripherals include 1 × UART, 2 × I2C, and 2 × SPI
serial input/output (I/O) communication controllers, GPIO,
32-element programmable logic array, 3 general-purpose timers,
plus a wake-up timer and system watchdog timer. A 16-bit
PWM with seven output channels is also provided.
GPIO pins on the device power up in high impedance input
mode. In output mode, the software chooses between open-
drain mode and push-pull mode. The pull-up resistors can be
disabled and enabled in software. In GPIO output mode, the
inputs can remain enabled to monitor the pins. The GPIO pins
can also be programmed to handle digital or analog peripheral
signals, in which case the pin characteristics are matched to the
specific requirement.
A large support ecosystem is available for the Arm Cortex-M3
processor to ease product development of the ADuCM320i.
Access is via the Arm serial wire debug port (SW-DP). On-chip
factory firmware supports in-circuit serial download via I2C.
These features are incorporated into a low cost QuickStart
development system supporting this precision analog
microcontroller family.
Note that throughout this data sheet, multifunction pins, such
as VDAC0/P5.3, are referred to either by the entire pin name or
by a single function of the pin, for example, VDAC0, when only
that function is relevant.
Data Sheet ADuCM320i
Rev. A | Page 5 of 26
SPECIFICATIONS
MICROCONTROLLER ELECTRICAL SPECIFICATIONS
AVDD (the voltage applied to the AVDD3 and AVDD4 pin) = IOVDDx (the voltage applied to the IOVDDx pins (IOVDD0, IOVDD1,
IOVDD2)) = VDD1 (the voltage applied to the VDD1 pin) = 2.9 V to 3.6 V (see Figure 14) maximum difference between supplies = 0.3 V,
VREF = 2.5 V internal reference, fCORE = 80 MHz, TA = −40°C to +105°C, unless otherwise noted. PVDDx (the voltage applied to the PVDDx
pins (PVDD0, PVDD1, PVDD2, PVDD3)) for IDACs = 1.8 V to 2.5 V. Power-up sequence must be VDD1, IOVDDx, AV DDx, and then
PVDDx, but no delays in the sequence are required.
Table 1.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
ADC BASIC SPECIFICATIONS Single-ended mode, unless
otherwise stated
ADC Power-Up Time 5 µs
Data Rate fSAMPLE 1 MSPS
DC Accuracy1 14 Bits 1 LSB = 2.5 V/214
Resolution1 16 Bits Number of data bits
Integral Nonlinearity INL ±1.75 LSB 2.5 V internal reference; 1 LSB =
2.5 V/214
±1.75 LSB 2.5 V external reference; 1 LSB =
2.5 V/214
Differential Nonlinearity DNL −0.99 ±0.75 +1 LSB 2.5 V internal reference; 1 LSB =
2.5 V/214
±0.75 LSB 2.5 V external reference; 1 LSB =
2.5 V/214
DC Code Distribution ±3 LSB ADC input 1.25 V; 1 LSB =
2.5 V/214
ADC ENDPOINT ERRORS
Offset Error
Input Buffer Off ±200 µV
Drift1 2.25 +1.2 µV/°C Using 2.5 V external reference
Input Buffer On −250 µV
Drift1 2.6 +2 µV/°C Using 2.5 V external reference
Match ±1 LSB Matching compared to AIN8
Full-Scale Error
Input Buffer Off ±400 µV
Gain Drift
1
−4
+2
µV/°C
Full-scale error drift minus
offset error drift
Input Buffer On −350 µV
Gain Drift1 4.5 +3 µV/°C Full-scale error drift minus
offset error drift
Match ±1 LSB
ADC DYNAMIC PERFORMANCE fIN = 665.25 Hz sine wave,
fSAMPLE = 100 kSPS; input filter =
15 Ω, 2 nF
Signal-to-Noise Ratio SNR Includes distortion and noise
components
Input Buffer
Disabled 80 dB
Enabled 74 dB
Total Harmonic Distortion THD
Input Buffer
Disabled −86 dB
Enabled 83 dB
Peak Harmonic or Spurious Noise −88 dB
Channel-to-Channel Crosstalk −90 dB Measured on adjacent channels
ADuCM320i Data Sheet
Rev. A | Page 6 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
ADC INPUT Input buffer not enabled
Input Voltage Ranges
Single-Ended Mode1 AGND4 VREF
Differential Mode1 −VREF +VREF V Voltage between differential
pins
Compliance1 AGND4 AVDD4
Common Mode1 0.9 1.6 V
Leakage Current
AIN0 to AIN4, AIN6 to AIN15 ±1.5 nA
AIN5 ±20 nA Pin shared with comparator
Input Current
±9
µA/V
At 1 MSPS; buffer off
±6 µA/V ≤800 kSPS; buffer off
±4 µA/V 500 kSPS; buffer off;
ADCCNVC[25:16] = 0x1E
Input Capacitance 20 pF During ADC acquisition
ADC INPUT BUFFER2 When enabled by software
Voltage Compliance1 0.15 2.5 V Reduced accuracy below 0.15 V
Input Current ±100 nA VIN = 0.15 V to 2.5 V, ADC
converting
ON-CHIP VOLTAGE REFERENCE 2.51 V 0.47 µF from VREF_1V2 to
AGND4; reference is measured
with all ADCs, VDACs, and
IDACs enabled
Accuracy ±5 mV TA = 25°C
Reference Temperature Coefficient1 −34 15 +4 ppm/°C
Power Supply Rejection Ratio PSRR 60 dB
Internal VREF Power-On Time 50 ms
EXTERNAL REFERENCE INPUT
Range1 1.8 2.5 V ADC
Input Current 200 µA
BUFFERED REFERENCE OUTPUT
Output Voltage 2.504 V
Accuracy ±8 mV TA = 25°C, load = 1.2 mA
Reference Temperature Coefficient1 −55 −5 +40 µV/°C 100 nF from BUF_VREF2V5 to
AGND4
Output Impedance 10 TA = 25°C
Load Current1 1.2 mA
VDAC CHANNEL SPECIFICATIONS RL = 5 kΩ, CL = 100 pF3
DC Accuracy1 12 Bits 1 LSB = 2.5 V/212
Resolution1 12 Bits Number of data bits
Relative Accuracy4 INL ±4 LSB 1 LSB = 2.5 V/212
Differential Nonlinearity4 DNL −0.99 +1 LSB Guaranteed monotonic, 1 LSB =
2.5 V/212
Offset Error ±3 ±15 mV 2.5 V internal reference, DAC
Output Code 0
Drift ±13 µV/°C
Gain Error5 ±0.3 ±0.85 % 0 V to internal VREF range
±0.4 ±1 % 0 V to AVDD range
Drift 6.5 ppm/°C Excluding reference drift
Mismatch 0.1 % % of full scale on DAC0
Data Sheet ADuCM320i
Rev. A | Page 7 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Analog Outputs
Output Voltage Range 11 0.15 2.5 V
Output Voltage Range 21 0.15 AVDDx − 0.15 V
Output Impedance 2
DAC AC Characteristics
Output Settling Time 10 µs Settled to ±1 LSB
Glitch Energy ±20 nV-sec 1 LSB change when the
maximum number of bits
changes simultaneously in the
DACxDAT register
IDAC CHANNEL SPECIFICATIONS
Resolution1 14 Bits Combination of overlapping
11 bits and 5 bits
Full-Scale Output1 150 mA
Supply Voltage Each Channel1 1.8 2.5 V Separate PVDDx supply for each
channel
Output Compliance Range
IDAC0, IDAC1 0.4 PVDDx0.4 V See Figure 11
IDAC2, IDAC3
0.4
PV
DDx
0.25
V
See Figure 11
Full-Scale Error IDAC set to 85% of full scale
IDAC0, IDAC1 ±0.75 % 25°C to 105°C range
±3.5 % −40°C to +105°C range
IDAC2, IDAC3 ±0.75 % −40°C to +105°C range
Full-Scale Error Drift
IDAC0, IDAC1 Internal VREF
−40°C to +85°C 25 µA/°C
25°C to 85°C 5 µA/°C
IDAC2, IDAC3 2 µA/°C Internal VREF
Integral Nonlinearity INL ±3 ±6 LSB 1 LSB = 150 mA/211
Differential Nonlinearity DNL −0.99 +1.5 LSB Guaranteed 11-bit monotonic,
1 LSB = 150 mA/211
Zero-Scale Error ±50 µA
Zero-Scale Error Drift
IDAC0, IDAC1 ±300 nA/°C
IDAC2, IDAC3
nA/°C
Noise Current 2 µA IDACxCON[5:2] = 0
Pull-Down Current −220 165 −100 µA When enabled
Settling Time IDACxCON[5:2] = 0
To 0.1% 100 µs ±4 mA change from midscale
To 1% 50 µs ±4 mA change from midscale
Full Scale to 0 mA 20 µs Pull-down enabled
Overheat Shutdown 135 °C Junction temperature
PVDD ACPSRR IDACxCON[5:2] = 0
100 Hz 51 dB
1 kHz 45 dB
10 kHz 25 dB
100 kHz
dB
ADuCM320i Data Sheet
Rev. A | Page 8 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
COMPARATOR
Input
Offset Voltage ±10 mV
Bias Current 1 nA
Voltage Range
1
AGNDx
AV
DDx
− 1.2
V
Capacitance 7 pF
Hysteresis1 8.5 15 mV When enabled in software
Response Time 7 µs AFECOMP[2:1] = 0
TEMPERATURE SENSOR Indicates die temperature, see
Figure 9
Resolution 0.5 °C When precision calibrated by
the user6
Accuracy1 1.34 1.43 V ADC measured voltage for
temperature sensor channel
without calibration, TA = 25°C
POWER-ON RESET POR 2.85 2.9 V
PIN RESET
Minimum Time To Reset 1.2 µs
Maximum Time Not To Reset
0.5
µs
WATCHDOG TIMER WDT
Timeout Period
32
sec
Default at power-up
FLASH/EE MEMORY
Endurance1 10,000 Cycles
Data Retention1 20 Years TJ = 85°C
DIGITAL INPUTS
Input Leakage Current
Logic 1 GPIO 1 nA VIH = IOVDD, pull-up resistor
disabled
Logic 0 GPIO 10 nA VIL = 0 V, pull-up resistor
disabled
PRTADDRx, MCK 1 µA Pull-up disabled
16 µA Pull-up to 1.8 V enabled
Input Capacitance
10
pF
MCK, PRTADDRx 6.5 pF
MDIO 8.5 pF
XTALI 5 pF
XTALO 5 pF
All Other Pins 10 pF
LOGIC INPUTS
GPIO Input Voltage
Low VINL 0.25 × IOVDDx V
High VINH 0.58 × IOVDDx V
MDIO
PRTADDRx Input Voltage
Low VINL 0.36 V
High VINH 0.84 V
MCK, MDIO Input Voltage
Setup time ≥10 ns; hold time
≥10 ns; MCK/MDIO
Low VINL 0.36 V
High VINH 0.84 V
Data Sheet ADuCM320i
Rev. A | Page 9 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
XTALI Input Voltage
Low VINL 1.1 V
High VINH 1.7 V
Pull-Up Current 30 120 µA VIN = 0 V, see Figure 10
Pull-Down Current
30
100
µA
V
IN
= 3.3 V, see Figure 10
LOGIC OUTPUTS All digital outputs excluding
XTALO
GPIO Output Voltage
7
High VOH IOVDDx − 0.4 V ISOURCE = 2 mA
Low VOL 0.4 V ISINK = 2 mA
GPIO Short-Circuit Current1 11 mA See Figure 13
MDIO
Output Voltage
High VOH 1.0 V ISOURCE = 4 mA
Low VOL 0.2 V ISINK = 4 mA
Delay Time 100 ns MCK to MDIO out
OSCILLATORS
Internal System Oscillator 16 MHz
Accuracy ±0.5 ±3 %
System PLL 80 MHz Main system clock
External Crystal Oscillator 16 MHz Can be selected in place of
internal oscillator
32 kHz Internal Oscillator 32.768 kHz Use for watchdog
Accuracy ±5 ±20 %
External Clock 0.05 80 MHz Can be selected in place of PLL
START-UP TIME Processor clock = 80 MHz
At Power-On 40 ms POR to first user code execution
After Other Reset 1.5 ms Reset to first user code
execution
From All Power-Down Modes
µs
PROGRAMMABLE LOGIC ARRAY PLA
Propagation Delay
Pin 17 ns From input pin to output pin
Element 1.5 ns Per PLA cell
EXTERNAL INTERRUPTS
Pulse Width
1
Level Triggered 7 ns
Edge Triggered 1 ns
POWER REQUIREMENTS8
Power Supply Voltage Range
AVDDx to AGNDx and IOVDDx
to DGNDx1
2.9 3.3 3.6 V
Analog Power Supply Currents
AVDDx Current 6.3 mA Analog peripherals in idle mode
Digital Power Supply Current
IOVDDx Current in Normal Mode 4 mA All GPIO pull-up resistors
enabled
ADuCM320i Data Sheet
Rev. A | Page 10 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
VDDx Current
Normal Mode 29 mA CD = 0 (80 MHz clock)
executing typical code
20 mA CD = 1 executing typical code
10 mA CD = 7 executing typical code
CORE_SLEEP Mode 16 mA
SYS_SLEEP Mode 8 mA
Hibernate Mode 6.6 mA
Additional Power Supply Currents
ADC 4.1 mA Continuously converting at
100 kSPS
ADC Input Buffer 4.0 mA Both buffers enabled
IDAC 16.5 mA Excluding load current
DAC 340 µA Per powered up DAC,
excluding load current
Total Supply Current 35 40 45 mA VDD1, IOVDDx, AVDDx
connected together; condition
when entering user code:
peripheral clocks on,
peripherals idle, no load
currents
Thermal Performance
Impedance, Junction to Ambient 45 °C/W JEDEC 2S2P
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.
2 Enabling the input buffer changes the ADC input characteristics as described in these specifications (the ADC Input Buffer specifications).
3 The data in the Microcontroller Electrical Specifications section also applies for a load of RL = 1 kΩ and CL = 100 pF to ground but only for 0 V to 2.5 V. However, this is
not production tested.
4 DAC linearity is calculated using a reduced code range of 100 to 3900.
5 DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF.
6 Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for
internal and external conditions identical to those at calibration.
7 The average current from all GPIO pins must not exceed 3 mA per pin.
8 Power specifications exclude any load currents to external circuits.
Data Sheet ADuCM320i
Rev. A | Page 11 of 26
TIMING SPECIFICATIONS
I2C Timing
Table 2. I2C Timing in Standard Mode (100 kHz)
Slave
Parameter Description Min Typ Max Unit
tL SCL low pulse width 4.7 µs
tH SCL high pulse width 4.0 ns
tSHD Start condition hold time 4.0 µs
tDSU Data setup time 250 ns
tDHD Data hold time (SDA held internally for 300 ns after falling edge of SCL) 0 3.45 µs
tRSU Setup time for repeated start 4.7 µs
tPSU Stop condition setup time 4.0 µs
tBUF Bus-free time between a stop condition and a start condition 4.7 µs
tR Rise time for both SCL and SDA 1 µs
tF Fall time for both SCL and SDA 15 300 ns
tVD; DAT Data valid time 3.45 µs
tVD;ACK Data valid acknowledge time 3.45 µs
Table 3. I2C Timing in Fast Mode (400 kHz)
Slave
Parameter Description Min Typ Max Unit
tL SCL low pulse width 1.3 µs
tH SCL high pulse width 0.6 ns
tSHD Start condition hold time 0.6 µs
tDSU Data setup time 100 ns
tDHD Data hold time (SDA held internally for 300 ns after falling edge of SCL) 0 µs
tRSU Setup time for repeated start 0.6 µs
tPSU Stop condition setup time 0.6 µs
tBUF Bus-free time between a stop condition and a start condition 1.3 µs
tR Rise time for both SCL and SDA 20 300 ns
tF Fall time for both SCL and SDA 15 300 ns
t
VD; DAT
Data valid time
0.9
µs
tVD; ACK Data valid acknowledge time 0.9 µs
SDA (I/O) MSB LSB ACK MSB
1982–71
SCL (I)
P S
START
CONDITION REPEATED
START
STOP
CONDITION
S(R)
t
DSU
t
H
t
L
t
SHD
t
PSU
t
DSU
t
BUF
t
DHD
t
VD; DAT
t
VD; ACK
t
R
t
F
t
F
t
R
t
DHD
t
RSU
13422-002
Figure 2. I2C-Compatible Interface Timing
ADuCM320i Data Sheet
Rev. A | Page 12 of 26
SPI Timing
Table 4. SPI Master Mode Timing (Phase Mode = 1)
Parameter Description Min Typ Max Unit
tSL SCLK low pulse width (SPIDIV + 1) × tHCLK/2 ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK/2 ns
tDAV Data output valid after SCLK edge 0 3 ns
tDSU Data input setup time before SCLK edge ½ SCLK ns
tDHD Data input hold time after SCLK edge SCLK ns
tDF Data output fall time SCLK ns
tDR Data output rise time 25 ns
t
SR
SCLK rise time
25
ns
tSF SCLK fall time 20 ns
SCLK
(POLARITY = 0)
SCLK
(POLARITY = 1)
MOSI MSB BIT 6 TO BIT 1 LSB
MISO MSB IN BIT 6 TO BIT 1 LSB IN
t
SH
t
SL
t
SR
t
SF
t
DR
t
DF
t
DAV
t
DSU
t
DHD
13422-003
Figure 3. SPI Master Mode Timing (Phase Mode = 1)
Data Sheet ADuCM320i
Rev. A | Page 13 of 26
Table 5. SPI Master Mode Timing (Phase Mode = 0)
Parameter Description Min Typ Max Unit
tSL SCLK low pulse width (SPIDIV + 1) × tHCLK/2 ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK/2 ns
tDAV Data output valid after SCLK edge 0 3 ns
tDOSU Data output setup before SCLK edge ½ SCLK ns
tDSU Data input setup time before SCLK edge SCLK ns
tDHD Data input hold time after SCLK edge SCLK ns
tDF Data output fall time 25 ns
tDR Data output rise time 25 ns
tSR SCLK rise time 20 ns
tSF SCLK fall time 20 ns
SCLK
(POLARITY = 0)
SCLK
(POLARITY = 1)
tSH tSL tSR tSF
MOSI MSB BIT 6 TO BIT 1 LSB
MISO MSB IN BIT 6 TO BIT 1 LSB IN
tDR
tDF
tDAV
tDOSU
tDSU
tDHD
13422-004
Figure 4. SPI Master Mode Timing (Phase Mode = 0)
ADuCM320i Data Sheet
Rev. A | Page 14 of 26
Table 6. SPI Slave Mode Timing (Phase Mode = 1)
Parameter Description Min Typ Max Unit
tCS CS to SCLK edge 10 ns
t
SL
SCLK low pulse width
(SPIDIV + 1) × t
HCLK
ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLK edge 20 ns
tDSU Data input setup time before SCLK edge 10 ns
tDHD Data input hold time after SCLK edge 10 ns
t
DF
Data output fall time
25
ns
tDR Data output rise time 25 ns
tSR SCLK rise time 1 ns
tSF SCLK fall time 1 ns
tSFS CS high after SCLK edge 20 ns
SCLK
(POLARITY = 0)
CS
SCLK
(POLARITY = 1)
t
SH
t
SL
t
SR
t
SF
t
SFS
MISO MSB BIT 6 TO BIT 1 LSB
MOSI MSB IN BIT 6 TO BIT 1 LSB IN
t
DHD
t
DSU
t
DAV
t
DR
t
DF
t
CS
13422-005
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)
Data Sheet ADuCM320i
Rev. A | Page 15 of 26
Table 7. SPI Slave Mode Timing (Phase Mode = 0)
Parameter Description Min Typ Max Unit
tCS CS to SCLK edge 10 ns
t
SL
SCLK low pulse width
(SPIDIV + 1) × t
HCLK
ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLK edge 20 ns
tDSU Data input setup time before SCLK edge 10 ns
tDHD Data input hold time after SCLK edge 10 ns
t
DF
Data output fall time
25
ns
tDR Data output rise time 25 ns
tSR SCLK rise time 1 ns
tSF SCLK fall time 1 ns
tDOCS Data output valid after CS edge 20 ns
tSFS CS high after SCLK edge 10 ns
SCLK
(POLARITY = 0)
CS
SCLK
(POLARITY = 1)
t
SH
t
SL
t
SR
t
SF
t
SFS
MISO
MOSI MSB IN BIT 6 TO BIT 1 LSB IN
t
DHD
t
DSU
MSB BIT 6 TO BIT 1 LSB
t
DOCS
t
DAV
t
DR
t
DF
t
CS
13422-006
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)
ADuCM320i Data Sheet
Rev. A | Page 16 of 26
Table 8. MDIO vs MCK Timing
Parameter Description Min Typ Max Unit
tSETUP MDIO setup before MCK edge 10 ns
tHOLD MDIO valid after MCK edge 10 ns
tDELAY Data output after MCK edge 100 ns
MCK VIH
VIL
VIH
VIL
VOH
VOL
CFP
INPUT
MDIO
CFP
INPUT
MDIO
CFP
OUTPUT
tSETUP tHOLD tDELAY
13422-007
Figure 7. MDIO Timing
Data Sheet ADuCM320i
Rev. A | Page 17 of 26
ABSOLUTE MAXIMUM RATINGS
All requirements applicable to each pin must be met. Where
multiple limits apply to a pin each one must be met individually.
The limits apply according to the functionality of the pins at the
time. Pins that can be either analog or digital, that is, that have
two types indicated in the pin descriptions, must meet the limits
for both types. For pin types, see Table 10.
When powered up, all ground pins and ADC_REFN must be
connected together to a node referred to as GND in Table 9.
The limits that are listed must be reduced by any difference
between any GNDx pin. Also, AVDD3 must be connected to
AVDD4 and IOVDD1 must be connected to IOVDD3.
Table 9.
Parameter Rating
Any Pin to GND 0.3 V to +3.9 V
Any PVDDx Pin to GND 0.3 V to +2.8 V
MDIO1, MCK, and PRTADDR0 to
PRTADDR4 in MDIO Mode to GND
0.3 V to +2.1 V
Between Any of AVDDx, IOVDDx, and
VDD1 Pins
0.3 V to +0.3 V
Any Type I Pin to GND2 0.3 V to IOVDDx + 0.3 V
Any Type AI or AO Pin to GND3 0.3 V to AVDDx + 0.3 V
Any IDACx, CDAMPx, IDAC_TST, IREF to
GND
0.3 V to PVDDx + 0.3 V
ADC_REFP to GND 0.3 V to AVDDx + 0.3 V
Total Positive GPIO Pin Currents 0 mA to 30 mA
Total Negative GPIO Pin Currents 30 mA to 0 mA
Maximum Power Dissipation 1 W
Operating Ambient Temperature Range 40°C to +105°C
Storage Temperature Range 65°C to +160°C
Operating Junction Temperature Range 40°C to +150°C
ESD HBM 4 kV
ESD FICDM 1 kV
1 Note that this pin is always in MDIO mode.
2 This limit does not apply if no current can be drawn by external circuits on
IOVDDx because, in this case, IOVDD follows to a suitable level.
3 This limit does not apply if no current can be drawn by external circuits on
AVDDx because, in this case, AVDD follows to a suitable level.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
ADuCM320i Data Sheet
Rev. A | Page 18 of 26
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
A
B
C
D
E
F
G
H
J
K
L
2345678910 11
IDAC_
TST IDAC0IDAC2
IOVDD1
DIGITAL
IOGND1
P3.3/
PRTADDR3/
PLAI[15]
P0.0/
SCLK0/
PLAI[0]
CDAMP0 CDAMP2 CDAMP3 CDAMP1
IDAC1 IREFIDAC3PGND
DGND2
SWCLK
AIN15/
P4.7
AIN14/
P4.6 AIN12/
P4.4
AIN11/
BUF_
VREF2V5
AIN10
AIN7
AIN2
AIN1
AIN0AGND1
VDAC4
VDAC7/
P5.2
VDAC6/
P5.1
XTALI
IOVDD3
IOGND3VDAC3/
P5.0 VDAC1 VDD1
AVDD3
AGND2
AGND3
AIN3
AIN4
AIN6
AIN5
AIN9/
P4.3
AIN8/
P4.2
VDAC0/
P5.3
VDAC2/
P3.7/
PLAO[29]
VDAC5DGND1
AGND4
AIN13/
P4.5 AVDD4
SWDIO IOGND2
IOVDD2
PGND
PVDD01DDVP3DDVP2DDVP
RESET P1.0/SIN/
ECLKIN/
PLAI[4]
P1.2/
PWM0/
PLAI[6]
P1.1/SOUT/
PLACLK1/
PLAI[5]
P2.4/IRQ5/
ADCCONV/
PWM6/
PLAO[18]
P1.3/
PWM1/
PLAI[7]
P1.4/
PWM2/
SCLK1/
PLAO[10]
P1.5/
PWM3/
MISO1/
PLAO[11]
P1.6/
PWM4/
MOSI1/
PLAO[12]
P1.7/IRQ1/
PWM5/
CS1/
PLAO[13]
P2.0/IRQ2/
PWMTRIP/
PLACLK2/
PLAI[8]
P2.2/
IRQ4/POR/
CLKOUT/
PLAI[10]
P2.3/BM
P0.2/
MOSI0/
PLAI[2]
P0.5/
SDA0/
PLAO[3]
P2.6/
IRQ7/
PLAO[20]
P0.7/
SDA1/
PLAO[5]
P0.6/
SCL1/
PLAO[4]
P3.0/
PRTADDR0/
PLAI[12]
P3.1/
PRTADDR1/
PLAI[13]
P2.7/
IRQ8/
PLAO[21]
P3.5/
MCK/
PLAO[27] XTALO MDIO
P0.4/
SCL0/
PLAO[2]
P0.3/
IRQ0/CS0/
PLACLK0/
PLAI[3]
P0.1/
MISO0/
PLAI[1]
P3.2/
PRTADDR2/
PLAI[14]
P3.4/
PRTADDR4/
PLAO[26]
AVDD_
REG0 AVDD_
REG1 VRE F_1V2
ADC_
REFP
ADC_
REFN
DVDD_
2V5
DVDD_1V8
ADuCM320i
TOP VIEW
(Not to Scale)
IDAC ANALOG
13422-008
Figure 8. Pin Configuration
Table 10. Pin Function Descriptions
Pin No. Mnemonic Type1 Description
B2 RESET I Reset Input (Active Low). An internal pull-up resistor is included.
C2
P0.0/SCLK0/PLAI[0]
I/O
Digital I/O Port 0.0 (P0.0).
SPI0 Clock (SCLK0).
Input to PLA Element 0 (PLAI[0]).
D2 P0.1/MISO0/PLAI[1] I/O Digital I/O Port 0.1 (P0.1).
SPI0 Master Input, Slave Output (MISO0).
Input to PLA Element 1 (PLAI[1]).
D1 P0.2/MOSI0/PLAI[2] I/O Digital I/O Port 0.2 (P0.2).
SPI0 Master Output, Slave Input (MOSI0).
Input to PLA Element 2 (PLAI[2]).
E3 P0.3/IRQ0/CS0/PLACLK0/PLAI[3] I/O Digital I/O Port 0.3 (P0.3).
External Interrupt 0 (IRQ0).
SPI0 Chip Select 0 (CS0). When using SPI0, configure this pin as CS0.
PLA Clock 0 (PLACLK0).
Input to PLA Element 3 (PLAI[3]).
E2 P0.4/SCL0/PLAO[2] I/O Digital I/O Port 0.4 (P0.4).
I2C0 Serial Clock (SCL0).
Output of PLA Element 2 (PLAO[2]).
Data Sheet ADuCM320i
Rev. A | Page 19 of 26
Pin No. Mnemonic Type1 Description
E1 P0.5/SDA0/PLAO[3] I/O Digital I/O Port 0.5 (P0.5).
I2C0 Serial Data (SDA0).
Output of PLA Element 3 (PLAO[3]).
F3 P0.6/SCL1/PLAO[4] I/O Digital I/O Port 0.6 (P0.6).
I
2
C1 Serial Clock (SCL1).
Output of PLA Element 4 (PLAO[4]).
F2 P0.7/SDA1/PLAO[5] I/O Digital I/O Port 0.7 (P0.7).
I2C1 Serial Data (SDA1).
Output of PLA Element 5 (PLAO[5]).
B9 P1.0/SIN/ECLKIN/PLAI[4] I/O Digital I/O Port 1.0 (P1.0).
UART Input (SIN).
External Input Clock (ECLKIN).
Input to PLA Element 4 (PLAI[4]).
B10 P1.1/SOUT/PLACLK1/PLAI[5] I/O Digital I/O Port 1.1 (P1.1).
UART Output (SOUT)
PLA Clock 1(PLACLK1).
Input to PLA Element 5 (PLAI[5]).
B11 P1.2/PWM0/PLAI[6] I/O Digital I/O Port 1.2 (P1.2).
PWM Output 0 (PWM0).
Input to PLA Element 6 (PLAI[6]).
C6 P1.3/PWM1/PLAI[7] I/O Digital I/O Port 1.3 (P1.3).
PWM Output 1 (PWM1).
Input to PLA Element 7 (PLAI[7]).
C7 P1.4/PWM2/SCLK1/PLAO[10] I/O Digital I/O Port 1.4 (P1.4).
PWM Output 2 (PWM2).
SPI1 Clock (SCLK1).
Output of PLA Element 10 (PLAO[10]).
C8 P1.5/PWM3/MISO1/PLAO[11] I/O Digital I/O Port 1.5 (P1.5).
PWM Output 3 (PWM3).
SPI1 Master Input, Slave Output (MISO1).
Output of PLA Element 11 (PLAO[11]).
C9 P1.6/PWM4/MOSI1/PLAO[12] I/O Digital I/O Port 1.6 (P1.6).
PWM Output 4 (PWM4).
SPI1 Master Output, Slave Input (MOSI1).
Output of PLA Element 12 (PLAO[12]).
C10 P1.7/IRQ1/PWM5/CS1/PLAO[13] I/O Digital I/O Port 1.7 (P1.7).
External Interrupt 1 (IRQ1).
PWM Output 5 (PWM5).
SPI1 Chip Select 1 (CS1). When using SPI1, configure this pin as CS1.
Output of PLA Element 13 (PLAO[13]).
C5 P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8] I/O Digital I/O Port 2.0 (P2.0).
External Interrupt 2 (IRQ2).
PWM Trip (PWMTRIP).
PLA Input Clock 2 (PLACLK2).
Input to PLA Element 8 (PLAI[8]).
C4 P2.2/IRQ4/POR/CLKOUT/PLAI[10] I/O Digital I/O Port 2.2 (P2.2).
External Interrupt 4 (IRQ4).
Reset Output (POR).
Clock Output (CLKOUT).
Input to PLA Element 10 (PLAI[10]).
ADuCM320i Data Sheet
Rev. A | Page 20 of 26
Pin No. Mnemonic Type1 Description
C3 P2.3/BM I/O Digital I/O Port 2.3 (P2.3).
Boot Mode (BM). This pin determines the start-up sequence after every reset.
Pull-up is enabled at power-up.
D9 P2.4/IRQ5/ADCCONV/PWM6/PLAO[18] I/O Digital I/O Port 2.4 (P2.4).
External Interrupt 5 (IRQ5).
External Input to Start ADC Conversions (ADCCONV).
PWM Output 6 (PWM6).
Output of PLA Element 18 (PLAO[18]).
F1 P2.6/IRQ7/PLAO[20] I/O Digital I/O Port 2.6 (P2.6).
External Interrupt 7 (IRQ7).
Output of PLA Element 20 (PLAO[20]).
G1 P2.7/IRQ8/PLAO[21] I/O Digital I/O Port 2.7 (P2.7).
External Interrupt 8 (IRQ8).
Output of PLA Element 21 (PLAO[21]).
G3 P3.0/PRTADDR0/PLAI[12] I/O Digital I/O Port 3.0 (P3.0).
MDIO Port Address Bit 0 (PRTADDR0). See the digital inputs parameter in Table 1
for details.
Input to PLA Element 12 (PLAI[12]).
G2 P3.1/PRTADDR1/PLAI[13] I/O Digital I/O Port 3.1 (P3.1).
MDIO Port Address Bit 1 (PRTADDR1). See the digital inputs parameter in Table 1
for details.
Input to PLA Element 13 (PLAI[13]).
D3 P3.2/PRTADDR2/PLAI[14] I/O Digital I/O Port 3.2 (P3.2).
MDIO Port Address Bit 2 (PRTADDR2). See the digital inputs parameter in Table 1
for details.
Input to PLA Element 14 (PLAI[14]).
B3 P3.3/PRTADDR3/PLAI[15] I/O Digital I/O Port 3.3 (P3.3).
MDIO Port Address Bit 3 (PRTADDR3). See the digital inputs parameter in Table 1
for details.
Input of PLA Element 15 (PLAI[15]).
C11 P3.4/PRTADDR4/PLAO[26] I/O Digital I/O Port 3.4 (P3.4).
MDIO Port Address Bit 4 (PRTADDR4). See the digital inputs parameter in Table 1
for details.
Output of PLA Element 26 (PLAO[26]).
H1 P3.5/MCK/PLAO[27] I/O Digital I/O Port 3.5 (P3.5).
MDIO Clock (MCK) See the digital inputs parameter in Table 1 for more details.
Output of PLA Element 27 (PLAO[27]).
H3 MDIO I/O MDIO Data.
E9 SWCLK I Serial Wire Debug Clock.
E10 SWDIO I/O Serial Wire Bidirectional Data.
F11 VREF_1V2 S 1.2 V Reference. This pin cannot be used to source current externally. Connect
VREF_1V2 to AGNDx via a 470 nF capacitor.
A11 IREF AI IDAC Reference Current. This pin generates the reference current for the IDACs
and is set by an external resistor, REXT. Connect REXT from IREF to AGND4.
J6 AIN0 AI Analog Input 0.
J7 AIN1 AI Analog Input 1.
J8 AIN2 AI Analog Input 2.
K8 AIN3 AI Analog Input 3.
L8 AIN4 AI Analog Input 4.
L9
AIN5
AI
Analog Input 5. AIN5 can be the negative input for the comparator.
K9 AIN6 AI Analog Input 6. AIN6 is also the positive input for the comparator.
J9 AIN7 AI Analog Input 7.
Data Sheet ADuCM320i
Rev. A | Page 21 of 26
Pin No. Mnemonic Type1 Description
L10 AIN8/P4.2 AI/I/O Analog Input 8 (AIN8).
Digital I/O Port 4.2 (P4.2).
K10 AIN9/P4.3 AI/I/O Analog Input 9 (AIN9).
Digital I/O Port 4.3 (P4.3).
J10
AIN10
AI
Analog Input 10.
J11 AIN11/BUF_VREF2V5 AI/AO Analog Input 11 (AIN11).
Buffered 2.5 V Bias (BUF_VREF2V5). The maximum load is 1.2 mA. Connect
BUF_VREF2V5 to AGNDx via a 100 nF capacitor.
H10 AIN12/P4.4 AI/I/O Analog Input 12 (AIN12).
Digital I/O Port 4.4 (P4.4).
G10
AIN13/P4.5
AI/I/O
Analog Input 13 (AIN13).
Digital I/O Port 4.5 (P4.5).
H9 AIN14/P4.6 AI/I/O Analog Input 14 (AIN14).
Digital I/O Port 4.6 (P4.6).
G9 AIN15/P4.7 AI/I/O Analog Input 15 (AIN15).
Digital I/O Port 4.7 (P4.7).
L5 VDAC0/P5.3 AO/I/O Voltage DAC0 Output (VDAC0).
Digital I/O Port 5.3 (P5.3).
K5 VDAC1 AO Voltage DAC1 Output.
L4 VDAC2/P3.7/PLAO[29] AO/I/O Voltage DAC2 Output (VDAC2).
Digital I/O Port 3.7 (P3.7).
Output of PLA Element 29 (PLAO[29]).
K4 VDAC3/P5.0 AO/I/O Voltage DAC3 Output (VDAC3).
Digital I/O Port 5.0 (P5.0).
J4 VDAC4 AO Voltage DAC4 Output (VDAC4).
L3 VDAC5 AO Voltage DAC5 Output (VDAC5).
K3 VDAC6/P5.1 AO/I/O Voltage DAC6 Output (VDAC6).
Digital I/O Port 5.1 (P5.1).
J3 VDAC7/P5.2 AO/I/O Voltage DAC7 Output (VDAC7).
Digital I/O Port 5.2 (P5.2).
A2 IDAC0 AO IDAC0. 0 mA to 150 mA full-scale output.
A3 PVDD0 S Power for IDAC0.
B4 CDAMP0 AI Damping Capacitor 0. Connect a damping capacitor from this pin to PVDD0.
A10 IDAC1 AO IDAC1. 0 mA to 150 mA full-scale output.
A9 PVDD1 S Power for IDAC1.
B8 CDAMP1 AI Damping Capacitor 1. Connect a damping capacitor from this pin to PVDD1.
A5 IDAC2 AO IDAC2. 0 mA to 150 mA full-scale output.
A4 PVDD2 S Power for IDAC2.
B5 CDAMP2 AI Damping Capacitor 2. Connect a damping capacitor from this pin to PVDD2.
A7 IDAC3 AO IDAC3. 0 mA to 150 mA full-scale output.
A8 PVDD3 S Power for IDAC3.
B7 CDAMP3 AI Damping Capacitor 3. Connect a damping capacitor from this pin to PVDD3.
B6 PGND S Power Supply Ground for IDACs.
A6 PGND S Power Supply Ground for IDACs.
A1 IDAC_TST AI/AO Pin for IDAC Test Purposes. Leave IDAC_TST unconnected.
L2 DVDD_1V8 AO 1.8 V Digital Supply. A 470 nF capacitor to DGND1 must be connected to this
pin to stabilize the internal 1.8 V regulator that supplies flash memory and the
Arm Cortex-M3 processor.
K2 DVDD_2V5 AO 2.5 V Digital Supply. A 470 nF capacitor to IOGND3 must be connected to this
pin to stabilize the internal 2.5 V regulator that supplies the analog digital
control.
ADuCM320i Data Sheet
Rev. A | Page 22 of 26
Pin No. Mnemonic Type1 Description
F9 AVDD_REG0 AO Analog Regulator 0 Supply. A 470 nF capacitor to AGND4 must be connected to
this pin to stabilize the internal 2.5 V regulator that supplies the ADC.
F10 AVDD_REG1 AO Analog Regulator 1 Supply. Output of 2.5 V on-chip LDO regulator. A 470 nF
capacitor to AGND4 must be connected to this pin. This regulator supplies the
IDACs.
L1 DGND1 S Digital Ground 1 for DVDD_1V8.
D10 DGND2 S Digital Ground 2. Connect to DGND1.
B1 IOVDD1 S 3.3 V GPIO Supply.
D11 IOVDD2 S 3.3 V GPIO Supply and Interdie Communications.
J1 IOVDD3 S 3.3 V GPIO Supply.
C1 IOGND1 S Ground for IOVDD1.
E11 IOGND2 S Ground for IOVDD2.
K1 IOGND3 S Ground for IOVDD3 and Interdie Communications.
J5 AGND1 S Analog Ground for VDD1.
K7 AGND2 S ESD Ground for Pad Ring.
L7 AGND3 S Ground for AVDD3.
H11 AGND4 S Ground for AVDD4, AVDD_REG0, and AVDD_REG1.
K6 VDD1 S 3.3 V Supply for Digital Die.
L6 AVDD3 S VDAC and IDAC Supply (3.3 V).
G11 AVDD4 S ADC Supply (3.3 V).
L11 ADC_REFN AO/A Negative Decoupling Capacitor Connection for ADC Reference Buffer. Connect
this pin to AGND4.
K11 ADC_REFP AO/A Positive Decoupling Capacitor Connection for ADC Reference Buffer. Connect
this pin to a 4.7 µF capacitor to the ADC_REFN pin. ADC_REFP can be overdriven
by an external reference.
H2 XTALO O Output from the Crystal Oscillator Inverter. When not using an external crystal,
leave XTALO unconnected.
J2 XTALI I Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator
Circuits. When not using an external crystal, connect XTALI to DGNDx.
1 I is digital input, O is digital output, S is supply, AI is analog input, and AO is analog output.
Data Sheet ADuCM320i
Rev. A | Page 23 of 26
TYPICAL PERFORMANCE CHARACTERISTICS
25000
30000
35000
40000
45000
50000
–60 –40 –20 020 40 60 80 100 120
ADC CODE ( LSB 16)
TEMPERAT URE ( °C)
DEVICE 1
DEVICE 2
DEVICE 3
DEVICE 4
DEVICE 5
13422-009
Figure 9. Typical Temperature Measurement (ADC Code) vs. Internal
Temperature (VDD = 3.3 V, 50 kSPS)
–10
0
10
20
30
40
50
60
70
80
90
00.5 1.0 1.5 2.0 2.5 3.0 3.5
PIN CURRE NT A)
PIN VOLTAGE (V)
MAX PULL-UP
MIN PULL-UP
MIN PULL-DOWN
MAX PULL-DOWN
13422-010
Figure 10. Typical Pull-Up/Pull-Down Pin Current vs. Pin Voltage
(VDD = 3.3 V, 25°C)
0
50
100
150
200
250
300
350
025 50 75 100 125 150
IDAC HEADROO M ( mV )
IDAC O UTPUT CURRENT ( mA)
IDAC2
IDAC3
IDAC0
IDAC1
13422-011
Figure 11. Typical IDAC Headroom vs. IDAC Output Current
–70
–60
–50
–40
–30
–20
–10
0
100 1k 10k 100k
PVDD AC PSRR (dB)
FREQUENCY (Hz)
IDAC0
IDAC1
IDAC2
IDAC3
13422-012
Figure 12. Typical PVDD AC PSRR vs. Frequency
0
0.5
1.0
1.5
2.0
2.5
3.0
2 6 10 14 1604812
OUTPUT VOLTAGE (V)
LO AD CURRE NT (mA)
VOH MAX
VOH MIN
VOL MIN
VOL MAX
13422-013
Figure 13. Typical Output Voltage vs. Load Current
TIME (Not to Scale)
3.6
40ms min
VDD1 (V )
VDD1 MUS T BE ABOVE 3V
FOR AT LEAST 40ms TO
COMPLETE PO R
AFTER 40ms VDD1 M US T
STAY ABOV E 2.9V INCLUDING
NOI S E E X CURS IO NS
3.0
2.9
13422-014
Figure 14. VDD1 Power-On Requirements
ADuCM320i Data Sheet
Rev. A | Page 24 of 26
APPLICATIONS INFORMATION
RECOMMENDED CIRCUIT AND COMPONENT
VALUES
Figure 15 shows a typical connection diagram for the
ADuCM320i.
Supplies and regulators must be adequately decoupled with
capacitors connected between the AVDDx, PVDDx, DVDD_x,
AVDD_REGx, IOVDDx, and VDD1 balls and their associated
GND balls (AGNDx, PGND, IOGNDx, and DGNDx). Table 10
indicates which ground balls are paired with which supply balls.
There are four digital supply balls, IOVDD1, IOVDD2, IOVDD3,
and VDD1. Decouple these balls with a 100 nF capacitor placed
as near as possible to each of the four balls and their associated
GND balls (IOGNDx and AGND1, respectively). In addition,
place a 10 μF capacitor conveniently near to these balls.
Similarly, the analog supply pins, AVDD3 and AVDD4, each
require a 100 nF capacitor placed as near as possible to each ball
and its associated AGNDx ball, and place a 10 μF capacitor
conveniently near to these balls.
The IDACs source their output currents from the PVDDx
supply balls. Each PVDDx supply ball must have a 100 nF
capacitor near to each ball and their associated GND balls
(PGND). In addition, place at least one 10 μF capacitor at the
source of the PVDDx supply.
The IDAC output filters depend on a 10 nF capacitor being
placed between the CDAMPx and PVDDx pins.
The ADC reference requires a 4.7 μF capacitor placed between
ADC_REFP and ADC_REFN and located as near as possible to
each ball. ADC_REFN must be connected directly to AGND4.
The ADuCM320i contains four internal regulators. These
regulators require external decoupling capacitors. The
DVDD_1V8 and DVDD_2V5 balls each require a 470 nF
capacitor to DGND1 and IOGND3, respectively. AVDD_REG0
and AVDD_REG1 each require a decoupling capacitor to
AGND4.
To generate an accurate and low drift reference current, connect
the IREF ball to AGND4 via a low ppm 3.16 kΩ resistor.
Take care in the layout to ensure that currents flowing from the
ground end of each decoupling capacitor to its associated
ground ball share as little track as possible with other ground
currents on the printed circuit board.
Data Sheet ADuCM320i
Rev. A | Page 25 of 26
G11
L6
B6
PGND
RESET RESET
ADC_REFP
GND
DGND
SWDIO
Tx
SWCLK
AVDD
AVDD3
AVDD4
VREF_1V2
IREF
ADC_REFN
AVDD_REG0
AVDD_REG1
AGND1
AGND3
AGND2
F9
L11
K11
A11
F11 H11
L7
K7
J5
F10
AGND4
3.16k
0.47µF 4.7µF 0.47µF 0.47µF
B2
C1 E11
P1.1/SOUT
J2
SWDIO
H2
A3
A9
12pF
10nF
A6
PGND
L1 D10
ADuCM320i
CDAMP2
CDAMP1
CDAMP0
PVDD3
PVDD2
PVDD1
PVDD0
XTALO
XTALI
RESET
RESET
A4
A8
B4
B8
B5
VDD1
CDAMP3
B7
SWCLK
P1.0/SIN/ECLKIN/PLAI[4]
P2.3/BM
K1
IOVDD1
IOVDD3
IOVDD2
VDD1
DVDD_1V8
DVDD_2V5
DGND1
DGND2
IOGND1
IOGND2
IOGND3
10k
PVDD
10nF
10nF
10nF
DVDD VDD1
0.47µF 0.47µF
VDD1
10k
10µF
10µF 0.1µF
10kΩ
1.6Ω
VIN VOUT
EN/UVLO
GND DGND
AVDD
DVDD
AGND AGND
0.1µF 10µF
ADP7102ARDZ3.3
0.1µF
VIN
SENSE/ADJ
PG
0.1µF
1.6Ω
VDD1
DGND DGND1
10µF
VIN VOUT
EN
GND
ADP1741ACPZ
SS
EP
10µF
30kΩ
10kΩ
10µF
+2.5V
10µF ADJ
PVDD
12pF
PGND
PGND
PGND
DGND
NC
DVDD
AGND
0.1µF
AGND1
L2
K6
J1
D11
B1 K2
E10
B10
E9
B9
C3
INTERF ACE BOARD CONNE CTOR
Rx
13422-015
Figure 15. Recommended Circuit and Component Values
ADuCM320i Data Sheet
Rev. A | Page 26 of 26
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
6.10
6.00 SQ
5.90
5.00 REF
SQ
0.35
0.30
0.25
04-02-2013-A
COPLANARITY
0.08
A
B
C
D
E
F
G
H
J
K
L
7632 1
54
BALL DIAM E TER
0.50
BSC
0.50
REF
DETAIL A
A1 BALL
CORNER
A1 BALL
CORNER
DETAIL A
BOTTOM VIEW
TOP VIEW
SEATING
PLANE
1.200
1.083
1.000
89
1011
COMPLIANT TO JEDE C S TANDARDS MO - 195- AC
WITH THE EXCEPTION TO BALL COUNT.
0.223 NO M
0.173 M IN
0.93
0.86
0.79
Figure 16. 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-96-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description
Package
Option
Ordering
Quantity
ADUCM320BBCZI 40°C to +105°C 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-96-2 429
ADUCM320BBCZI-RL 40°C to +105°C 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-96-2 2,500
EVAL-ADUCM320IQSPZ Evaluation Board with QuickStart Development System 1
1 Z = RoHS Compliant Part.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©20152018 Analog Devices, Inc. All rights reserved. Trademarks and
registered
trademarks are the property of their
respective owners.
D13422-0-4/18(A)
www.analog.com/ADuCM320i