www.irf.com 1
05/10/06
IRGP4065PbF
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
l Low VCE(on) and Energy per Pulse (EPULSETM)
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
PDP TRENCH IGBT
VCE min 300 V
VCE(ON) typ. @ IC = 70A 1.75 V
IRP max @ TC= 25°C c205 A
TJ max 150 °C
Key Parameters
GC E
Gate Collector Emitter
GCE
TO-247AC
C
E
C
G
n-channel
Absolute Maximum Ratings
Parameter Units
VGE Gate-to-Emitter Voltage V
IC @ TC = 25°C Continuous Collector Current, VGE @ 15V A
IC @ TC = 100°C Continuous Collector, VGE @ 15V
IRP @ TC = 25°C Repetitive Peak Current c
PD @TC = 25°C Power Dissipation W
PD @TC = 100°C Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case d––– 0.80
RθCS Case-to-Sink (flat, greased surface) 0.24 ––– °C/W
RθJA Junction-to-Ambient (typical socket mount) ––– 40
Max.
40
70
±30
205
300
-40 to + 150
10lbxin (1.1Nxm)
178
71
1.4
PD - 97208
IRGP4065PbF
2www.irf.com
Notes:
Half sine wave with duty cycle = 0.25, ton=1µsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width 400µs; duty cycle 2%.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVCES Collector-to-Emitter Breakdown Volta
ge
300 ––– ––– V
∆ΒVCES/TJ Breakdown Voltage Temp. Coefficient ––– 0.23 ––– V/°C
––– 1.20 1.40
––– 1.35 –––
––– 1.75 2.10 V
––– 2.35 –––
––– 2.00 –––
VGE(th) Gate Threshold Voltage 2.6 ––– 5.0 V
VGE(th)/TJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
ICES Collector-to-Emitter Leakage Current ––– 2.0 25 µA
––– 50 –––
IGES Gate-to-Emitter Forward Leakage ––– ––– 100 nA
Gate-to-Emitter Reverse Leakage ––– ––– -100
gfe Forward Transconductance ––– 26 ––– S
QgTotal Gate Charge ––– 62 ––– nC
Qgc Gate-to-Collector Charge ––– 20 –––
tst Shoot Through Blocking Time 100 ––– ––– ns
EPULSE Energy per Pulse µJ
Ciss Input Capacitance ––– 2200 –––
Coss Output Capacitance ––– 110 ––– pF
Crss Reverse Transfer Capacitance ––– 55 –––
LCInternal Collector Inductance ––– 5.0 ––– Between lead,
nH 6mm (0.25in.)
LEInternal Emitter Inductance ––– 13 ––– from package
Static Collector-to-Emitter Voltage
VCE(on)
VGE = 15V, ICE = 70A, TJ = 150°C
––– 875 –––
VCE = VGE, ICE = 500µA
VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
––– 975 –––
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15Ve
VCC = 240V, VGE = 15V, RG= 5.1
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
and center of die contact
VGE = 30V
VGE = -30V
ƒ = 1.0MHz, See Fig.13
Conditions
VGE = 0V, ICE = 1 mA
Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 120A e
VGE = 15V, ICE = 25A e
VGE = 15V, ICE = 70A e
VGE = 15V, ICE = 40A e
VCE = 30V
VGE = 0V
L = 220nH, C= 0.40µF, VGE = 15V
IRGP4065PbF
www.irf.com 3
Fig 1. Typical Output Characteristics @ 25°C
Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C
Fig 2. Typical Output Characteristics @ 75°C
Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage
0246810121416
VCE (V)
0
40
80
120
160
200
240
280
320
360
ICE (A)
TOP VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
BOTTOM VGE = 6.0V
0246810121416
VCE (V)
0
40
80
120
160
200
240
280
ICE (A)
TOP VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
BOTTOM VGE = 6.0V
0 5 10 15 20
VGE (V)
0
5
10
15
20
VCE (V)
TJ = 25°C
TJ = 150°C
IC = 25A
0 5 10 15 20
VGE, Gate-to-Emitter Voltage (V)
0
100
200
300
400
500
600
ICE, Collector-to-Emitter Current (A)
TJ = 25°C
TJ = 125°C
0246810121416
VCE (V)
0
40
80
120
160
200
ICE (A)
TOP VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
BOTTOM VGE = 6.0V
TOP VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
BOTTOM VGE = 6.0V
0246810121416
VCE (V)
0
40
80
120
160
200
ICE (A)
IRGP4065PbF
4www.irf.com
Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
Fig 9. Typical EPULSE vs. Collector Current
Fig 11. EPULSE vs. Temperature Fig 12. Forrward Bias Safe Operating Area
25 50 75 100 125 150
TJ, Temperature (ºC)
200
400
600
800
1000
1200
1400
Energy per Pulse (µJ)
VCC
= 240V
L = 220nH
t = 1µs half sine C= 0.4µF
C= 0.3µF
C= 0.2µF
150 160 170 180 190 200 210 220 230 240
VCE, Collector-to-Emitter Voltage (V)
200
300
400
500
600
700
800
900
1000
Energy per Pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
160 170 180 190 200 210 220 230
IC, Peak Collector Current (A)
400
500
600
700
800
900
1000
Energy per Pulse (µJ)
VCC = 240V
L = 220nH
C = variable 100°C
25°C
1 10 100 1000
VCE (V)
1
10
100
1000
IC (A)
OPERATION IN THIS AREA
LIMITED BY VCE(on)
1msec
10µsec
100µsec
0 25 50 75 100 125 150
TC, Case Temperature (°C)
0
10
20
30
40
50
60
70
80
IC, Collector Current (A)
25 50 75 100 125 150
Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
220
Repetitive Peak Current (A)
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
IRGP4065PbF
www.irf.com 5
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.146 0.000131
0.382 0.001707
0.271 0.014532
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci τi/Ri
Ci= τi/Ri
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
050 100 150 200 250 300
VCE, Collector-toEmitter-Voltage(V)
10
100
1000
10000
100000
Capacitance (pF)
Cies
Coes
Cres
VGS = 0V, f = 1 MHZ
Cies = Cge + Cgd, C ce SHORTED
Cres = C gc
Coes = Cce + Cgc
0 1020304050607080
Q G, Total Gate Charge (nC)
0
5
10
15
20
25
VGE, Gate-to-Emitter Voltage (V)
IC = 25A
VCE = 240V
VCE = 200V
VCE = 150V
IRGP4065PbF
6www.irf.com
Fig 16a. tst and EPULSE Test Circuit Fig 16b. tst Test Waveforms
Fig 16c. EPULSE Test Waveforms
1K
VCC
DUT
0
L
Fig. 17 - Gate Charge Circuit (turn-off)
DRIVER
DUT
L
C
VCC
RG
RG
B
A
Ipulse
Energy
V
CE
I
C
Current
PULSE A
PULSE B
t
ST
IRGP4065PbF
www.irf.com 7
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
TO-247AC package is not recommended for Surface Mount Application.
TO-247AC Part Marking Information
TO-247AC Package Outline Dimensions are shown in millimeters (inches)
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((.
/27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/(
:,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/