_______________General Description
The MAX336/MAX337 are monolithic, CMOS analog
multiplexers (muxes). The 16-channel MAX336 is
designed to connect one of 16 inputs to a common out-
put by control of a 4-bit binary address. The dual,
8-channel MAX337 is designed to connect one of eight
inputs to a common output by control of a 3-bit binary
address. Both devices can be used as either a mux or
a demux. On-resistance is 400(max), and the devices
conduct current equally well in both directions.
These muxes feature extremely low off leakages (less
than 20pA at +25°C) and on-channel leakages (less than
50pA at +25°C). The new design offers guaranteed low
charge injection (3.5pC typical) and electrostatic dis-
charge (ESD) protection greater than 2000V, per method
3015.7. These improved muxes are pin-compatible
upgrades for the industry-standard DG506 and DG507.
The MAX336/MAX337 operate from a single +4.5V to
+30V supply or from dual ±4.5V to ±20V supplies. All
control inputs (whether address or enable) are TTL
compatible (0.8V to 2.4V) over the full specified temper-
ature range and over the ±4.5V to ±18V supply range.
________________________Applications
Precision Data Acquisition
Precision Signal Routing
Test Equipment
____________________________Features
<400(max) On-Resistance
<500ns Transition Time
<10On-Resistance Match
<20pA NO-Off Leakage Current at +25°C
3.5pC Charge Injection
+4.5V to +30V Single Supply
±4.5V to ±20V Dual Supplies
Plug-In Upgrade for Industry-Standard
DG506/DG507
Bidirectional Rail-to-Rail®Signal Handling
TTL/CMOS-Logic Compatible
>2000V ESD Protection, per Method 3015.7
______________Ordering Information
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
________________________________________________________________
Maxim Integrated Products
1
_____________________Pin Configurations/Functional Diagrams/Truth Tables
19-1193; Rev 0; 4/97
PART
MAX336CPI
MAX336CWI 0°C to +70°C
0°C to +70°C
TEMP. RANGE PIN-PACKAGE
28 Plastic DIP
28 Wide SO
Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
MAX336CAI 0°C to +70°C 28 SSOP
MAX336C/D 0°C to +70°C Dice*
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1V+
2
3
4
5
6
7
8
9
10
11
12
13
14
COM
V-
NO8
NO7
NO6
NO5
A2
NO4
NO3
NO2
NO1
EN
A0
A1
A3
N.C.
GND
NO9
NO10
NO11
N.C. = NO INTERNAL CONNECTION
NO12
NO13
NO14
NO15
NO16
N.C.
N.C.
MAX336
DIP/SO/SSOP
TOP VIEW
CMOS DECODERS/DRIVERS
COM
NO1
NO2
NO3
NO4
NO5
NO6
NO7
NO8
NO9
NO10
NO11
NO12
NO13
NO14
NO15
NO16
A0
MAX336 16-CHANNEL SINGLE-ENDED MULTIPLEXER
A1 A2 A3 EN
V+ V- GND
A3 A1 A0 EN ON
SWITCH
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NONE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
MAX336
LOGIC “0” = VAL 0.8V, LOGIC “1” = VAH 2.4V
Continued at end of data sheet.
TA= TMIN
to TMAX
TA= TMIN
to TMAX
TA= TMIN
to TMAX
TA= TMIN
to TMAX
VNO = +10V,
VCOM = ±10V,
VEN = 0V
TA= +25°C
VCOM = ±10V,
VNO = ±10V,
sequence
each switch
on
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—Dual Supplies
(V+ = +15V, V- = -15V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA= TMIN to TMAX, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Voltage Referenced to V-
V+ ............................................................................-0.3V, 44V
GND.........................................................................-0.3V, 25V
Digital Inputs, A_, EN_, NO, COM
(Note 1).............................................(V- - 0.3V) to (V+ + 0.3V)
or 30mA (whichever occurs first)
Continuous Current (any terminal)......................................30mA
Peak Current, NO or COM
(pulsed at 1ms, 10% duty cycle max) ..........................100mA
Continuous Power Dissipation (TA= +70°C)
Plastic DIP (derate 14.29mW/°C above +70°C) ............1.14W
Wide SO (derate 12.50mW/°C above +70°C).................1.00W
SSOP (derate 9.52mW/°C above +70°C) .....................762mW
CERDIP (derate 16.67mW/°C above +70°C)..................1.33W
Operating Temperature Ranges
MAX336C_I/MAX337C_I......................................0°C to +70°C
MAX336E_I/MAX337E_I....................................-40°C to +85°C
MAX336MJI/MAX337MJI................................-55°C to +125°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10sec).............................+300°C
Note 1: Signals on any terminal exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current rating.
15TA= TMIN to TMAX
M
C, E
M
C, E
M
C, E
M
C, E
M
C, E
MAX336
MAX337
MAX336
MAX337
TA= TMIN
to TMAX
TA= +25°C
TA= +25°C
TA= +25°C
TA= +25°C
TA= +25°C -0.02 0.001 0.02
TA= TMIN to TMAX
TA= +25°C
(Note 3)
On-Resistance Matching
Between Channels RON 510
INO = 0.2mA,
VCOM = ±10V (Note 4)
Analog Signal Range VNO,
VCOM -15 15 V
PARAMETER SYMBOL MIN TYP MAX
(Note 2) UNITS
On-Resistance RON 500
-1.25 1.25
NO-Off Leakage Current
(Note 5) INO(OFF) -20 20 nA
-0.05 0.05
-6.5 6.5
220 400
-80 80
-0.05 0.05
-3.25 3.25
COM-Off Leakage Current
(Note 5) ICOM(OFF)
-40 40
nA
-0.05 0.05
-6.5 6.5
-80 80
-0.05 0.05
-3.25 3.25
COM-On Leakage Current
(Note 5) ICOM(ON)
-40 40
nA
CONDITIONS
VNO = ±10V,
VCOM = +10V,
VEN = 0V
INO = 0.2mA,
VCOM = ±10V
VCOM = +10V,
VNO = ±10V,
VEN = 0V
SWITCH
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
(V+ = +15V, V- = -15V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA= TMIN to TMAX, unless otherwise noted.)
Off Isolation (Note 6) dB-82VISO
3.5 10QCharge Injection (Note 3)
100 500
nstON(EN)
Enable Turn-On Time 250 500
10 50tOPEN
Break-Before-Make Interval
µA-1.0 1.0IAL
Input Current with
Input Voltage Low
µA-1.0 0.001 1.0IAH
Input Current with
Input Voltage High
µA
-10 10
I-Negative Supply Current -1 1
1100
I+Positive Supply Current 400 700
V±4.5 ±20Power-Supply Range -1 0.01 1
µA
-10 10
UNITS
MIN TYP MAX
(Note 2)
SYMBOLPARAMETER
Crosstalk Between Channels VCT -86 dB
Logic Input Capacitance CIN 2 pF
NO-Off Capacitance CNO(OFF) 2pF
20
COM-Off Capacitance CCOM(OFF) 10 pF
22
COM-On Capacitance CCOM(ON) 12 pF
VEN = 0V, RL= 1k, f = 100kHz, TA= +25°C
VEN = 0V or 2.4V, VA= 0V
CL= 100pF, VNO = 0V, RS= 0, Figure 6,
TA= +25°C
VA= 2.4V or 15V
TA= +25°C
TA= TMIN to TMAX
TA= +25°C
TA= +25°C
Figure 4, TA= +25°C
TA= TMIN to TMAX
TA= +25°C
TA= +25°C
TA= TMIN to TMAX
CONDITIONS
VEN = 2.4V, f = 100kHz, VGEN = 1Vp-p,
RL= 1k, Figure 7, TA= +25°C
f = 1MHz, TA= +25°C
f = 1MHz, VEN = VNO = 0V, Figure 8, TA= +25°C
MAX336
MAX336
Figure 3
VEN = 0V or 2.4V;
VA(ALL) = 0V, 2.4V, or 5V
VEN = 2.4V,
VA(ALL) = 2.4V
VEN = VA= 0V
f = 1MHz, VEN = 0.8V,
VCOM = 0V, Figure 8,
TA= +25°C
f = 1MHz, VEN = 2.4V,
VCOM = 0V, Figure 8,
TA= +25°C
ns200 500tTRANS
Transition Time Figure 2, TA= +25°C
pC
tOFF(EN)
Enable Turn-Off Time Figure 3
INPUT
SUPPLY
DYNAMIC
MAX337
MAX337
ns
TA= TMIN to TMAX
TA= TMIN to TMAX ns
750
750
CONDITIONS
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
4 _______________________________________________________________________________________
(Note 3)
pC5.0 10Q
Charge Injection
(Note 3)
ns110 500tOFF(EN)
Enable Turn-Off Time
(Note 3)
V0 12
VNO,
VCOM
Analog Signal Range
ns350 600tON(EN)
Enable Turn-On Time
(Note 3)
ns350 600tTRANS
Transition Time (Note 3)
460 700RON
On-Resistance
UNITS
MIN TYP MAX
(Note 2)
SYMBOLPARAMETER
ELECTRICAL CHARACTERISTICS—Single Supply
(V+ = +12V, V- = 0V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA= TMIN to TMAX, unless otherwise noted.)
Note 2: The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used in
this data sheet.
Note 3: Guaranteed by design.
Note 4: RON = RON(MAX) - RON(MIN).
Note 5: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at TA = +25°C.
Note 6: Worst-case isolation is on channel 4 because of its proximity to the drain pin. Off isolation = 20log VCOM/VNO, where
VCOM = output and VNO = input to off switch.
INO = 0.2mA, VCOM = 3V or 10V, TA= +25°C
VNO_ = ±5V, VIN = 2.4V, Figure 1, TA= +25°C
VINH = 2.4V, VINL = 0V, VNO1 = 5V, Figure 3,
TA= +25°C
VINH = 2.4V, VINL = 0V, VNO1 = 5V, Figure 3,
TA= +25°C
CL= 100pF, VNO = 0V, RS= 0, TA= +25°C
SWITCH
DYNAMIC
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.1 10 100
FREQUENCY RESPONSE 225
-225
-90
-45
0
45
-135
-180
90
135
180
MAX1336/337toc01
FREQUENCY (MHz)
LOSS (dB)
PHASE (DEGREES)
1
50 IN AND OUT
V+ = +15V
V- = -15V
ON PHASE
OFF LOSS
ON LOSS
100
0.001 10 10k1k100 100k
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
0.01
MAX336/337 TOC02
FREQUENCY (Hz)
THD (%)
1
0.1
10
V+ = +15V
V- = -15V
SIGNAL = 5Vp-p
600 IN AND OUT
100
10
1
0.1
0.01
0.0001
0.001
0.00001
MAX336/MAX337 TOC-03a
VIN (V)
30 6 9 12 15
SUPPLY CURRENT
vs. INPUT VOLTAGE
I+ (µA)
CURRENT SHOWN IS FOR DRIVING
ONE INPUT; TOTAL V+ CURRENT IS
MULTIPLIED BY NUMBER OF LOGIC
INPUTS DRIVEN
__________________________________________Typical Operating Characteristics
(TA= +25°C, unless otherwise noted.)
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________
5
700
600
500
400
300
100
200
0
MAX336/MAX337 TOC-06
VCOM (V)
-10-15-20 -5 0 5 10 15 20
ON-RESISTANCE vs. VCOM
RON ()
V± = ±5V
V± = ±10V
V± = ±20V
V± = ±15V
1800
1600
1400
1200
1000
800
400
200
600
0
MAX336/MAX337 TOC-04
VCOM (V)
420 6 8 10 12 14 16 18 20
ON-RESISTANCE vs. VCOM
(SINGLE SUPPLY)
RON ()
V+ = +5V
V+ = +9V V+ = +12V
V+ = +20V
V- = 0V
V+ = +15V
500
450
400
350
300
250
200
50
150
100
0
MAX336/MAX337 TOC-07
VCOM (V)
420 6 8 1210 14
ON-RESISTANCE vs. VCOM OVER
TEMPERATURE (SINGLE SUPPLY)
RON ()
TA = -40°C
TA = +125°C
TA = +85°C
TA = +25°C
10
8
6
4
2
0
-4
-2
-6
MAX336/MAX337 TOC-10
VCOM (V)
-10-15 -5 0 5 10 15
CHARGE INJECTION
vs. VCOM
Qj (pC)
V+ = +12V
V- = 0V
V+ = +15V
V- = -15V
10
0.0001 -55 125
OFF LEAKAGE vs. TEMPERATURE
1
MAX336/337 TOC-08
TEMPERATURE (°C)
OFF LEAKAGE (nA)
25
0.01
0.001
-35 -15 65
0.1
100
1000
45 85 105
5
INO (OFF)
ICOM (OFF)
V+ = +15V
V- = -15V
10
0.0001 -55 125
ON LEAKAGE vs. TEMPERATURE
1
MAX3336/337 TOC-09
TEMPERATURE (°C)
ON LEAKAGE (nA)
25
0.01
0.001
-35 -15 65
0.1
100
1000
45 85 105
5
ICOM (ON)
V+ = +15V
V- = -15V
100
0.001 -55 125
SUPPLY CURRENT vs. TEMPERATURE
10
MAX336/337 TOC-11
TEMPERATURE (°C)
I+, I- (µA)
25
0.1
0.01
-35 -15 65
1
45 85 105
5
1000
I-, I+, VA = 0V
I+, VA(ALL) = 2.4V
1000
900
800
700
600
500
400
100
300
200
0
MAX336/MAX337 TOC-12
SUPPLY VOLTAGE (V)
76 8 9 105 11 12 1413 15
TRANSITION TIME
vs. POWER SUPPLIES
tTRANS (ns)
SINGLE SUPPLY
DUAL SUPPLIES
____________________________Typical Operating Characteristics (continued)
(TA= +25°C, unless otherwise noted.)
__________Applications Information
Operation with Supply Voltages
Other than 15V
Using supply voltages less than ±15V will reduce the
analog signal range. The MAX336/MAX337 switches
operate with ±4.5V to ±20V bipolar supplies or with a
+4.5V to +30V single supply. Connect V- to GND when
operating with a single supply. Both device types can
also operate with unbalanced supplies such as +24V
and -5V. The Typical Operating Characteristics graphs
show typical on-resistance with 20V, 15V, 10V, and 5V
supplies. (Switching times increase by a factor of two
or more for operation at 5V.)
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maxi-
mum ratings, because stresses beyond the listed rat-
ings may cause permanent damage to the devices.
Always sequence V+ on first, then V-, followed by the
logic inputs NO and COM. If power-supply sequencing
is not possible, add two small signal diodes in series
with supply pins for overvoltage protection (Figure 1).
Adding diodes reduces the analog signal range to 1V
below V+ and 1V above V-, but does not significantly
affect the devices’ low switch resistance and low leak-
age characteristics. Device operation is unchanged,
and the difference between V+ and V- should not
exceed 44V.
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
6 _______________________________________________________________________________________
______________________________________________________________Pin Description
Vg
NO COM
V-
V+
MAX336
MAX337
Figure 1. Overvoltage Protection Using External Blocking
Diodes
3, 13, 14
PIN
27 27 V-
MAX336 MAX337 NAME
Negative Supply-Voltage Input. Connect to GND for single-supply operation.
FUNCTION
1
28
V+
Positive Supply-Voltage Input
2, 3, 13 1N.C.
COM
No Internal Connection
2 COMB
Analog Signal Output* (bidirectional)
Analog Signal B Output* (bidirectional)
N.C.
No Internal Connection
28
4–11 NO8B–NO1B
COMA
Analog Signal B Inputs* (bidirectional)
12 12 GND
Analog Signal A Output* (bidirectional)
Logic Ground
14–17 A3–A0 Logic Address Inputs
15, 16, 17 A2, A1, A0 Logic Address Inputs
18 18 EN Logic Enable Input
19–26 NO1–NO8 Analog Signal Inputs* (bidirectional)
19–26 NO1A–NO8A Analog Signal A Inputs* (bidirectional)
* Analog signal inputs and outputs are names of convenience only; they are identical and interchangeable.
4–11 NO16-NO9 Analog Signal Inputs* (bidirectional)
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 7
______________________________________________Test Circuits/Timing Diagrams
50%
tTRANS tTRANS
tR < 20ns
tF < 20ns
VOUT
+3V
0V
VNO1
0V
VNO16
LOGIC
INPUT
VA
SWITCH
OUTPUT
+15V
VOUT
-15V
GND
V+
A1
V-
A2
A0
EN
NO1
NO2–NO15
NO16
COM
±5V
5V
±
±5V
5V
±
50
+2.4V
MAX336
1k 10pF
+15V
VOUT
-15V
GND
V+
A0
A2
V-
A3
A1
EN
NO1B
NO1A–NO8A,
COMA
NO8B
COMB
MAX337
1k 10pF
90%
90%
VEN
50
+2.4V
VEN
50%
tOFF(EN)
tR < 20ns
tF < 20ns
+3V
0V
0V
VOUT
LOGIC
INPUT
VEN
SWITCH
OUTPUT
VOUT
+15V
VOUT
-15V
GND
V+
A1
V-
A0
A2
EN NO1
NO2–NO16
COM
±5V
50
MAX336
1k 10pF
A3
90%
10%
tON(EN)
+15V
VOUT
-15V
GND
V+
A1
V-
A0
EN NO1B
NO1A–NO8A,
NO2B–NO8B,
COMA
COMB
±5V
50
MAX337
1k 10pF
A2
VEN
VEN
Figure 2. Transition Time
Figure 3. Enable Switching Time
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
8 _______________________________________________________________________________________
50%
tOPEN
tR < 20ns
tF < 20ns
VOUT
+3V
0V
LOGIC
INPUT
SWITCH
OUTPUT
+15V
VOUT
-15V
GND
V+
A0
V-
A2
A3
EN
NO1–NO16
COM
+5V
50
MAX336
1k 10pF
A1
80%
+2.4V
0V
VOUT
+3V
0V
ENABLE
+15V
VOUT
-15V
GND
V+
A1
V-
A0
A2
A3
EN
COM
MAX336
CL = 100pF VOUT
NO1–NO16
CHANNEL
SELECT
+2.4V
OR
+0.8V
RS
VS
ONOFF OFF
VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER
ERROR Q WHEN THE CHANNEL TURNS OFF.
VCTE = CL = VOUT
_________________________________Test Circuits/Timing Diagrams (continued)
Figure 4. Break-Before-Make Interval
Figure 5. Charge Injection (VCTE)
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 9
+15V
+2.4V
VOUT
-15V
GND
V+EN
A2
V-
A0
A3
NO16
COM
MAX336
NO2
VIN
10nF
50
OFF ISOLATION = 20log VOUT
VIN
10nF
A1
RS = 50
+15V
+2.4V
-15V
GND
V+EN
V-
A0
A2
NO8B
COMB COMA VOUT
MAX337
NO1B
10nF
50
50
CROSSTALK = 20log
REPEAT TEST WITH OTHER SWITCH.
VOUT
VIN
10nF
A1
NO1A
RS = 50
+15V
-15V
GND
V+
A2
V-
A3
A1
A0
NO16
MAX336
CHANNEL
SELECT
NO1
COM
EN
f = 1MHz
CAPACITANCE
METER
_________________________________Test Circuits/Timing Diagrams (continued)
Figure 6. Off Isolation Figure 7. Crosstalk
Figure 8. NO/COM Capacitance
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
10 ______________________________________________________________________________________
________Pin Configurations/Functional Diagrams/Truth Tables (continued)
CMOS DECODERS/DRIVERS
COMA
NO1A
NO2A
NO3A
NO4A
NO5A
NO6A
NO7A
NO8A
NO1B
NO2B
NO3B
NO4B
NO5B
NO6B
NO7B
NO8B
MAX337 8-CHANNEL DIFFERENTIAL MULTIPLEXER
A0 A1 A2 EN
V+ V- GND
COMB
A2 A1 A0 EN ON
SWITCH
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
NONE
1
2
3
4
5
6
7
8
LOGIC “0” = VAL 0.8V, LOGIC “1” = VAH 2.4V
MAX337
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
V+
2
3
4
5
6
7
8
9
10
11
12
13
14
COMA
V-
NO8A
NO7A
NO6A
NO5A
A2
NO4A
NO3A
NO2A
NO1A
EN
A0
A1
N.C.
N.C.
GND
NO1B
NO2B
NO3B
NO4B
NO5B
NO6B
NO7B
NO8B
N.C.
COMB
MAX337
DIP/SO/SSOP
TOP VIEW
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
______________________________________________________________________________________ 11
__Ordering Information (continued)
N.C
(COMB)
GND A2 A1 A0 EN
A3
(N.C.)
0.139"
(3.53mm)
0.092"
(2.34mm)
V+ COM
(COMA) V-
N09
(N01B)
N010
(N02B)
N011
(N03B)
N012
(N04B)
N013
(N05B)
N014
(N06B)
N015
(N07B)
N016
(N08B)
N08
(N08A)
N07
(N07A)
N06
(N06A)
N05
(N05A)
N04
(N04A)
N03
(N03A)
N02
(N02A)
N01
(N01A)
( ) ARE FOR MAX337
TRANSISTOR COUNT: 466
BACKSIDE IS V+
SUBSTRATE CONNECTED TO V+
28 Wide SO 0°C to +70°CMAX337CWI 28 Plastic DIP0°C to +70°C
MAX337CPI
28 Plastic DIP-40°C to +85°CMAX337EPI Dice*0°C to +70°CMAX337C/D 28 SSOP0°C to +70°CMAX337CAI
28 Wide SO-40°C to +85°CMAX337EWI 28 SSOP-40°C to +85°CMAX337EAI 28 CERDIP**-40°C to +85°CMAX337EJI 28 CERDIP**-55°C to +125°CMAX337MJI
PART TEMP. RANGE PIN-PACKAGE
MAX336EPI -40°C to +85°C 28 Plastic DIP
MAX336EWI -40°C to +85°C 28 Wide SO
MAX336EAI -40°C to +85°C 28 SSOP
28 CERDIP**
28 CERDIP**-40°C to +85°C
-55°C to +125°CMAX336MJI
MAX336EJI
___________________Chip Topography
*Contact factory for dice specifications.
** Contact factory for availability.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX336/MAX337
16-Channel/Dual 8-Channel,
Low-Leakage, CMOS Analog Multiplexers
SOICW.EPS
SSOP.EPS
________________________________________________________________Package Information
ENGLISH ???? ??? ???
WHAT'S NEW
PRODUCTS
SOLUTIONS
DESIGN
APPNOTES
SUPPORT
BUY
COMPANY
MEMBERS
MAX336
Part Number Table
Notes:
See the MAX336 QuickView Data Sheet for further information on this product family or download the
MAX336 full data sheet (PDF, 184kB).
1.
Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.2.
Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually
within one business day.
3.
Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See
full data sheet or Part Naming Conventions.
4.
* Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the
product uses.
5.
Part Number
Free
Sample
Buy
Direct
Package:
TYPE PINS SIZE
DRAWING CODE/VAR *
Temp
RoHS/Lead-Free?
Materials Analysis
MAX336MJI
RoHS/Lead-Free: No
MAX336EUI-T
RoHS/Lead-Free: No
MAX336CUI-T
RoHS/Lead-Free: No
MAX336CUI
RoHS/Lead-Free: No
MAX336EUI
RoHS/Lead-Free: No
MAX336C/D
RoHS/Lead-Free: No
MAX336EPI+
PDIP;28 pin;.600"
Dwg: 21-0044B (PDF)
Use pkgcode/variation: P28+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336CPI
PDIP;28 pin;.600"
Dwg: 21-0044B (PDF)
Use pkgcode/variation: P28-2*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX336EPI
PDIP;28 pin;.600"
Dwg: 21-0044B (PDF)
Use pkgcode/variation: P28-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX336EWI+
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28+6*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336EWI+T
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28+6*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336CWI+T
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28+6*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336CWI-T
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28-6*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX336CWI
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28-6*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX336CWI+
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28+6*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336EWI-T
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28-6*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX336EWI
SOIC;28 pin;.300"
Dwg: 21-0042B (PDF)
Use pkgcode/variation: W28-6*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX336CAI-T
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28-1*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX336CAI
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28-1*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX336CAI+
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28+1*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336CAI+T
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28+1*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336EAI+T
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28+1*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336EAI+
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28+1*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX336EAI-T
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28-1*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX336EAI
SSOP;28 pin;.209"
Dwg: 21-0056C (PDF)
Use pkgcode/variation: A28-1*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
Didn't Find What You Need?
CONTACT US: SEND US AN EMAIL
C opyright 2007 by Maxim Integrated P roducts, Dallas Semiconductor Legal Notices Privacy P olicy