This is information on a product in full production.
March 2015 DocID023331 Rev 2 1/103
STM8L052C6
Value Line, 8-bit ultra-low-power MCU, 32-KB Flash, 256-byte data
EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC
Datasheet - production data
Features
Operating conditions
Operating power supply: 1.8 V to 3.6 V
Temperature range: -40 °C to 85 °C
Low-power features
Five low-power modes: Wait, Low-power
run (5.1 µA), Low-power wait (3 µA), Active-
halt with full RTC (1.3 µA), Halt (350 nA)
Consumption: 195 µA/MHz + 440 µA
Ultra-low leakage per I/0: 50 nA
Fast wakeup from Halt: 4.7 µs
Advanced STM8 core
Harvard architecture and 3-stage pipeline
Max freq. 16 MHz, 16 CISC MIPS peak
Up to 40 external interrupt sources
Reset and supply management
Low-power, ultra-safe BOR reset with five
selectable thresholds
Ultra-low-power POR/PDR
Programmable voltage detector (PVD)
Clock management
32 kHz and 1 to 16 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
Internal 38 kHz low consumption RC
Clock security system
Low-power RTC
BCD calendar with alarm interrupt
Auto-wakeup from Halt w/ periodic interrupt
LCD: up to 4x28 segments w/ step-up
converter
Memories
32 KB Flash program memory and
256 bytes data EEPROM with ECC, RWW
Flexible write and read protection modes
2 Kbytes of RAM
DMA
Four channels supporting ADC, SPI, I2C,
USART, timers
One channel for memory-to-memory
12-bit ADC up to 1 Msps/25 channels
Internal reference voltage
Timers
Two 16-bit timers with two channels (used
as IC, OC, PWM), quadrature encoder
One 16-bit advanced control timer with three
channels, supporting motor control
One 8-bit timer with 7-bit prescaler
Two watchdogs: one Window, one
Independent
Beeper timer with 1-, 2- or 4-kHz
frequencies
Communication interfaces
Synchronous serial interface (SPI)
–Fast I
2C 400 kHz SMBus and PMBus
USART (ISO 7816 interface and IrDA )
Up to 41 I/Os, all mappable on interrupt vectors
Development su pp or t
Fast on-chip programming and non-
intrusive debugging with SWIM
Bootloader using USART
LQFP48
7 x 7 mm
www.st.com
Contents STM8L052C6
2/103 DocID023331 Rev 2
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Advanced STM8 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 19
3.11 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID023331 Rev 2 3/103
STM8L052C6 Contents
4
3.14.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.2 Em b ed de d rese t an d po we r co ntr o l block characteristics . . . . . . . . . . . 56
8.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3.9 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.11 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Contents STM8L052C6
4/103 DocID023331 Rev 2
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DocID023331 Rev 2 5/103
STM8L052C6 List of tables
6
List of tables
Table 1. Medium-density value line STM8L052C6 low-power device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Timer featur e com p arison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Legend/abbreviation for Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 4. Medium-density value line STM8L052C6pin de scription . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 9. Interrupt ma pp in g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 10. Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 11. Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 12. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 13. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 14. Thermal char a cte ris tics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 15. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 16. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 17. Total current consumption in Run mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 18. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 19. Total current consumption and timing in Low power run mode at VDD = 1.8 V
to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 63
Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V. . . . . . 64
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 65
Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 66
Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 25. Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 26. HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 27. LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 28. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 29. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 30. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 32. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 33. Flash program and data EEPROM memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 34. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 36. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 37. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 38. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 78
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 40. SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 41. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 42. LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 43. Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 44. ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
List of tables STM8L052C6
6/103 DocID023331 Rev 2
Table 47. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 48. RAIN max for fADC = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 49. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 50. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 51. ESD absolute maximu m ra tin gs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . . 99
Table 54. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 55. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DocID023331 Rev 2 7/103
STM8L052C6 List of figures
7
List of figures
Figure 1. Medium-density value line STM8L052C6 device block diagram . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Medium-density value line STM8L052C6 cloc k tree diagram . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. STM8L052C6 48-pin LQFP48 package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 6. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 7. POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 8. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 9. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 10. Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 11. Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 12. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 13. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 14. Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 15. Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 16. Typical VIL and VIH vs. VDD (high sink I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 17. Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 18. Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 19. Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 20. Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 21. Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 22. Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 23. Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 24. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 25. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 26. Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 27. Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 28. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 29. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 30. SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 31. SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 32. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 33. ADC1 accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 34. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 35. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 36. Power supply and reference deco upling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 94
Figure 37. Power supply and reference deco upling (VREF+ connected to VDDA). . . . . . . . . . . . . . . 94
Figure 38. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98
Figure 39. LQFP48 - 48-pin , 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 100
Figure 40. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Introduction STM8L052C6
8/103 DocID023331 Rev 2
1 Introduction
This document describes the features, pinout, mechanical data and ordering information of
the medium-density value line STM8L052C6 microcontroller with 32-Kbyte Flash me mory
density. For further details on the whole STMicroelectronics medium-density family please
refer to Section 2.2: Ultra-low-power continuum.
For detailed information on device operation and reg isters, refer to the reference manual
(RM0031).
For information on to the Flash program memory and data EEPROM, refer to the
programming manual (PM0054).
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).
Medium density value line devices provide the following benefits:
Integrated system
32 Kbytes of medi um-density em b ed d ed Flash program me mo ry
256 bytes of dat a EEPROM
2 Kbytes of RAM
Internal high-spe ed and low-power low-speed RC
Embedded re set
Ultra-low-power consumption
195 µA/MHZ + 440 µA (consumption)
0.9 µA with LSI in Active-halt mode
Clock gated system and optimized power management
Capability to execute from RAM for low-power wait mode and low-power-run
mode
Advanced features
Up to 16 MIPS at 16 MHz CPU clock frequency
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access
Short development cycles
Application scalability acro ss a common family product architecture with
compatible pinout, memory map and modular periphera ls
Wide choice of development to ols
These features make the value line STM8L05xxx ultra-low-power microcontroller family
suitable for a wide range of consumer and mass market applications.
Refer to Table 1: Medium-density value line STM8L052C6 low-power device features and
peripheral counts and Section 3: Functional overvie w for an overview of the complete range
of peripherals proposed in this family.
Figure 1 shows the block diagram of the medium-density value line STM8L052C6 device.
DocID023331 Rev 2 9/103
STM8L052C6 Description
48
2 Description
The medium-density value line STM8L05 2C6 d evices are m emb ers o f the STM 8L ultra -low-
power 8-bit family.
The value line STM8L05xxx ultra-low-power family features the enhanced STM8 CPU core
providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the
advantages of a CISC architecture with improved code density, a 24-bit linear addressing
space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive In-application debugging and ultra-fa st Flash programming.
Medium-density value line STM8L052C6 microcontrollers feature embedded data EEPROM
and low-power, low-voltage, single-supply program Flash memory.
All devices of fer 12-bit ADC, real-time clock, 16-bit timers, one 8-bi t timer as well as
standard communication interface such as SPI, I2C, USART and 4x28-segment LCD. The
4x 28-segment LCD is available on the medium-density value line STM8L052C6.
The STM8L052C6 operates from 1.8 V to 3.6 V and is available in the -40 to +85 °C
temperature range.
The modular design of th e peripheral set allows the same peripherals to be found in
different ST microcontroller families including 32-bit families. This makes any transition to a
different family very easy, and simplified even more by the use of a common set of
development to ols .
All value line STM8L ultra-low-power products are based on the same architecture with the
same memory mapping and a coherent pinout.
Description STM8L052C6
10/103 DocID023331 Rev 2
2.1 Device overview
Table 1. Medium-density value line STM8L052C6 low-power device features and
peripheral counts
Features STM8L052C6
Flash (Kbytes) 32
Data EEPROM (bytes) 256
RAM (Kbytes) 2
LCD 4x28
Timers
Basic 1
(8-bit)
General purpose 2
(16-bit)
Advanced control 1
(16-bit)
Communication
interfaces
SPI 1
I2C 1
USART 1
GPIOs 41(1)
1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the
NRST/PA1 pin as general purpose output only (PA1).
12-bit synchronized ADC
(number of channels) 1
(25)
Others RTC, window watchdog, independent watchdog,
16-MHz and 38-kHz internal RC,
1- to 16-MHz and 32-kHz external oscillator
CPU frequency 16 MHz
Operating voltage 1.8 V to 3.6 V
Operating temperature -40 to +85 °C
Package LQFP48
DocID023331 Rev 2 11/1 03
STM8L052C6 Description
48
2.2 Ultra-low-power continuum
The ultra-low-power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software
and feature compatible. Besides the full compatibility within the STM8L family, the devices
are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes
STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of
performance, peripherals, system architectur e, and featu res.
They are all based on STMicroelectronics 0.13 µm ultra-low leakag e process.
Note: 1 The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices.
2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core
for STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L05x, STM8L15x and STM32L15xx share identica l peripherals which ensure a very
easy migration from one family to another:
Analog peripheral: ADC1
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L and STM32L devices use a
common architecture:
Same power supply range from 1.8 to 3.6 V
Architecture optimized to reach ultra-low consumption both in low power modes and
Run mode
Fast startup strategy from low power modes
Flexible system clock
Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on
reset, power-down reset, brownout reset and programmable voltage detector
Features
ST ultra-low-power continuum also lies in feature compatibility:
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
Memory density ranging from 4 to 128 Kbytes
Functional overview STM8L052C6
12/103 DocID023331 Rev 2
3 Functional overview
Figure 1. Medium-density value line STM8L052C6 device block diagram
1. Legend:
ADC: Analog-to-digital converter
BOR: Brownout reset
DMA: Direct memory access
I²C: Inter-integrated circuit multimaster interface
LCD: Liquid crystal display
POR/PDR: Power on reset / power down reset
RTC: Real-time clock
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
WWDG: Window watchdog
IWDG: independent watchdog
16 MHz internal RC Clock
Clocks
Address, control and da ta buses
Debug module
SPI1
32 Kbytes
Interrupt controller
2 Kbytes RAM
to core and
peripherals
IWDG
(38 kHz clock)
(SWIM)
Port A
Port B
Port C
I²C1
USART1
Power
VOLT. REG.
Port F
1-16 MHz oscillator
32 kHz oscillator
38 kHz internal RC
LCD driver
4x28
WWDG
STM8 Core
controller
and
CSS
256 bytes
Port D
Port E
Beeper
RTC
memoryprogram
data EEPROM
@V
DD
V
DD18
V
DD1
=1.8 V
V
SS1
SWIM
SCL, SDA,
MOSI, MISO,
SCK, NSS
RX, T X , CK
ADC1_INx
V
DDA
V
SSA
SMB
@V
DDA
/V
SSA
12-bit ADC1
V
REF+
V
REF-
3.6 V
NRST
PA[7:0]
PB[7:0]
PC[7:0]
PD[7:0]
PE[7:0]
PF0
BEEP
ALARM, CALIB
SEGx, COMx
POR/PDR
OSC_IN,
OSC_OUT
OSC32_IN,
OSC32_OUT
to
BOR
PVD
PVD_IN
RESET
DMA1
8-bit Timer 4
16-bit Timer 3
16-bit Timer 2
16-bit Timer 1
(4 channels)
2 channels
2 channels
3 channels
V
LCD
= 2.5 V
3.6 V to
LCD booster
Internal reference
voltage
VREFINT out
Infrared interface
IR_TIM
DocID023331 Rev 2 13/103
STM8L052C6 Functional overview
48
3.1 Low-power modes
The medium-density value line STM8L052C6 su pports five lo w power modes to achieve the
best compromise between low powe r consumption, short st artup time and available wakeup
sources:
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt, event or a Reset can be used to exit the microcontroller
from Wait mode (WFE or WFI mode).
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data
EEPROM are stopped and the voltage regulator is configured in ul tra-low-power mode.
The microcontroller enters Low power run mode by software and can exit from this
mode by software or by a reset.
All interrupt s must be masked. They cannot be u sed to exit the microcontroller from this
mode.
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1) and I/O ports). When the wakeup is triggere d by an event, the
system goes back to Low power run mode.
All interrupt s must be masked. They cannot be u sed to exit the microcontroller from this
mode.
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or rese t.
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or
reset. A few peripherals have also a wakeup from Halt capability. Switching off the
internal reference volt age reduces power consumption. Through sof tware configuration
it is also possible to wake up the device without waiting for the internal reference
voltage wakeup time to have a fast wakeup time of 5 µs.
Functional overview STM8L052C6
14/103 DocID023331 Rev 2
3.2 Central processing unit STM8
3.2.1 Advanced STM8 core
The 8-bit STM8 core is designed for code ef ficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contai ns six internal registers which are dir ectly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
Harvard arch ite ctu re
3-stage pipeline
32-bit wide program memory bus - single cycle fetching most instructions
X and Y 16-bit index registers - enablin g indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit progra m counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64-Kbyte level stack
8-bit condition code register - 7 condition fl ags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct mem ory-to-memory transfers
3.2.2 Interrupt controller
The medium-density value line STM8L052C6 features a nested vectored interrupt
controller:
Nested interrupts with 3 software priority levels
32 interrupt vectors with hardware priority
Up to 40 external interrupt sources on 11 vectors
Trap and reset interrupts
DocID023331 Rev 2 15/103
STM8L052C6 Functional overview
48
3.3 Reset and supply management
3.3.1 Power supply scheme
The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power
supply pins must be connected as follows:
VSS1 ; VDD1 = 1.8 to 3.6 V: external power supply for I/Os and for the internal regulator.
Provided externally through VDD1 pins, the corresponding ground pin is VSS1.
VSSA ; VDDA = 1.8 to 3.6 V: external power supplies for analog peripherals. VDDA and
VSSA must be connected to VDD1 and VSS1, respectively.
VSS2 ; VDD2 = 1.8 to 3.6 V: external power supplies for I/Os. VDD2 and VSS2 must be
connected to VDD1 and VSS1, respectively.
VREF+ ; VREF- (for ADC1): external reference voltage for ADC1. Must be provided
externally through VREF+ and VREF- pin.
3.3.2 Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active,
and ensures proper operation st arting fro m 1.8 V. Afte r the 1.8 V BOR threshold is reached,
the option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently.
Five BOR thresholds are available through option bytes, star ting from 1.8 V to 3 V. To
reduce the power consumption in Halt mode, it is possible to automatically switch off the
internal reference voltage (and consequently the BOR) in Halt mode. The device remains
under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need
for any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, ch osen by software, with a step arou n d 20 0 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than th e VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3 Voltage regulator
The medium-density value line STM8L052C6 embeds an internal voltage regulator for
generating the 1.8 V power su pply for the core and peripherals.
This regulator has two different modes:
Main voltage regula tor mode (MVR) for Run, W ait for interr upt (WFI) and Wait for event
(WFE) mod es
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and
Low power wait modes
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
Functional overview STM8L052C6
16/103 DocID023331 Rev 2
3.4 Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU an d peripherals can be adjusted by a
programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configura tion register.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock sources: 4 different clock sources can be used to drive the system
clock:
1-16 MHz High speed ex ternal crystal (HSE)
16 MHz High speed internal RC oscillator (HSI)
32.768 kHz Low speed external crystal (LSE)
38 kHz Low speed internal RC (LSI)
RTC and LCD clock sources: The above four sources can be chosen to clock the
RTC and the LCD, whatever the system clock.
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If a HSE
clock failure occurs, the system clock is automatically switched to HSI.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
DocID023331 Rev 2 17/103
STM8L052C6 Functional overview
48
Figure 2. Medium-density value line STM8L052C6 clock tree diagram
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x refer ence manual (RM0031).
3.5 Low-power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hou r (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically.It provides a programmable alarm and programmable
periodic interrupts with wakeup from Halt capability.
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a di fferent resolution, the wakeup time can reach
36 hours.
Periodic alarms based on the calendar can also be generated from every second to
every year.
+6(26&
0+]
+6,5&
0+]
/6,5&
N+]
/6(26&
N+]
+6,
/6,
3&/.
WRSHULSKHUDOV
57&&/. WR/&'
WR,:'*
6<6&/.
WRFRUHDQGPHPRU\
+6(

/6,
/6(

26&B287
26&B287
26&B,1
26&B,1
&&2
SUHVFDOHU

+6,
/6,
+6(

/6(

&&2
,:'*&/.
57&6(/>@
/6(

&/.%((36(/>@
WR%((3
%((3&/.
DLK
&66
&RQILJXUDEOH
FORFNRXWSXW

3HULSKHUDO
FORFNHQDEOHELWV
WR57&
57&&/.
/&'&/. WR/&'
6<6&/.
+DOW
/&'SHULSKHUDO
FORFNHQDEOHELW
/&'SHULSKHUDO
FORFNHQDEOHELW
57&
SUHVFDOHU

57&&/.
6<6&/.
3UHVFDOHU

Functional overview STM8L052C6
18/103 DocID023331 Rev 2
3.6 LCD (Liquid crystal display)
The LCD is only available on STM8L052xx devices.
The liquid crystal display drives up to 4 common terminals and up to 28 segment
terminals to drive up to 112 pixels. Internal step-up converter to guara ntee contrast
control whatever VDD.
Static 1/2, 1/3, 1/4 duty supported.
Static 1/2, 1/3 bias sup p or te d.
Phase inversion to reduce power consumption and EMI.
Up to 4 pixels which can be pro gr amm e d to blin k.
The LCD controller can oper ate in Halt mode.
Note: Unnecessary segments and common pins can be used as general I/O pins.
3.7 Memories
The medium-density value line STM8L052C6 has the following main features:
2 Kbytes of RAM
The non-volatile memory is divided into three arrays:
32 Kbytes of medi um-density em b ed d ed Flash program me mo ry
256 bytes of dat a EEPROM
Option bytes
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while-
write (RWW): it is possible to execute the code from the program matrix while
programm ing /e ra sin g th e da ta matrix.
The option byte protects part of the Flash program memory from write and readout piracy.
3.8 DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, I2C1, SPI1, USART1 and the four timers.
DocID023331 Rev 2 19/103
STM8L052C6 Functional overview
48
3.9 Analog-to-digital converter
12-bit analog-to-digital converter (ADC1) with 25 chan nels (including 1 fast channel)
and internal refere n ce vo ltage
Conversion time down to 1 µs with fSYSCLK= 16 MHz
Programm abl e re so lut ion
Programmab le sa mp lin g tim e
Single and continuous mode of conversion
Scan capability: automatic conversion performed on a selected group of analog inputs
Analog watchdog
Triggered by timer
Note: ADC1 can be served by DMA1.
3.10 System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of
diff erent I/Os to the TIM1 timer input captures. It also controls the routing of internal analog
signals to ADC1 and the internal reference voltage VREFINT.
3.11 Timers
The medium-density value line STM8L052C6 contains one advanced control timer (TIM1),
two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Table 2 compares the features of the advanced control, general-purpose and basic timers.
Table 2. Timer feature comparison
Timer Counter
resolution Counter
type Prescaler factor DMA1
request
generation
Capture/compare
channels Complementary
outputs
TIM1
16-bit up/down
Any integer
from 1 to 65536
Yes
3 + 1 3
TIM2 Any power of 2
from 1 to 128 2None
TIM3
TIM4 8-bit up Any power of 2
from 1 to 32768 0
Functional overview STM8L052C6
20/103 DocID023331 Rev 2
3.11.1 TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor contro l, lighting and half-bridge driver.
16-bit up, down and up/down autoreload counter with 16-bit prescaler
3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse
mode output
1 additional capture/compare channel which is not connected to an external I/O
Synchronization module to control the timer with external signals
Break input to force timer outputs into a defined state
3 complementary outputs with adjustable dead time
Encoder mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
3.11.2 16-bit general purpose timers
16-bit autoreload (AR) up/down-counter
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
2 individually config urable capture/compare channels
PWM mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
3.11.3 8-bit basic timer
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. It can be used for timebase generation with interrupt generation on timer
overflow.
3.12 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the application s.
3.12.1 Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.12.2 Independent watchdog timer
The independent watchdog peripheral (IWDG) can be used to resolve processor
malfunctions due to hardware or software failures.
DocID023331 Rev 2 21/103
STM8L052C6 Functional overview
48
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.13 Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
3.14 Communication interfaces
3.14.1 SPI
The serial peripheral interface (SPI1 ) provides half/ full duplex synchronous serial
communicat ion with ex te rn al de vices.
Maximum speed: 8 M bit/s (fSYSCLK/2) both for master and slave
Full duplex synchronous transfers
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
Hardware CRC calculation
Slave/master selection input pin
Note: SPI1 can be served by the DMA1 Controller.
3.14.2 I²C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C bus-
specific sequencing, protocol, arbitratio n and timing.
Master, slave and multi-master capability
Standard mode up to 100 kHz and fast speed mod es up to 400 kHz
7-bit and 10-bit addressing modes
SMBus 2.0 and PMBus support
Hardware CRC calculation
Note: I2C1 can be served by the DMA1 Controller.
3.14.3 USART
The USART interface (USART1) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronous serial data format. It
offers a very wide range of baud ra te s.
1 Mbit/s full duplex SCI
SPI1 emulation
High precision baud rate generator
SmartCard em u lation
IrDA SIR encoder deco d er
Single wire half duplex mode
Note: USART1 can be served by the DMA1 Controller.
Functional overview STM8L052C6
22/103 DocID023331 Rev 2
3.15 Infrared (IR) interface
The medium-density value line STM8L052C6 contains an infrared inte rface which can be
used with an IR LED for remote control functions. Two timer output compare channels are
used to generate the infrared remote control signals.
3.16 Development support
Development tools
Development tools for the STM8 microcontrollers include:
The STice emulation system offering tracing and code profiling
The STVD high-level lan guage debugger including C compiler, assembler and
integrated developm ent environment
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/prog ramming tools.
Single wire data interface (SWIM) and debug module
The debug modu le with its single wire data in terface (SWIM) perm it s no n-intrusive real-t ime
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debu gging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation can also be monitored in real-
time by means of shadow registers.
Bootloader
A bootloader is available to reprog ram the Flash memory using the USART1 interface. The
reference document for the bootloader is UM0560: STM8 bootloader user manual.
The bootloader is used to download application software into the device memories,
including RAM, program and data memory, using standard serial interfaces. It is a
complementary solution to programming via the SWIM debugging interface.
DocID023331 Rev 2 23/103
STM8L052C6 Pin description
48
4 Pin description
Figure 3. STM8L052C6 48-pin LQF P48 package pinout (with LCD)
Table 3. Legend/abbreviation for Table 4
Type I= input, O = output, S = power supply
Level
FT Five-volt tolerant
TT 3.6 V tolerant
Output HS = high sink/source (20 mA)
Port and control
configuration Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drai n, PP = push pull
Reset state Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
44 43 42 41 40 39 38 3736
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 21 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
PA5
VSS1/VSSA/VREF-
NRST/PA1
PA2
PA3
PA4
PA6
VLCD
PE0
PE1
PD1
PD2
PD3
PB0
PE3
PD0
PE5
PE4
PA7
VDD1
VDDA
VREF+
PE2
PB1
PB2
PC0
PC1
VDD2
VSS2
PC2
PC3
PC4
PC5
PC6
PC7
PE6
PE7
PB3
PB4
PB5
PB6
PB7
PF0
PD4
PD5
PD6
PD7
PA0
Table 4. Medium-density value line STM8L052C6pin description
Pin #
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate function
LQFP48
floating
wpu
Ext. interrupt
High sink/source
OD
PP
2 NRST/PA1(1) I/O X HS X Reset PA1
3PA2/OSC_IN/
[USART1_TX](8)/
[SPI1_MISO] (8) I/O XXXHSXXPort A2 HSE oscillator input /
[USART1 transmit] / [SPI1
master in- slave out]
4PA3/OSC_OUT/[USART1_
RX](8)/[SPI1_MOSI](8) I/O XXXHSXXPort A3 HSE oscillator output /
[USART1 receive]/ [SPI1
master out/slave in]/
Pin description STM8L052C6
24/103 DocID023331 Rev 2
5PA4/TIM2_BKIN/
LCD_COM0/ADC1_IN2 I/O TT(2) XXXHSXXPort A4 Timer 2 - break input /
LCD COM 0 / ADC1 input 2
6PA5/TIM3_BKIN/
LCD_COM1/ADC1_IN1 I/O TT(2) XXXHSXXPort A5 Timer 3 - break input /
LCD_COM 1 / ADC1 input 1
7PA6/[ADC1_TRIG]/
LCD_COM2/ADC1_IN0 I/O TT(2) XXXHSXXPort A6 [ADC1 - trigger] / LCD_COM2
/ADC1 input 0
8 PA7/LCD_SEG0(3) I/OFTXXXHSXXPort A7 LCD segment 0
24 PB0(4)/TIM2_CH1/
LCD_SEG10/ADC1_IN18 I/O TT(2) X(4) X(4) XHSXXPort B0 Timer 2 - channel 1 / LCD
segment 10 / ADC1_IN18
25 PB1/TIM3_CH1/
LCD_SEG11/
ADC1_IN17 I/O TT(2) XXXHSXXPort B1 Timer 3 - channel 1 / LCD
segment 11 / ADC1_IN17
26 PB2/ TIM2_CH2/
LCD_SEG12/
ADC1_IN16 I/O TT(2) XXXHSXXPort B2 Timer 2 - channel 2 / LCD
segment 12 / ADC1_IN16
27 PB3/TIM2_ETR/
LCD_SEG13/
ADC1_IN15 I/O TT(2) XXXHSXXPort B3 Timer 2 - external trigger /
LCD segmen t 13 /ADC1_IN 1 5
28 PB4(4)/[SPI1_NSS](8)/
LCD_SEG14/
ADC1_IN14 I/O TT(2) X(4) X(4) XHSXXPort B4 [SPI1 master/slave select] /
LCD segmen t 14 /
ADC1_IN14
29 PB5/[SPI1_SCK](8)/
LCD_SEG15/
ADC1_IN13 I/O TT(2) XXXHSXXPort B5 [SPI1 clock] / LCD segment 15
/ ADC1_IN13
30 PB6/[SPI1_MOSI](8)/
LCD_SEG16/
ADC1_IN12 I/O TT(2) XXXHSXXPort B6 [SPI1 master out/slave in]/
LCD segmen t 16 /
ADC1_IN12
31 PB7/[SPI1_MISO](8)/
LCD_SEG17/
ADC1_IN11 I/O TT(2) XXXHSXXPort B7 [SPI1 master in- slave out]
/LCD segment 17 /
ADC1_IN11
37 PC0(3)/I2C1_SDA I/O FT X X T(5) Port C0 I2C1 data
38 PC1(3)/I2C1_SCL I/O FT X X T(5) Port C1 I2C1 clock
41 PC2/USART1_RX/
LCD_SEG22/ADC1_IN6/
VREFINT I/O TT(2) XXXHSXXPort C2
USART1 receive /
LCD segmen t 22 / ADC1_IN6
/Internal voltage reference
output
Table 4. Medium-density value line STM8L052C6pin description (continued)
Pin #
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate function
LQFP48
floating
wpu
Ext. interrupt
High sink/source
OD
PP
DocID023331 Rev 2 25/103
STM8L052C6 Pin description
48
42 PC3/USART1_TX/
LCD_SEG23/
ADC1_IN5 I/O TT(2) XXXHSXXPort C3 USART1 transmit /
LCD segmen t 23 / ADC1_IN5
43
PC4/USART1_CK/
I2C1_SMB/CCO/
LCD_SEG24/
ADC1_IN4
I/O TT(2) XXXHSXXPort C4
USART1 synchronous clock /
I2C1_SMB / Configurable
clock output /
LCD segmen t 24/
ADC1_IN4
44 PC5/OSC32_IN
/[SPI1_NSS](8)/
[USART1_TX](8) I/O XXXHSXXPort C5 LSE oscillator input / [SPI1
master/slave select] /
[USART1 transmit]
45 PC6/OSC32_OUT/
[SPI1_SCK](8)/
[USART1_RX](8) I/O XXXHSXXPort C6 LSE oscillator output / [SPI1
clock] / [USART1 receive]
46 PC7/LCD_SEG25/
ADC1_IN3 I/O TT(2) XXXHSXXPort C7 LCD segment 25 /ADC1_IN3
20 PD0/TIM3_CH2/
[ADC1_TRIG](8)/
LCD_SEG7/ADC1_IN22/ I/O TT(2) XXXHSXXPort D0 Timer 3 - channel 2 /
[ADC1_Trigger] / LCD
segment 7 / ADC1_IN22
21 PD1/TIM3_ETR/
LCD_COM3/
ADC1_IN21 I/O TT(2) XXXHSXXPort D1 Timer 3 - external trigger /
LCD_COM3 / ADC1_IN21
22 PD2/TIM1_CH1
/LCD_SEG8/
ADC1_IN20 I/O TT(2) XXXHSXXPort D2 Timer 1 - channel 1 / LCD
segment 8 / ADC1_IN20
23 PD3/ TIM1_ETR/
LCD_SEG9/ADC1_IN19 I/O TT(2) XXXHSXXPort D3 Timer 1 - external trigger /
LCD segmen t 9 / A DC 1 _ IN19
33 PD4/TIM1_CH2
/LCD_SEG18/
ADC1_IN10 I/O TT(2) XXXHSXXPort D4 Timer 1 - channel 2 / LCD
segment 18 / ADC1_IN10
34 PD5/TIM1_CH3
/LCD_SEG19/
ADC1_IN9 I/O TT(2) XXXHSXXPort D5 Timer 1 - channel 3 / LCD
segment 19 / ADC1_IN9
35
PD6/TIM1_BKIN
/LCD_SEG20/
ADC1_IN8/RTC_CALIB/
/VREFINT
I/O TT(2) XXXHSXXPort D6
Timer 1 - break input / LCD
segment 20 / ADC1_IN8 /
RTC calibration / Internal
voltage reference output
Table 4. Medium-density value line STM8L052C6pin description (continued)
Pin #
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate function
LQFP48
floating
wpu
Ext. interrupt
High sink/source
OD
PP
Pin description STM8L052C6
26/103 DocID023331 Rev 2
36
PD7/TIM1_CH1N
/LCD_SEG21/
ADC1_IN7/RTC_ALARM/V
REFINT
I/O TT(2) XXXHSXXPort D7
Timer 1 - inverted channel 1/
LCD segment 21 / ADC1_IN7 /
RTC alarm / Internal voltage
reference ou tp u t
14 PE0(3)/LCD_SEG1 I/O FT X X X HS X X Port E0 LCD segmen t 1
15 PE1/TIM1_CH2N/
LCD_SEG2 I/O TT(2) XXXHSXXPort E1 Timer 1 - inverted channel 2 /
LCD segmen t 2
16 PE2/TIM1_CH3N/
LCD_SEG3 I/O TT(2) XXXHSXXPort E2 Timer 1 - inverted channel 3 /
LCD segmen t 3
17 PE3/LCD_SEG4 I/O TT(2) XXXHSXXPort E3 LCD segment 4
18 PE4/LCD_SEG5 I/O TT(2) XXXHSXXPort E4 LCD segment 5
19 PE5/LCD_SEG6/
ADC1_IN23 I/O TT(2) XXXHSXXPort E5 LCD segment 6 / ADC 1 _IN23
47 PE6/LCD_SEG26/
PVD_IN I/O TT(2) XXXHSXXPort E6 LCD segment 26/PVD_IN
48 PE7/LCD_SEG27I/O TT(2) XXXHSXXPort E7 LCD segment 27
32 PF0/ADC1_IN24 I/O X X X HS X X Port F0 ADC1_IN24
13 VLCD S LCD booster external capacitor
13 Reserved Reserved. Must be tied to VDD
10 VDD S Digital power supply
11 VDDA S Analog supply vol tage
12 VREF+ S ADC1 positive voltage reference
9V
SS1/VSSA/VREF- SI/O ground / Analog ground voltage /
ADC1 negative voltage reference
39 VDD2 S IOs supply voltage
40 VSS2 S IOs ground voltage
1PA0(6)/[USART1_CK](8)/
SWIM/BEEP/IR_TIM (7) I/O X X(6) XHS
(7) XXPort A0
[USART1 synchronous
clock](8) / SWIM input and out-
put /Beep output
/ Infrared Timer output
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1
pin as general purpose output in the STM8L15x and STM8L16x refer ence manual (RM0031).
2. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented.
Table 4. Medium-density value line STM8L052C6pin description (continued)
Pin #
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate function
LQFP48
floating
wpu
Ext. interrupt
High sink/source
OD
PP
DocID023331 Rev 2 27/103
STM8L052C6 Pin description
48
Note: The slope control of all GPIO pins, except true open drain pins, can be programmed. By
default, the slope control is limited to 2 MHz.
3. In the 5 V tolerant I/Os, protection diode to VDD is not implemented.
4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
6. The PA0 pin is in input pull-up during the reset phase and after reset release.
7. High Sink LED driver capability available on PA0.
8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
Pin description STM8L052C6
28/103 DocID023331 Rev 2
4.1 System configuration options
As shown in Table 4: Medium-density value line STM8L052C6pin descri ption, some
alternate functions can be remapped on different I/O ports by programming one of the two
remapping registers described in the “Routing interface (RI) and system configuration
controller” section in the STM8L15x and STM8L16x reference manual (RM0031).
DocID023331 Rev 2 29/103
STM8L052C6 Memory and register map
48
5 Memory and register map
5.1 Memory mapping
The memory map is shown in Figure 4.
Figure 4. Memory map
1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end
address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware
registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
GPIO and peripheral registers
0x00 0000
Reserved
Medium density
(32 Kbytes)
Reset and interrupt vectors
0x00 1000
0x00 10FF
RAM
0x00 07FF
(2 Kbytes) (1)
(513 bytes) (1)
0x00 1100
Data EEPROM
0x00 4800
0x00 48FF
0x00 4900
0x00 7FFF
0x00 8000
0x00 FFFF
0x00 0800
0x00 0FFF
0x00 47FF
0x00 7EFF
0x00 8080
0x00 807F
0x00 7F00
Reserved
including
Stack
(256 bytes)
Option bytes
0x00 4FFF
0x00 5000
0x00 57FF
0x00 5800
Reserved
0x00 5FFF Boot ROM
0x00 6000
0x00 67FF (2 Kbytes)
0x00 6800
Reserved
CPU/SWIM/Debug/ITC
Registers
0x00 5000 GPIO Ports
0x00 5050 Flash
0x00 50C0
ITC-EXTI
0x00 50D3
RST
0x00 50E0
CLK
0x00 50F3
WWDG
0x00 5210
IWDG
0x00 5230
BEEP
0x00 5250
RTC
0x00 5280
SPI1
0x00 52B0
I2C1
0x00 52E0
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
0x00 5070 DMA1
SYSCFG
LCD
RI
0x00 509E
0x00 50A0
0x00 50B0
0x00 5140
0x00 5200
0x00 52FF
0x00 5340
0x00 5380
0x00 5400
0x00 5430
0x00 5440
Flash program memory
WFE
0x00 50A6
0x00 50B2 PWR
Reserved
Reserved
Reserved
Memory and register map STM8L052C6
30/103 DocID023331 Rev 2
5.2 Register map
Table 5. Flash and RAM boundary addresses
Memory area Size Start address End address
RAM 2 Kbytes 0x00 0000 0x00 07FF
Flash program memory 32 Kbytes 0x00 8000 0x00 FFFF
Table 6. I/O port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xXX
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_C R1 Port A control register 1 0x01
0x00 5004 PA_C R2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PC_IDR Port C input pin value register 0xXX
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x00
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX
0x00 5016 PE_DDR Port E data direction register 0 x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
DocID023331 Rev 2 31/103
STM8L052C6 Memory and register map
48
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
Table 6. I/O port hardware register map (continued)
Address Block Register label Register name Reset
status
Table 7. General hard ware register map
Address Block Register label Register name Reset
status
0x00 501E to
0x00 5049 Reserved area (44 bytes)
0x00 5050
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 5051 FLASH_CR2 Flash control register 2 0x00
0x00 5052 FLASH _PUKR Flash program memory unprotection key
register 0x00
0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00
0x00 5054 FLASH _IAPSR Flash in-application programming status
register 0x00
0x00 5055 to
0x00 506F Reserved area (27 bytes)
Memory and register map STM8L052C6
32/103 DocID023331 Rev 2
0x00 5070
DMA1
DMA1_GCSR DMA1 global configuration & status
register 0xFC
0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00
0x00 5072 to
0x00 5074 Reserved area (3 bytes)
0x00 5075 DMA1_C0CR DMA1 channel 0 configurati on register 0x00
0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00
0x00 5077 DMA1_C 0NDTR DMA1 number of data to transfer register
(channel 0) 0x00
0x00 5078 DMA1_C0PARH DMA1 peripheral address high register
(channel 0) 0x52
0x00 5079 DMA1_C0PARL DMA1 peripheral address low register
(channel 0) 0x00
0x00 507A Reserved area (1 byte)
0x00 507B DMA1_C0M0ARH DMA1 memory 0 address high register
(channel 0) 0x00
0x00 507C DMA1_C0M0ARL DMA1 memory 0 address low register
(channel 0) 0x00
0x00 507D
0x00 507E Reserved area (2 bytes)
0x00 507F DMA1_C1CR DMA1 channel 1 configurati on register 0x00
0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00
0x00 5081 DMA1_C 1NDTR DMA1 number of data to transfer register
(channel 1) 0x00
0x00 5082 DMA1_C1PARH DMA1 peripheral address high register
(channel 1) 0x52
0x00 5083 DMA1_C1PARL DMA1 peripheral address low register
(channel 1) 0x00
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 33/103
STM8L052C6 Memory and register map
48
0x00 5084
DMA1
Reserved area (1 byte)
0x00 5085 DMA1_C1M0ARH DMA1 memory 0 address high register
(channel 1) 0x00
0x00 5086 DMA1_C1M0ARL DMA1 memory 0 address low register
(channel 1) 0x00
0x00 5087
0x00 5088 Reserved area (2 bytes)
0x00 5089 DMA1_C2CR DMA1 channel 2 configurati on register 0x00
0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00
0x00 508B DMA1_C2NDTR DMA1 number of data to transfer register
(channel 2) 0x00
0x00 508C DMA1_C2PARH DMA1 peripheral address high register
(channel 2) 0x52
0x00 508D DMA1_C2PAR L DMA1 peripheral address low register
(channel 2) 0x00
0x00 508E Reserved area (1 byte)
0x00 508F DMA1_C2M0ARH DMA1 memory 0 address high register
(channel 2) 0x00
0x00 5090 DMA1_C2M0ARL DMA1 memory 0 address low register
(channel 2) 0x00
0x00 5091
0x00 5092 Reserved area (2 bytes)
0x00 5093 DMA1_C3CR DMA1 channel 3 configurati on register 0x00
0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00
0x00 5095 DMA1_C 3NDTR DMA1 number of data to transfer register
(channel 3) 0x00
0x00 5096 DMA1_C3PARH_
C3M1ARH DMA1 peripheral address high register
(channel 3) 0x40
0x00 5097 DMA1_C3PARL_
C3M1ARL DMA1 peripheral address low registe r
(channel 3) 0x00
0x00 5098 Reserved area (1 byte)
0x00 5099 DMA1_C3M0ARH DMA1 memory 0 address high register
(channel 3) 0x00
0x00 509A DMA1_C3M0ARL DMA1 memory 0 address low register
(channel 3) 0x00
0x00 509B to
0x00 509D Reserved area (3 bytes)
0x00 509E SYSCFG_RMPCR 1 Remapping re gister 1 0x00
0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L052C6
34/103 DocID023331 Rev 2
0x00 50A0
ITC - EXTI
EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt cont rol register 2 0x00
0x00 50A2 EXTI_CR3 External interrupt cont rol register 3 0x00
0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00
0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00
0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00
0x00 50A6
WFE
WFE_CR1 WFE control register 1 0x00
0x00 50A7 WFE_CR2 WFE control register 2 0x00
0x00 50A8 WFE_CR3 WFE control register 3 0x00
0x00 50AC to
0x00 50AF Reserved area (4 bytes)
0x00 50B0 RST RST_CR Reset control register 0x00
0x00 50B1 RST_SR Reset status register 0x01
0x00 50B2 PWR PWR_CSR1 Power control and status register 1 0x00
0x00 50B3 PWR_CSR2 Power control and status register 2 0x00
0x00 50B4 to
0x00 50BF Reserved area (12 bytes)
0x00 50C0
CLK
CLK_DIVR Clock master divider register 0x03
0x00 50C1 CLK_CRTCR Clock RTC register 0x00
0x00 50C2 CLK_ICKR Internal clock control register 0x11
0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00
0x00 50C4 CLK_PCKENR2 Peripheral clock gating register 2 0x80
0x00 50C5 CLK_CCOR Configurable clock control register 0x00
0x00 50C6 CLK_ECKR External clock control register 0x00
0x00 50C7 CLK_SCSR System clock status register 0x01
0x00 50C8 CLK_SWR System clock switch register 0x01
0x00 50C9 CLK_SWCR Clock switch control register 0bxxxx0000
0x00 50CA CLK_CSSR Clock security system register 0x00
0x00 50CB CLK_CBEEPR Clock BEEP register 0x00
0x00 50CC CLK_HSICALR HSI calibration register 0x xx
0x00 50CD CLK_ HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00
0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11100x
0x00 50D0 to
0x00 50D2 Reserved area (3 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 35/103
STM8L052C6 Memory and register map
48
0x00 50D3 WWDG WWDG_CR WWDG control register 0x7F
0x00 50D4 WWDG_WR WWDR window register 0x7F
0x00 50D5 to
00 50DF Reserved area (11 bytes)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF Reserved area (13 bytes)
0x00 50F0
BEEP
BEEP_CSR1 BEEP control/status register 1 0x00
0x00 50F1
0x00 50F2 Reserved area (2 bytes)
0x00 50F3 BEEP_CSR2 BEEP control/status register 2 0x1F
0x00 50F4 to
0x00 513F Reserved area (76 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L052C6
36/103 DocID023331 Rev 2
0x00 5140
RTC
RTC_TR1 Time regi ster 1 0x00
0x00 5141 RTC_TR2 Time register 2 0x00
0x00 5142 RTC_TR3 Time register 3 0x00
0x00 5143 Reserved area (1 byte)
0x00 5144 RTC_DR1 Date register 1 0x01
0x00 5145 RTC_DR2 Date register 2 0x21
0x00 5146 RTC_DR3 Date register 3 0x00
0x00 5147 Reserved area (1 byte)
0x00 5148 RTC_CR1 Control register 1 0x00
0x00 5149 RTC_CR2 Control register 2 0x00
0x00 514A RTC_CR3 Control register 3 0x00
0x00 514B Reserved area (1 byte)
0x00 514C RTC_ISR1 Initialization and status register 1 0x00
0x00 514D RTC_ISR2 Initialization and Status register 2 0x00
0x00 514E
0x00 514F Reserved area (2 bytes)
0x00 5150 RTC_SPRERH(1) Synchronous prescaler register high 0x00(1)
0x00 5151 RTC_SPRERL(1) Synchron ous prescaler register low 0xFF(1)
0x00 5152 RTC_APRER(1) Asynchronous prescaler register 0x7F(1)
0x00 5153 Reserved area (1 byte)
0x00 5154 RTC_WUTRH(1) Wakeup timer register high 0xFF(1)
0x00 5155 RTC_WUTRL(1) Wakeup timer register low 0xFF(1)
0x00 5156 to
0x00 5158 Reserved area (3 bytes)
0x00 5159 RTC_WPR Write protection register 0x00
0x00 515A
0x00 515B Reserved area (2 bytes)
0x00 515C RTC_ALRMAR1 Alarm A register 1 0x00
0x00 515D RTC_ALRMAR2 Alarm A register 2 0x00
0x00 515E RTC_ALRMAR3 Alarm A register 3 0x00
0x00 515F RTC_ALRMAR4 Alarm A register 4 0x00
0x00 5160 to
0x00 51FF Reserved area (160 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 37/103
STM8L052C6 Memory and register map
48
0x00 5200
SPI1
SPI1_CR1 SPI1 cont ro l re gi st er 1 0x00
0x00 5201 SPI1_CR2 SPI1 control register 2 0x00
0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00
0x00 5203 SPI1_SR SPI1 status register 0x02
0x00 5204 SPI1_DR SPI1 data register 0x00
0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07
0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00
0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00
0x00 5208 to
0x00 520F Reserved area (8 bytes)
0x00 5210
I2C1
I2C1_CR1 I2C1 control register 1 0x00
0x00 5211 I2C1_CR2 I2C1 control register 2 0x00
0x00 5212 I2C1_FREQR I2C1 frequency register 0x00
0x00 5213 I2C1_OARL I2C1 own address register low 0x00
0x00 5214 I2C1_OARH I2C1 own address register hi gh 0x00
0x00 5215 Reserved (1 byte)
0x00 5216 I2C1_DR I2C1 data register 0x00
0x00 5217 I2C1_SR1 I2C1 status register 1 0x00
0x00 5218 I2C1_SR2 I2C1 status register 2 0x00
0x00 5219 I2C1_SR3 I2C1 status register 3 0x0x
0x00 521A I2C1_ITR I2C1 interrupt control register 0x00
0x00 521B I2C1_C CRL I2C1 clock control register low 0x00
0x00 521C I2C1_CCRH I2C1 clock control register high 0x00
0x00 521D I2C1_TRISER I2C1 TRISE register 0x02
0x00 521E I2C1_PECR I2C1 packet error checking register 0x00
0x00 521F to
0x00 522F Reserved area (17 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L052C6
38/103 DocID023331 Rev 2
0x00 5230
USART1
USART1_SR USART1 status register 0xC0
0x00 5231 USART1_DR USART1 data register undefined
0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00
0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00
0x00 5234 USART1_CR1 USART1 control register 1 0x00
0x00 5235 USART1_CR2 USART1 control register 2 0x00
0x00 5236 USART1_CR3 USART1 control register 3 0x00
0x00 5237 USART1_CR4 USART1 control register 4 0x00
0x00 5238 USART1_CR5 USART1 control register 5 0x00
0x00 5239 USART1_GTR USART1 guard time register 0x00
0x00 523A USART1_PSCR USART1 prescaler register 0x00
0x00 523B to
0x00 524F Reserved area (21 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 39/103
STM8L052C6 Memory and register map
48
0x00 5250
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5251 TIM2_CR2 TIM2 control register 2 0x00
0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00
0x00 5253 TIM2_ETR TIM2 external trigger register 0x00
0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00
0x00 5255 TIM2_IER TIM2 in terrupt enable register 0x00
0x00 5256 TIM2_SR1 TIM2 status register 1 0x00
0x00 5257 TIM2_SR2 TIM2 status register 2 0x00
0x00 5258 TIM2_EGR TIM2 event generation register 0x00
0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 525B TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 525C TIM2_CNTRH TIM2 counter high 0x00
0x00 525D TIM2_CNTRL TIM2 counter low 0x00
0x00 525E TIM2_PSCR TIM2 prescaler register 0x00
0x00 525F TIM2_AR RH TIM2 auto-reload register high 0xFF
0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00
0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5265 TIM2_BKR TIM2 break register 0x00
0x00 5266 TIM2_OISR TIM2 output idle state register 0x00
0x00 5267 to
0x00 527F Reserved area (25 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L052C6
40/103 DocID023331 Rev 2
0x00 5280
TIM3
TIM3_CR1 TIM3 control register 1 0x00
0x00 5281 TIM3_CR2 TIM3 control register 2 0x00
0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00
0x00 5283 TI M3_ETR TIM3 external trigger register 0x00
0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00
0x00 5285 TIM3_IER TIM3 in terrupt enable register 0x00
0x00 5286 TIM3_SR1 TIM3 status register 1 0x00
0x00 5287 TIM3_SR2 TIM3 status register 2 0x00
0x00 5288 TIM3_EGR TIM3 event generation register 0x00
0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00
0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00
0x00 528B TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00
0x00 528C TIM3_CNTRH TIM3 counter high 0x00
0x00 528D TIM3_CNTRL TIM3 counter low 0x00
0x00 528E TIM3_PSCR TIM3 prescaler register 0x00
0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF
0x00 5290 TIM3_ARRL TIM3 Auto-reload reg ister low 0xFF
0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00
0x00 5292 TIM3_CCR 1L TIM3 Capture/Compare register 1 low 0x00
0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00
0x00 5294 TIM3_CCR 2L TIM3 Capture/Compare register 2 low 0x00
0x00 5295 TIM3_BKR TIM3 break register 0x00
0x00 5296 TIM3_OISR TIM3 output idle state register 0x00
0x00 5297 to
0x00 52AF Reserved area (25 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 41/103
STM8L052C6 Memory and register map
48
0x00 52B0
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 52B1 TIM1_CR2 TIM1 control reg i ste r 2 0x00
0x00 52B2 TIM1_SMCR TIM1 Slave mode control registe r 0x00
0x00 52B3 TIM1_ETR TIM1 external trigger register 0x00
0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00
0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00
0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00
0x00 52B8 TIM1_EGR TIM1 event generation register 0x00
0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00
0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00
0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00
0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode regi ster 4 0x00
0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0 x00
0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00
0x00 52BF TIM1_CNTRH TIM1 counter high 0x00
0x00 52C0 TIM1_CNTRL TIM1 counter low 0x00
0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 52C2 T IM1_PSCRL TIM1 prescaler register low 0x00
0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF
0x00 52C4 TIM1_ARRL TIM1 Auto-reload register low 0xFF
0x00 52C5 TIM1_RCR TIM1 Repetition counter register 0x00
0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00
0x00 52C7 TIM1_CCR1L TIM1 Capture/Compare register 1 low 0x00
0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00
0x00 52C9 TIM1_CCR2L TIM1 Capture/Compare register 2 low 0x00
0x00 52CA TIM1_CCR3H TIM1 Capture/Compare register 3 high 0x00
0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00
0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00
0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00
0x00 52CE TIM1_BKR TIM1 break register 0x00
0x00 52CF TIM1_DTR TIM1 dead-time register 0x00
0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00
0x00 52D1 T IM1_DCR1 DMA1 control register 1 0x00
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L052C6
42/103 DocID023331 Rev 2
0x00 52D2 TIM1 TIM1_DCR2 TIM1 DMA1 control register 2 0x00
0x00 52D3 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00
0x00 52D4 to
0x00 52D F Reserved area (12 bytes)
0x00 52E0
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 52E1 TIM4_CR2 TIM4 control reg i ste r 2 0x00
0x00 52E2 TIM4_SMCR TIM4 Slave mode control registe r 0x00
0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00
0x00 52E4 TIM4_IER TIM4 Interrupt enable register 0x00
0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00
0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00
0x00 52E7 TIM4_CNTR TIM4 counter 0x00
0x00 52E8 TIM4_ PSCR TIM4 prescaler register 0x00
0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00
0x00 52EA to
0x00 52FE Reserved area (21 bytes)
0x00 52FF IRTIM IR_CR Infrared control register 0x00
0x00 5300 to
0x00 533F Reserved area (64 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 43/103
STM8L052C6 Memory and register map
48
0x00 5340
ADC1
ADC1_CR1 ADC1 configuration re gister 1 0x00
0x00 5341 ADC1_CR2 ADC1 configuration re gister 2 0x00
0x00 5342 ADC1_CR3 ADC1 configuration re gister 3 0x1F
0x00 5343 ADC1_SR ADC1 statu s register 0x00
0x00 5344 ADC1_DRH ADC1 data register high 0x00
0x00 5345 ADC1_DRL ADC1 data register low 0x00
0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F
0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF
0x00 5348 ADC1_LTRH ADC1 lo w threshold register high 0x00
0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00
0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00
0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00
0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00
0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00
0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00
0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00
0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00
0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00
0x00 5352 to
0x00 53FF Reserved area (174 bytes)
0x00 5400
LCD
LCD_CR1 LCD control register 1 0x00
0x00 5401 LCD_CR2 LCD control register 2 0x00
0x00 5402 LCD_CR3 LCD control register 3 0x00
0x00 5403 LCD_FRQ LCD frequency selection register 0x00
0x00 5404 LCD_PM0 LCD Port mask regi ster 0 0x00
0x00 5405 LCD_PM1 LCD Port mask regi ster 1 0x00
0x00 5406 LCD_PM2 LCD Port mask regi ster 2 0x00
0x00 5407 Reserved area
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L052C6
44/103 DocID023331 Rev 2
0x00 5408 to
0x00 540B
LCD
Reserved area (4 bytes)
0x00 540C LCD_RAM0 LCD display memory 0 0x00
0x00 540D LCD_RAM1 LCD display memory 1 0x00
0x00 540E LCD_RAM2 LCD display memory 2 0x00
0x00 540F LCD_RAM3 LCD display memory 3 0x00
0x00 5410 LCD_RAM4 LCD display memory 4 0x00
0x00 5411 LCD_RAM5 LCD display memory 5 0x00
0x00 5412 LCD_RAM6 LCD display memory 6 0x00
0x00 5413 LCD_RAM7 LCD display memory 7 0x00
0x00 5414 LCD_RAM8 LCD display memory 8 0x00
0x00 5415 LCD_RAM9 LCD display memory 9 0x00
0x00 5416 LCD_RAM10 LCD display memory 10 0x00
0x00 5417 LCD_RAM11 LCD display memory 11 0x00
0x00 5418 LCD_RAM12 LCD display memory 12 0x00
0x00 5419 LCD_RAM13 LCD display memory 13 0x00
0x00 541A to
0x00 542F Reserved area (22 bytes)
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
DocID023331 Rev 2 45/103
STM8L052C6 Memory and register map
48
0x00 5430
RI
Reserved area (1 byte) 0x00
0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00
0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00
0x00 5433 RI_IOIR1 I/O input register 1 undefined
0x00 5434 RI_IOIR2 I/O input register 2 undefined
0x00 5435 RI_IOIR3 I/O input register 3 undefined
0x00 5436 RI_IOCMR1 I /O control mode register 1 0x00
0x00 5437 RI_IOCMR2 I /O control mode register 2 0x00
0x00 5438 RI_IOCMR3 I /O control mode register 3 0x00
0x00 5439 RI_IOSR1 I/O switch register 1 0x00
0x00 543A RI_IOSR2 I/O switch register 2 0x00
0x00 543B RI_IOSR3 I/O switch register 3 0x00
0x00 543C RI_IOGCR I/O group control register 0x3F
0x00 543D RI_ASCR1 Analog switch register 1 0x00
0x00 543E RI_ASCR2 Analog switch register 2 0x00
0x00 543F RI_RCR Resistor control register 1 0x00
0x00 5440 to
0x00 5444 Reserved area (5 bytes)
1. These registers are not impacted by a system reset. They are reset at power-on.
Table 7. General hardware regis ter map (continued)
Address Block Register label Register name Reset
status
Table 8. CPU/SWIM/debug module/interrupt controller registers
Address Block Register Label Registe r Name Reset
Status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x03
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
Memory and register map STM8L052C6
46/103 DocID023331 Rev 2
0x00 7F0B to
0x00 7F5F CPU Reserved area (85 bytes)
0x00 7F60 CFG_GCR Global configuration register 0x00
0x00 7F70
ITC-SPR
ITC_SPR1 Interrupt Software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt Software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF
0x00 7F78 to
0x00 7F79 Reserved area (2 bytes)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F Reserved area (15 bytes)
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM Debug module control register 1 0x00
0x00 7F97 DM_CR2 DM Debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x1 0
0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x0 0
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F Reserved area (5 bytes)
1. Accessible by debug module only
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Registe r Name Reset
Status
DocID023331 Rev 2 47/103
STM8L052C6 Interrupt vector mapping
48
6 Interrupt vector mapping
Table 9. Interrupt mapping
IRQ
No. Source
block Description Wakeup
from Halt
mode
Wakeup
from
Active-
halt mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Vector
address
RESET Reset Yes Yes Yes Ye s 0x00 8000
TRAP Software interrupt - - - - 0x00 8004
0 Reserved 0x00 8008
1 FLASH FLASH end of programing/
write attempted to
protected page interrupt - - Yes Yes 0x00 800C
2 DMA1 0/1 DMA1 channels 0/1 half
transaction/transaction
complete interrupt - - Yes Yes 0x00 8010
3 DMA1 2/3 DMA1 channels 2/3 half
transaction/transaction
complete interrupt - - Yes Yes 0x00 8014
4RTC
RTC alarm A/
wakeup Yes Yes Yes Yes 0x 00 8018
5EXTI E/F/
PVD(2) External interrupt port E/F
PVD interrupt Yes Yes Yes Yes 0x00 801C
6 EXTIB/G External interrupt port B/G Yes Yes Yes Yes 0x00 8020
7 EXTID/H External interrupt port D/H Yes Yes Yes Yes 0x00 8024
8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028
9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C
10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0 x00 8030
11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034
12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0 x00 8038
13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C
14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0 x00 8040
15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0 x00 8044
16 LCD LCD interrupt - - Yes Yes 0x00 8048
17 CLK/TIM1 CLK system clock switch/
CSS interrupt/
TIM 1 break - - Yes Yes 0x00 804C
18 ADC1 ACD1 end of conversion/
analog watchdog/
overrun interrupt Yes Yes Yes Yes 0x00 8050
Interrupt vector mapping STM8L052C6
48/103 DocID023331 Rev 2
19 TIM2 TIM2 update/overflow/
trigger/break
interrupt - - Yes Yes 0x00 8054
20 TIM2 TIM2capture/
compare interrupt - - Yes Yes 0x00 8058
21 TIM3 TIM3 update/overflow/
trigger/break interrupt - - Yes Yes 0x00 805C
22 TIM3 TIM3 capture/compare
interrupt - - Yes Ye s 0x00 8060
23 TIM1 Update /overflow/trigger/
COM - - - Yes 0x00 8064
24 TIM1 Capture/compare - - - Yes 0x00 8068
25 TIM4 TIM4 update/overflow/
trigger interrupt - - Yes Yes 0x00 806C
26 SPI1 SPI1 TX buffer empty/
RX buffer not empty/
error/wakeup interrupt Yes Yes Yes Yes 0x00 8070
27 USART1
USART1transmit data
register empty/
transmission complete
interrupt
- - Yes Ye s 0x00 8074
28 USART1
USART1 received data
ready/overrun error/
idle line detected/parity
error/global error interrupt
- - Yes Ye s 0x00 8078
29 I2C1 I2C1 interrupt(3) Yes Yes Yes Yes 0x00 807C
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
Table 9. Interrupt mapping (continued)
IRQ
No. Source
block Description Wakeup
from Halt
mode
Wakeup
from
Active-
halt mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Vector
address
DocID023331 Rev 2 49/103
STM8L052C6 Option bytes
51
7 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 10 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the ap plication in IAP mode, except for
the ROP and UBC values which can only be taken into account when they are modified in
ICP mode (with the SWIM).
Refer to the STM8L05x/15x Flash programming manual (PM0054) and STM8 SWIM and
Debug Manual (UM0470) for information on SWIM programming procedures.
Table 10. Option byte addresses
Address Option name Option
byte
No.
Option bits Factory
default
setting
76543210
0x00 4800 Read-out
protection
(ROP) OPT0 ROP[7:0] 0xAA
0x00 4802 UBC (User
Boot code size) OPT1 UBC[7:0] 0x00
0x00 480 7 Reserved 0x00
0x00 4808 Independent
watchdog
option
OPT3
[3:0] Reserved WWDG
_HALT WWDG
_HW IWDG
_HALT IWDG
_HW 0x00
0x00 4809
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
OPT4 Reserved LSECNT[1:0] HSECNT[1:0] 0x00
0x00 480A Brownout reset
(BOR) OPT5
[3:0] Reserved BOR_TH BOR_
ON 0x00
0x00 480B Bootloader
option bytes
(OPTBL)
OPTBL
[15:0] OPTBL[15:0] 0x00
0x00 480C 0x00
Option bytes STM8L052C6
50/103 DocID023331 Rev 2
Table 11. Option byte description
Option
byte
No. Option description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to Readout protection section in the STM8L05x/15x and STM8L16x reference manual
(RM0031).
OPT1
UBC[7:0] Size of the user boot code area
0x00: UBC is not protected.
0x01: Page 0 is wri te protected.
0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors.
0x03: Page 0 to 2 reserved for UBC and write protected.
0x7F to 0xFF - All 128 pages reserved for UBC and write protected.
The protection of the memory area not protected by the UBC is enabled through the MASS keys.
Refer to User boot code section in the STM8L05x/15x and STM8L16x reference manual (RM0031).
OPT2 Reserved
OPT3
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
IWDG_HALT: Indep endent window watchdog off on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Acti v e-halt mode
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mo de
OPT4
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
Refer to Table 29: LSE oscillator characteristics on page 70.
DocID023331 Rev 2 51/103
STM8L052C6 Option bytes
51
OPT5
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to
the value of BOR_TH bits.
OPTBL
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on
content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the
CPU jumps to the bootloader or to the reset vector .
Refer to the UM0560 bootloader user manual for more details.
Table 11. Option byte description (continued)
Option
byte
No. Option description
Electrical parameters STM8L052C6
52/103 DocID023331 Rev 2
8 Electrical parameters
8.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
8.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature , supply voltage and fre quencies by tests in productio n on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected tem p er at ur e range).
Data base d on chara cte rization re su lts, design simulation and/or technology characteristics
is indicated in the table footnotes and are not tested in production. Based on
characterization, th e minimum and maximu m values refer to sample test s and represent the
mean value plus or minus thr ee times the standard deviation (mean±3).
8.1.2 Typical values
Unless otherwise specified, typical dat a is based on TA = 25 °C, VDD = 3 V. It is given only as
design guidelines and is not tested.
T ypi cal ADC accuracy values are d etermined by characterization of a batch of samples fr om
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
8.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
8.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 5.
Figure 5. Pin loading conditions
50 pF
STM8L PIN
DocID023331 Rev 2 53/103
STM8L052C6 Electrical parameters
97
8.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 6.
Figure 6. Pin input voltage
8.2 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended per iods m ay
affect device reliability.
VIN
STM8L PIN
Table 12. Voltage characteristics
Symbol Ratings Min Max Unit
VDD- VSS External supply voltage (including VDDA
and VDD2)(1)
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the
external power supply.
- 0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 13. for maximum allowed injected current values.
Input voltage on true open-drain pins
(PC0 and PC1) VSS - 0.3 VDD + 4.0
V
Input voltage on five-volt tolerant (FT)
pins (PA7 and PE0) VSS - 0.3 VDD + 4.0
Input voltage on 3.6 V tolerant (TT) pins VSS - 0.3 4.0
Input voltage on any other pin VSS - 0.3 4.0
VESD Electrostatic discharge voltage see Absolute maximum
ratings (electrical sensitivity)
on page 96
Electrical parameters STM8L052C6
54/103 DocID023331 Rev 2
Table 13. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power line (source) 80
mA
IVSS Total current out of VSS ground line (sink) 80
IIO
Output current sunk by IR_TIM pin (with high sink LED driver
capability) 80
Output current sunk by any other I/O and con trol pin 25
Output current sourced by any I/Os and control pin - 25
IINJ(PIN)
Injected current on true open-drain pins (PC0 and PC1)(1) - 5 / +0
Injected current on five-volt tolerant (FT) pins (PA7 and PE0) (1)
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
- 5 / +0
Injected current on 3.6 V tolerant (TT) pins (1) - 5 / +0
Injected current on a ny ot he r pi n (2)
2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
- 5 / +5
IINJ(PIN) Total injected current (sum of all I/O and control pins) (3)
3. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
Table 14. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to +150 ° C
TJMaximum junction temperature 150
DocID023331 Rev 2 55/103
STM8L052C6 Electrical parameters
97
8.3 Operating conditions
Subject to general operating conditions for VDD and TA.
8.3.1 General operating conditions
Table 15. General ope rating conditions
Symbol Parameter Conditions Min. Max. Unit
fSYSCLK(1) System clock
frequency 1.8 V VDD 3.6 V 0 16 MHz
VDD Standard operating
voltage -1.83.6V
VDDA Analog operating
voltage Must be at the same
potential as VDD 1.8 3.6 V
PD(2) Power dissipation at
TA= 85 °C LQFP48 - 288 mW
PD(3) Power dissipation at
TA= 85 °C TSSOP20 - 181 mW
TATemperature range 1.8 V VDD 3.6 V -40 85 °C
TJJunction temperature
range -40 °C TA 85 °C -40 105(4) °C
1. fSYSCLK = fCPU
2. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal
characteristics” table.
3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal
characteristics” table.
4. TJmax is given by the test limit. Above this value, the product behavior is not guaranteed.
Electrical parameters STM8L052C6
56/103 DocID023331 Rev 2
8.3.2 Embedded reset and power control block characteristics
Table 16. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tVDD
VDD rise time rate BOR detector
enabled 0(1) -(1)
µs/V
VDD fall time rate BOR detector
enabled 20(1) -(1)
tTEMP Reset release delay VDD rising -3- ms
VPDR Power-down reset threshold Falling edge 1.30(2) 1.50 1.65 V
VBOR0 Brown-out reset threshold 0
(BOR_TH[2:0]=000) Falling edge 1.67 1.70 1.74
V
Rising edge 1.69 1.75 1.80
VBOR1 Brown-out reset threshold 1
(BOR_TH[2:0]=001) Falling edge 1.87 1.93 1.97
Rising edge 1.96 2.04 2.07
VBOR2 Brown-out reset threshold 2
(BOR_TH[2:0]=010) Falling edge 2.22 2.3 2.35
Rising edge 2.31 2.41 2.44
VBOR3 Brown-out reset threshold 3
(BOR_TH[2:0]=011) Falling edge 2.45 2.55 2.60
Rising edge 2.54 2.66 2.7
VBOR4 Brown-out reset threshold 4
(BOR_TH[2:0]=100) Falling edge 2.68 2.80 2.85
Rising edge 2.78 2.90 2.95
VPVD0 PVD threshold 0 Falling edge 1.80 1.84 1.88
V
Rising edge 1.88 1.94 1.99
VPVD1 PVD threshold 1 Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
VPVD2 PVD threshold 2 Falling edge 2.2 2.24 2.28
Rising edge 2.28 2.34 2.38
VPVD3 PVD threshold 3 Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
VPVD4 PVD threshold 4 Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
VPVD5 PVD threshold 5 Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
VPVD6 PVD threshold 6 Falling edge 2.97 3.05 3.09
Rising edge 3.08 3.15 3.20
1. Data guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
DocID023331 Rev 2 57/103
STM8L052C6 Electrical parameters
97
Figure 7. POR/BOR thresholds
8.3.3 Supply current characteristics
Total current consumption
The MCU is placed under the following conditions:
l All I/O pins in input mode with a static value at VDD or VSS (no load)
l All peripherals are disabled except if explicitly mentioned.
In the following table, data is based on characterization results, unless otherwise specified.
Subject to general operating conditions for VDD and TA.
9
9''
,QWHUQDO1567
9%25
%25WKUHVKROG
%25WKUHVKROGB
3'5WKUHVKROG
ZLWK
%25
ZLWKRXW
%25
7LPH
ZLWK
%25
6DIHUHVHW
5HVHW
%25DFWLYDWHGE\XVHU
IRUSRZHUGRZQGHWHFWLRQ
9''
2SHUDWLQJ SRZHUVXSSO\
9
ZLWKRXW%25 EDWWHU\OLIHH[WHQVLRQ

93'5
$,
%25DOZD\VDFWLYH
DWSRZHUXS
6DIHUHVHWUHOHDVH
9''
Electrical parameters STM8L052C6
58/103 DocID023331 Rev 2
Table 17. Total current consumpt ion in Run mode
Symbol Para
meter Conditions(1)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC oscillator, fCPU=fSYSCLK
Typ Max Unit
55 °C 85 °C
IDD(RUN)
Supply
current
in run
mode(2)
2. CPU executing typical data processing
All
peripherals
OFF,
code
executed
from RAM,
VDD from
1.8 V to 3.6 V
HSI RC osc.
(16 MHz)(3)
3. The run from RAM consumption can be approximated with the linear formula:
IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA
fCPU = 125 kHz 0.39 0.47 0.49
mA
fCPU = 1 MHz 0.48 0.56 0.58
fCPU = 4 MHz 0.75 0.84 0.86
fCPU = 8 MHz 1.10 1.20 1.25
fCPU = 16 MHz 1.85 1.93 2.12(5)
HSE external
clock
(fCPU=fHSE)(4)
fCPU = 125 kHz 0.05 0.06 0.09
fCPU = 1 MHz 0.18 0.19 0.20
fCPU = 4 MHz 0.55 0.62 0.64
fCPU = 8 MHz 0.99 1.20 1.21
fCPU = 16 MHz 1.90 2.22 2.23(5)
LSI RC osc.
(typ. 38 kHz) fCPU = fLSI 0.040 0.045 0.046
LSE external
clock
(32.768 kHz) fCPU = fLSE 0.035 0.040 0.048(5)
IDD(RUN)
Supply
current
in Run
mode
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.8 V to 3.6 V
HSI RC
oscillator.(6)
fCPU = 125 kHz 0.43 0.55 0.56
mA
fCPU = 1 MHz 0.60 0.77 0.80
fCPU = 4 MHz 1.11 1.34 1.37
fCPU = 8 MHz 1.90 2.20 2.23
fCPU = 16 MHz 3.8 4.60 4.75
HSE external
clock
(fCPU=fHSE) (4)
fCPU = 125 kHz 0.30 0.36 0.39
fCPU = 1 MHz 0.40 0.50 0.52
fCPU = 4 MHz 1.15 1.31 1.40
fCPU = 8 MHz 2.17 2.33 2.44
fCPU = 16 MHz 4.0 4.46 4.52
LSI RC osc. fCPU = fLSI 0.110 0.123 0.130
LSE ext. clock
(32.768
kHz)(7) fCPU = fLSE 0.100 0.101 0.104
DocID023331 Rev 2 59/103
STM8L052C6 Electrical parameters
97
Figure 8. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz
1. Typical current consumption measured with code executed from RAM
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE
consumption
(IDD HSE) must be added. Refer to Table 28.
5. Tested in production.
6. The run from Flash consumption can be approximated with the linear formula:
IDD(run_from_Flash) = Freq * 195 µA/MHz + 440 µA
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE
consumption
(IDD LSE) must be added. Refer to Table 29.







    
9
''
>9@
&
&
&
DL9
,''581+6,>P$@
Electrical parameters STM8L052C6
60/103 DocID023331 Rev 2
In the following table, data is based on characterization results, unless otherwise specified.
Table 18. Total current consumption in Wait mode
Symbol Parameter Conditions(1)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC oscillator, fCPU = fSYSCLK
Typ
Max
Unit
55°C 85°C
(2)
2. For temperature range 6.
IDD(Wait)
Supply
current in
Wa it mode
CPU not
clocked,
all peripherals
OFF,
code executed
from RAM
with Flash in
IDDQ mode(3),
VDD from
1.8 V to 3.6 V
3. Flash is configured in IDDQ mode in Wait mode by setting the EPM or W AITM bit in the Flash_CR1 register .
HSI
fCPU = 125 kHz 0.33 0.39 0.41
mA
fCPU = 1 MHz 0.35 0.41 0.44
fCPU = 4 MHz 0.42 0.51 0.52
fCPU = 8 MHz 0.52 0.57 0.58
fCPU = 16 MHz 0.68 0.76 0.79
HSE external
clock
(fCPU=fHSE)(4)
fCPU = 125 kHz 0.032 0.056 0.068
fCPU = 1 MHz 0.078 0.121 0.144
fCPU = 4 MHz 0.218 0.26 0.30
fCPU = 8 MHz 0.40 0.52 0.57
fCPU = 16 MHz 0.760 1.01 1.05
LSI fCPU = fLSI 0.035 0.044 0.046
LSE(5)
external clock
(32.768 kHz) fCPU = fLSE 0.032 0.036 0.038
IDD(Wait)
Supply
current in
Wait
mode
CPU not
clocked,
all peripherals
OFF,
code executed
from Flash,
VDD from
1.8 V to 3.6 V
HSI
fCPU = 125 kHz 0.38 0.48 0.49
mA
fCPU = 1 MHz 0.41 0.49 0.51
fCPU = 4 MHz 0.50 0.57 0.58
fCPU = 8 MHz 0.60 0.66 0.68
fCPU = 16 MHz 0.79 0.84 0.86
HSE(4)
external clock
(fCPU=HSE)
fCPU = 125 kHz 0.06 0.08 0.09
fCPU = 1 MHz 0.10 0.17 0.18
fCPU = 4 MHz 0.24 0.36 0.39
fCPU = 8 MHz 0.50 0.58 0.61
fCPU = 16 MHz 1.00 1.08 1.14
LSI fCPU = fLSI 0.055 0.058 0.065
LSE(5)
external clock
(32.768 kHz) fCPU = fLSE 0.051 0.056 0.060
DocID023331 Rev 2 61/103
STM8L052C6 Electrical parameters
97
Figure 9. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)
1. Typical current consumption measured with code executed from Flash memory.
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE
consumption
(IDD HSE) must be added. Refer to Table 28.
5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE
consumption
(IDD HSE) must be added. Refer to Table 29.











    
9''>9@
,'':$,7+6,
>$@
&
&
&
DL9
Electrical parameters STM8L052C6
62/103 DocID023331 Rev 2
In the following table, data is based on characterization results, unless otherwise specified.
Figure 10. Typ. IDD(LPR) vs. VDD (LSI clock source)
Table 19. Tot al current consumption and timing in Low power run mode at VDD = 1.8 V
to 3.6 V
Symbol Parameter Conditions(1) Typ Max Unit
IDD(LPR) Supply current in
Low power run mode
LSI RC osc.
(at 38 kHz)
all peripherals OFF
TA = -40 °C to 25 °C 5.1 5.4
A
TA = 55 °C 5.7 6
TA = 85 °C 6.8 7.5
with TIM2 active(2)
TA = -40 °C to 25 °C 5.4 5.7
TA = 55 °C 6.0 6.3
TA = 85 °C 7.2 7.8
LSE (3) external
clock
(32.768 kHz)
all peripherals OFF
TA = -40 °C to 25 °C 5.25 5.6
TA = 55 °C 5.67 6.1
TA = 85 °C 5.85 6.3
with TIM2 active (2)
TA = -40 °C to 25 °C 5.59 6
TA = 55 °C 6.10 6.4
TA = 85 °C 6.30 7
1. No floating I/Os
2. Timer 2 clock enabled and counter running
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 29
DL9
,''/35/6,
>$@
&
&
&
9''>9@
    





DocID023331 Rev 2 63/103
STM8L052C6 Electrical parameters
97
In the following table, data is based on characterization results, unless otherwise specified.
Figure 11. Typ. IDD(LPW) vs. VDD (LSI clock source)
Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V
Symbol Parameter Conditions(1) Typ Max Unit
IDD(LPW) Supply current in
Low power wait
mode
LSI RC osc.
(at 38 kHz)
all peripherals OFF
TA = -40 °C to 25 °C 33.3
A
TA = 55 °C 3.3 3.6
TA = 85 °C 4.4 5
with TIM2 active(2)
TA = -40 °C to 25 °C 3.4 3.7
TA = 55 °C 3.7 4
TA = 85 °C 4.8 5.4
LSE external
clock(3)
(32.768 kHz)
all peripherals OFF
TA = -40 °C to 25 °C 2.35 2.7
TA = 55 °C 2.42 2.82
TA = 85 °C 3.10 3.71
with TIM2 active (2)
TA = -40 °C to 25 °C 2.46 2.75
TA = 55 °C 2.50 2.81
TA = 85 °C 3.16 3.82
1. No floating I/Os.
2. Timer 2 clock enabled and counter is running.
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 29.









,''/3:/6,
>$@
&
&
&
DL9
   
9''>9@
Electrical parameters STM8L052C6
64/103 DocID023331 Rev 2
In the following table, data is based on characterization results, unless otherwise specified.
Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V
Symbol Parameter Conditions (1) Typ Max Unit
IDD(AH) Supply current in
Active-halt mode LSI RC
(at 38 kHz)
LCD OFF(2)
TA = -40 °C to 25 °C 0.9 2.1
A
TA = 55 °C 1.2 3
TA = 85 °C 1.5 3.4
LCD ON
(static duty/
external
VLCD) (3)
TA = -40 °C to 25 °C 1.4 3.1
TA = 55 °C 1.5 3.3
TA = 85 °C 1.9 4.3
LCD ON
(1/4 duty/
external
VLCD) (4)
TA = -40 °C to 25 °C 1.9 4.3
TA = 55 °C 1.95 4.4
TA = 85 °C 2.4 5.4
LCD ON
(1/4 duty/
internal
VLCD) (5)
TA = -40 °C to 25 °C 3.9 8.75
TA = 55 °C 4.15 9.3
TA = 85 °C 4.5 10.2
IDD(AH) Supply current in
Active-halt mode
LSE external
clock
(32.768 kHz)
(6)
LCD OFF(7)
TA = -40 °C to 25 °C 0.5 1.2
A
TA = 55 °C 0.62 1.4
TA = 85 °C 0.88 2.1
LCD ON
(static duty/
external
VLCD) (3)
TA = -40 °C to 25 °C 0.85 1.9
TA = 55 °C 0.95 2.2
TA = 85 °C 1.3 3.2
LCD ON
(1/4 duty/
external
VLCD) (4)
TA = -40 °C to 25 °C 1.5 2.5
TA = 55 °C 1.6 3.8
TA = 85 °C 1.8 4.2
LCD ON
(1/4 duty/
internal
VLCD) (5)
TA = -40 °C to 25 °C 3.4 7.6
TA = 55 °C 3.7 8.3
TA = 85 °C 3.9 9.2
IDD(AH) Supply current in
Active-halt mode
LSI RC (at 38 kHz)
TA = -40 °C to 25 °C 0.9 2.1
A
TA = 55 °C 1.2 3
TA = 85 °C 1.5 3.4
LSE external clock (32.768
kHz)(8)
TA = -40 °C to 25 °C 0.5 1.2
TA = 55 °C 0.62 1.4
TA = 85 °C 0.88 2.1
IDD(WUFAH)
Supply current during
wakeup time from
Active-halt mode
(using HSI)
-2.4-mA
DocID023331 Rev 2 65/103
STM8L052C6 Electrical parameters
97
tWU_HSI(AH)(9)
(10)
Wakeup time from
Active-halt mode to
Run mode (using HSI) -4.77s
tWU_LSI(AH)(9)
(10)
Wakeup time from
Active-halt mode to
Run mode (using LSI) - 150 - s
1. No floating I/O, unless otherwise specified.
2. RTC enabled. Clock source = LSI
3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
5. LCD enabled with internal LCD booste r VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
connected.
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 29.
7. RTC enabled. Clock source = LSE.
8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 29.
9. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V
Symbol Parameter Conditions (1) Typ Max Unit
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE
external crystal
Symbol Parameter Condition(1) Typ Unit
IDD(AH) (2) Supply current in Active-halt
mode
VDD = 1.8 V LSE 1.15
µA
LSE/32(3) 1.05
VDD = 3 V LSE 1.30
LSE/32(3) 1.20
VDD = 3.6 V LSE 1.45
LSE/32(3) 1.35
1. No floating I/O, unless otherwise specified.
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
3. RTC clock is LSE divided by 32.
Electrical parameters STM8L052C6
66/103 DocID023331 Rev 2
In the following table, data is based on characterization results, unless otherwise specified.
Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V
Symbol Parameter Condition(1) Typ Max Unit
IDD(Halt) Supply current in Halt mode
(Ultra-low-power ULP bit =1 in
the PWR_CSR2 register)
TA = -40 °C to 25 °C 350 1400(2)
nATA = 55 °C 580 2000
TA = 85 °C 1160 2800(2)
IDD(WUHalt) Supply current during wakeup
time from Halt mode (using
HSI) -2.4-mA
tWU_HSI(Halt)(3)(4) Wakeup time from Halt to Run
mode (using HSI) -4.77µs
tWU_LSI(Halt) (3)(4) Wakeup time from Halt mode
to Run mode (using LSI) -150-µs
1. TA = -40 to 85 °C, no floating I/O, unless otherwise specified.
2. Te sted in production.
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
4. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
DocID023331 Rev 2 67/103
STM8L052C6 Electrical parameters
97
Current consumption of on-chip peripherals
Table 24. Peripheral current consumption
Symbol Parameter Typ.
VDD = 3.0 V Unit
IDD(TIM1) TIM1 supply current(1) 13
IDD(TIM2) TIM2 supply current (1) 8
µA/MHz
IDD(TIM3) TIM3 supply current (1) 8
IDD(TIM4) TIM4 timer supply current (1) 3
IDD(USART1) USART1 supply current (2) 6
IDD(SPI1) SPI1 supply current (2) 3
IDD(I2C1) I2C1 supply current (2) 5
IDD(DMA1) DMA1 supply current(2) 3
IDD(WWDG) WWDG supply current(2) 2
IDD(ALL) Pe ripherals ON (3) 44 µA/MHz
IDD(ADC1) ADC1 supply current(4) 1500
µA
IDD(PVD/BOR) Power voltage detector and br ownout Reset unit supply
current (5) 2.6
IDD(BOR) Brownout Reset unit supply current (5) 2.4
IDD(IDWDG) Indepen dent watchdog supply current
including LSI supply
current 0.45
excluding LSI
supply current 0.05
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.
5. Including supply current of internal reference voltage.
Table 25. Current consumption under external reset
Symbol Parameter Conditions Typ Unit
IDD(RST) Supply current under
external reset (1) All pins are externall y
tied to VDD
VDD = 1.8 V 48
µAVDD = 3 V 76
VDD = 3.6 V 91
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
Electrical parameters STM8L052C6
68/103 DocID023331 Rev 2
8.3.4 Clock and timing characteristics
HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
LSE external clock (LSEBYP=1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 26. HSE external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext External clock source
frequency(1)
1. Data guaranteed by Design, not tested in production.
-
1-16MHz
VHSEH OSC_IN input pin high level
voltage 0.7 x VDD -V
DD V
VHSEL OSC_IN input pin low level
voltage VSS - 0.3 x VDD
Cin(HSE) OSC_IN input
capacitance(1) - - 2.6 - pF
ILEAK_HSE OSC_IN input leakage
current VSS < VIN < VDD --±1µA
Table 27. LSE external clock characterist ics
Symbol Parameter Min Typ Max Unit
fLSE_ext External clock source frequency(1) - 32.768 - kHz
VLSEH(2) OSC32_IN input pin high level voltage 0.7 x VDD -V
DD V
VLSEL(2) OSC32_IN input pin low level voltage VSS - 0.3 x VDD
Cin(LSE) OSC32_IN input capacitance(1) -0.6-pF
ILEAK_LSE OSC32_IN input leakage current - - ±1 µA
1. Data guaranteed by Design, not tested in production.
2. Data based on characterization results, not tested in production.
DocID023331 Rev 2 69/103
STM8L052C6 Electrical parameters
97
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterizatio n results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Figure 12. HSE oscillator circuit diagram
HSE oscillator critical gm formula
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
CL1=CL2=C: Grounded external capacitance
gm >> gmcrit
Table 28. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE High speed external oscillator
frequency -1-16MHz
RFFeedback resistor - - 200 - k
C(1) Recommended load capacitance (2) --20-pF
IDD(HSE) HSE oscillator power consumption
C = 20 pF,
fOSC = 16 MHz --
2.5 (startup)
0.7 (stabilized)(3) mA
C = 10 pF,
fOSC =16 MHz --
2.5 (startup)
0.46 (stabilized)(3)
gmOscillator transconductance - 3.5(3) --mA/V
tSU(HSE)(4) Startup time VDD is stabilized 1 - ms
1. C=
C
L1
=
C
L2
is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data guaranteed by Design. Not tested in production.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
OSC_OUT
OSC_IN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
Electrical parameters STM8L052C6
70/103 DocID023331 Rev 2
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterizatio n results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Figure 13. LSE oscillator circuit diagram
Table 29. LSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE Low speed external oscillator
frequency - - 32.768 - kHz
RFFeedback resistor V = 200 mV - 1.2 - M
C(1) Recommended load capacitance (2) --8-pF
IDD(LSE) LSE oscillator power consumption
---1.4
(3) µA
VDD = 1.8 V - 450 -
nAVDD = 3 V - 600 -
VDD = 3.6 V - 750 -
gmOscillator transconductance - 3(3) A/V
tSU(LSE)(4) Startup time VDD is stabilized - 1 - s
1. C=
C
L1
=
C
L2
is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.
Refer to crystal manufacturer for more details.
3. Data guaranteed by Design. Not tested in production.
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
OSC_OUT
OSC_IN
f
LSE
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
DocID023331 Rev 2 71/103
STM8L052C6 Electrical parameters
97
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Figure 14. Typical HSI frequency vs. VDD
Table 30. HSI oscillator characteristics
Symbol Parameter Conditions(1) Min Typ Max Unit
fHSI Frequency VDD = 3.0 V - 16 MHz
ACCHSI
Accuracy of HSI
oscillator (factory
calibrated)
VDD = 3.0 V, TA = 25 °C -1 (2) -1
(2) %
1.8 V VDD 3.6 V,
-40 °C TA 85 °C -5 - 5 %
TRIM HSI user trimming
step(3) Trimming code multiple of 16 - 0.4 0.7 %
Trim ming code = multiple of 16 - ± 1.5 %
tsu(HSI) HSI oscillator setup
time (wakeup time) --3.76
(4) µs
IDD(HSI) HSI oscillator power
consumption - - 100 140(4) µA
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Te sted in production.
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for
more details.
4. Guaranteed by design, not tested in production.











&
&
&
DL9
9''>9@
+6,IUHTXHQF\>0+]@
           
Electrical parameters STM8L052C6
72/103 DocID023331 Rev 2
Low speed internal RC oscilla tor (LSI)
In the following table, data is based on characterization results, not tested in production.
Figure 15. Typical LSI frequency vs. VDD
Table 31. LSI oscillator characteristics
Symbol Parameter (1)
1. VDD = 1.8 V to 3.6 V, TA = -40 to 85 °C unless otherwise specified.
Conditions(1) Min Typ Max Unit
fLSI Frequency - 26 38 56 kHz
tsu(LSI) LSI oscillator wakeu p time - - - 200(2)
2. Guaranteed by design, not tested in production.
µs
IDD(LSI) LSI oscillator frequency
drift(3)
3. This is a deviation for an individual part, once the initial frequency has been measured.
0 °C TA 85 °C -12 - 11 %











    
9''>9@
/6, IUHTXHQF\ >N+]@
&
&
&
DL9
DocID023331 Rev 2 73/103
STM8L052C6 Electrical parameters
97
8.3.5 Memory characteristics
TA = -40 to 85 °C unless otherwise specified.
Flash memory
8.3.6 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Table 32. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode (1)
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization, not tested in production.
Halt mode (or Reset) 1.8 - - V
Table 33. Flash program and data EEPROM memory
Symbol Parameter Conditions Min Typ Max
(1) Unit
VDD Operating voltage
(all modes, read/write/erase) fSYSCLK = 16 MHz 1.8 3.6 V
tprog
Programming time for 1 or 64 bytes (block)
erase/write cycles (on programmed byte) --6-ms
Programming time for 1 to 64 bytes (block)
write cycles (on erased byte) --3-ms
Iprog Programming/ erasing consumption TA+25 °C, VDD = 3.0 V - 0.7 -mA
TA+25 °C, VDD = 1.8 V - -
tRET(2)
Data retention (program memory) after 100
erase/write cycles at TA–40 to +85 °C TRET+85 °C 30(1) --
years
Data retention (data memory) after 100000
erase/write cycles at TA= –40 to +85 °C TRET +85 °C 30(1) --
NRW (3) Erase/write cycles (program memory) TA –40 to +85 °C 100(1) - - cycles
Erase/write cycles (data memory) 100(1)
(4) - - kcycles
1. Data based on characterization results, not tested in production.
2. Conforming to JEDEC JESD22a117
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation
addresses a single byte.
4. Data based on characterization performed on the whole data memory.
Electrical parameters STM8L052C6
74/103 DocID023331 Rev 2
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
8.3.7 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be ke pt at a fixed volta ge: using the output mode of the I/O for example or
an external pull-up or pull-down r esistor.
Table 34. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection Positive
injection
IINJ
Injected current on true open-drain pins (PC0 and
PC1) -5 +0
mA
Injected current on all five-volt tolerant (FT) pins -5 +0
Injected current on all 3.6 V tolerant (TT) pins -5 +0
Injected current on any other pin -5 + 5
DocID023331 Rev 2 75/103
STM8L052C6 Electrical parameters
97
Table 35. I/O static characteristics
Symbol Parameter Conditions(1) Min Typ Max Unit
VIL Input low level voltage(2)
Input voltage on true open-drain
pins (PC0 and PC1) VSS-0.3 -0.3 x VDD
V
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0) VSS-0.3 -0.3 x VDD
Input voltage on 3.6 V tolerant
(TT) pins VSS-0.3 -0.3 x VDD
Input voltage on any other pin VSS-0.3 -0.3 x VDD
VIH Input high level voltage (2)
Input voltage on true open-drain
pins (PC0 and PC1)
with VDD < 2 V 0.70 x VDD
-5.2
V
Input voltage on true open-drain
pins (PC0 and PC1)
with VDD 2 V -5.5
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0) with VDD < 2 V
0.70 x VDD
-5.2
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0) with VDD 2 V -5.5
Input voltage on 3.6 V tolerant
(TT) pins -3.6
Input voltage on any other pin 0.70 x VDD -VDD+0.3
Vhys Schmitt trigger voltage
hysteresis (3) I/Os - 200 - mV
True open drain I/Os - 200 -
Ilkg Input leakage current (4)
VSSVIN VDD
High sink I/Os - - 50 (5)
nA
VSSVIN VDD
True open drain I/Os - - 200(5)
VSSVIN VDD
PA0 with high sink LED driver
capability - - 200(5)
RPU Weak pull-up equivalent
resistor(2)(6) VINVSS 30 45 60 k
CIO I/O pin capacitance - - 5 -pF
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 19).
Electrical parameters STM8L052C6
76/103 DocID023331 Rev 2
Figure 16. Typical VIL and VIH vs. VDD (high sink I/Os)
Figure 17. Typical VIL and VIH vs. VDD (true open drain I/Os)



    
&
&
&
DL9
9,/DQG9,+>9@
9''>9@



    
&
&
&
DL9
9,/DQG9,+>9@
9''>9@
DocID023331 Rev 2 77/103
STM8L052C6 Electrical parameters
97
Figure 18. Typical pull-up resistance RPU vs. VDD with VIN=VSS
Figure 19. Typical pull-up current Ipu vs. VDD with VIN=VSS







&
&
&
DL9
3XOOXSUHVLVWDQFH>N@
       
9''>9@






           
&
&
&
DL9
3XOOXSFXUUHQW>$@
9''>9@
Electrical parameters STM8L052C6
78/103 DocID023331 Rev 2
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 36. Output driving current (high sink ports)
I/O
Type Symbol Parameter Conditions Min Max Unit
High sink
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
IIO = +2 mA,
VDD = 3.0 V -0.45V
IIO = +2 mA,
VDD = 1.8 V -0.45V
IIO = +10 mA,
VDD = 3.0 V -0.7V
VOH (2)
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
IIO = -2 mA,
VDD = 3.0 V VDD-0.45 -V
IIO = -1 mA,
VDD = 1.8 V VDD-0.45 -V
IIO = -10 mA,
VDD = 3.0 V VDD-0.7 - V
Table 37. Output driving current (true open drain ports)
I/O
Type Symbol Parameter Conditions Min Max Unit
Open drain
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
IIO = +3 mA,
VDD = 3.0 V -0.45
V
IIO = +1 mA,
VDD = 1.8 V -0.45
Table 38. Output driving current (PA0 with high sink LED driver capability)
I/O
Type Symbol Parameter Conditions Min Max Unit
IR
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin IIO = +20 mA,
VDD = 2.0 V -0.45V
DocID023331 Rev 2 79/103
STM8L052C6 Electrical parameters
97
Figure 20. Typ. VOL @ VDD = 3.0 V (high sink
ports) Figure 21. Typ. VOL @ VDD = 1.8 V (high sink
ports)




,2/>P$@
92/>9@
&
&
&
DL9








,
2/
>P$@
9
2/
>9@
&
&
&
DL9
Figure 22. Typ. VOL @ VDD = 3.0 V (true open
drain ports) Figure 23. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
DL9






,2/>P$@
92/>9@
&
&
&






,2/>P$@
92/>9@
&
&
&
BJ7
Figure 24. Typ. VDD - VOH @ VDD = 3.0 V (high
sink ports) Figure 25. Typ. VDD - VOH @ VDD = 1.8 V (high
sink ports)







,2+>P$@
9''92+>9@
&
&
&
DL9






,2+>P$@
9''92+>9@
&
&
&
BJ7
Electrical parameters STM8L052C6
80/103 DocID023331 Rev 2
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 26. Typical NRST pull-up resistance RPU vs. VDD
Table 39. NRST pin char ac te ris tic s
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage (1) -VSS -0.8
V
VIH(NRST) NRST input high level voltage (1) -1.4-
VDD
VOL(NRST) NRST output low level voltage (1)
IOL = 2 mA
for 2.7 V VDD 3.6
V--
0.4
IOL = 1.5 mA
for VDD < 2.7 V --
VHYST NRST input hysteresis(3) -10%VDD
(2) --mV
RPU(NRST) NRST pull-up equivalent resistor
(1) -304560k
VF(NRST) NRST input filtered pulse (3) ---50
ns
VNF(NRST) NRST input not filtered pulse (3 ) - 300 - -
1. Data based on characterization results, not tested in production.
2. 200 mV min.
3. Data guaranteed by design, not tested in production.







       
9''>9@
&
&
&
DL9
3XOOXSUHVLVWDQFH>N@
DocID023331 Rev 2 81/103
STM8L052C6 Electrical parameters
97
Figure 27. Typical NRST pull-up current Ipu vs. VDD
The reset network shown in Figure 28 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL(NRST) max. level specified
in Table 39. Otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discha rge current. If the NRST signal is used to reset the
external circuitry, atten tio n mus t be paid to the char ge /d isch a rge tim e of the ex te rn al
capacitor to fulfill the external devices reset timing conditions. The minimum recommended
capacity is 10 nF.
Figure 28. Recommended NRST pin configuration
DL9
           
3XOOXSFXUUHQW>$@






9''>9@
&
&
&
EXTERNAL
RESET
CIRCUIT STM8
Filter
RPU
VDD
INTERNAL RESET
NRST
0.1 µF
(Optional)
Electrical parameters STM8L052C6
82/103 DocID023331 Rev 2
8.3.8 Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 40 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI1 characteristics
Symbol Parameter Conditions(1) Min Max Unit
fSCK
1/tc(SCK) SPI1 clock frequency Master mode 0 8 MHz
Slave mode 0 8
tr(SCK)
tf(SCK)
SPI1 clock rise and fall
time Capacitive load: C = 30 pF - 30
ns
tsu(NSS)(2) NSS setup time Slave mode 4 x 1/fSYSCLK -
th(NSS)(2) NSS hold time Slave mode 80 -
tw(SCKH)(2)
tw(SCKL)(2) SCK high and low time Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz 105 145
tsu(MI) (2)
tsu(SI)(2) Data input setup time Master mode 30 -
Slave mode 3 -
th(MI) (2)
th(SI)(2) Data input ho ld time Master mode 15 -
Slave mode 0 -
ta(SO)(2)(3) Data output access time Slave mode - 3x 1/fSYSCLK
tdis(SO)(2)(4) Data output disable ti me Slave mode 30 -
tv(SO) (2) Data output valid time Slave mode (after enable edge) - 60
tv(MO)(2) Data output valid time Master mode (after enable
edge) -20
th(SO)(2)
Data output hold time Slave mode (after enable edge) 15 -
th(MO)(2) Master mode (after enable
edge) 1-
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
DocID023331 Rev 2 83/103
STM8L052C6 Electrical parameters
97
Figure 29. SPI1 timing diagram - slave mode and CPHA=0
Figure 30. SPI1 timing diagram - slave mode and CPHA=1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DLF
^</ŶƉƵƚ
W,сϬ
DK^/
/EWhd
D/^K
KhdW hd
W,сϬ
D^ K hd
D^ /E
/ Khd
>^ /E
>^ Khd
WK>сϬ
WK>сϭ
/ /E
E^^ŝŶƉƵƚ
ƚ^h;E^^Ϳ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
ƚĂ;^KͿ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
ƚǀ;^KͿ ƚŚ;^KͿ ƚƌ;^<Ϳ
ƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
ƚƐƵ;^/Ϳ
ƚŚ;^/Ϳ
DL
6&.,QSXW
&3+$
026,
,1387
0,62
287 3 87
&3+$
06 % 2 87
06% ,1
%, 7 28 7
/6% ,1
/6% 287
&32/ 
&32/ 
%,7 ,1
W68166 WF6&. WK166
WD62
WZ6&.+
WZ6&./
WY62 WK62 WU6&.
WI6&.
WGLV62
WVX6, WK6,
166LQSXW
Electrical parameters STM8L052C6
84/103 DocID023331 Rev 2
Figure 31. SPI1 timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
AI6
3#+/UTPUT
#0(!
-/3)
/54054
-)3/
).0 54
#0(!
-3 ").
- 3"/54
") 4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
TC3#+
TW3#+(
TW3#+,
TR3#+
TF3#+
TH-)
(IGH
3#+/UTPUT
#0(!
#0(!
#0/,
#0/,
TSU-)
TV-/ TH-/
DocID023331 Rev 2 85/103
STM8L052C6 Electrical parameters
97
I2C - Inter IC control interface
Subject to general operatin g conditions fo r VDD, fSYSCLK, and TA unless otherwise specified.
The STM8L I2C interface (I2C1) meets the re quirements of th e S ta ndard I2C communication
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Note: For speeds around 200 kHz, the achieved speed can have a 5% tolerance
For other speed ranges, the achieved speed can have a 2% tolerance
The above variations depend on the accuracy of the external components used.
Table 41. I2C characteristics
Symbol Parameter
Standard mode
I2CFast mode I2C(1)
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production.
Max (2) Min (2) Max (2)
tw(SCLL) SCL clock low time 4.7 - 1.3 - s
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 - 0 900
tr(SDA)
tr(SCL) SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL) SDA and SCL fall time - 300 - 300
th(STA) START condition hold time 4.0 - 0.6 -
s
tsu(STA) Repeated START condition setup
time 4.7 - 0.6 -
tsu(STO) STOP condition setup time 4.0 - 0.6 - s
tw(STO:STA) STOP to START condition time (bus
free) 4.7 - 1.3 - s
CbCapacitive load for each bus line - 400 - 400 pF
Electrical parameters STM8L052C6
86/103 DocID023331 Rev 2
Figure 32. Typical application with I2C bus and timing diagram 1)
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
REPEATED START
START
STOP
START
tf(SDA) tr(SDA) tsu(SDA) th(SDA)
tf(SCL)
tr(SCL)
tw(SCLL)
tw(SCLH)
th(STA) tsu(STO)
tsu(STA) tw(STO:STA)
SDA
SCL
4.7kSDA
STM8L
SCL
VDD
100
100
VDD
4.7k
I2CBUS
DocID023331 Rev 2 87/103
STM8L052C6 Electrical parameters
97
8.3.9 LCD controller
In the following table, data is guaranteed by design. Not tested in production.
VLCD external capacitor
The application can achieve a stabilized LCD reference voltage by connecting an external
capacitor CEXT to the VLCD pin. CEXT is specified in Table 42.
Table 42. LCD characteristics
Symbol Parameter Min Typ Max. Unit
VLCD LCD external voltage - - 3.6 V
VLCD0 LCD internal reference voltage 0 - 2.6 - V
VLCD1 LCD internal reference voltage 1 - 2.7 - V
VLCD2 LCD internal reference voltage 2 - 2.8 - V
VLCD3 LCD internal reference voltage 3 - 2.9 - V
VLCD4 LCD internal reference voltage 4 - 3.0 - V
VLCD5 LCD internal reference voltage 5 - 3.1 - V
VLCD6 LCD internal reference voltage 6 - 3.2 - V
VLCD7 LCD internal reference voltage 7 - 3.3 - V
CEXT VLCD external capacitance 0.1 - 2 µF
IDD Supply current(1) at VDD = 1.8 V
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels
active, no LCD connected.
-3 -µA
Supply current(1) at VDD = 3 V - 3 - µA
RHN (2)
2. RHN is the total high value resistive network.
High value resistive network (low drive) - 6 .6 - M
RLN (3)
3. RLN is the total low value resistive network.
Low value resistive network (high drive) - 360 - k
V33 Segment/Common higher level voltage - - VLCDx V
V23 Segment/Common 2/3 level voltage - 2/3VLCDx -V
V12 Segment/Common 1/2 level voltage - 1/2VLCDx -V
V13 Segment/Common 1/3 level voltage - 1/3VLCDx -V
V0Segment/Common lowest level voltage 0 - - V
Electrical parameters STM8L052C6
88/103 DocID023331 Rev 2
8.3.10 Embedded reference voltage
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Table 43. Reference voltage characteristics
Symbol Parameter Conditions Min Typ Max. Unit
IREFINT Intern al reference voltage
consumption - - 1.4 - µA
TS_VREFINT(1)(2) ADC sampling time when
reading the internal reference
voltage --510µs
IBUF(2) Internal reference voltage buffer
consumption (used for ADC) - - 13.5 25 µA
VREFINT out Reference voltage output - 1.202(3) 1.224 1.242(3) V
ILPBUF(2) Internal reference voltage low
power buffer consumption - - 730 1200 nA
IREFOUT(2) Buffer out pu t current(4) ---1µA
CREFOUT Reference voltage output load - - - 50 pF
tVREFINT Internal reference voltage
startup time --23ms
tBUFEN(2) Internal reference voltage buffer
startup time once enabled (1) - - 10 µs
ACCVREFINT
Accuracy of VREFINT stored in
the VREFINT_Factory_CONV
byte(5) -- ± 5mV
STABVREFINT
Stability of VREFINT over
temperature -40 °C TA 85 °C -20 50 ppm/°C
Stability of VREFINT over
temperature 0 °C TA 50 °C -- 20 ppm/°C
STABVREFINT Stability of VREFINT after 1000
hours ---TBD ppm
1. Defined when ADC output reaches its final value ±1/2LSB
2. Data guaranteed by Design. Not tested in production.
3. Tested in production at VDD = 3 V ±10 mV.
4. To guaranty less than 1% VREFOUT deviation.
5. Measured at VDD = 3 V ±10 mV. T his value takes into account VDD accuracy and ADC conversion accuracy.
DocID023331 Rev 2 89/103
STM8L052C6 Electrical parameters
97
8.3.11 12-bit ADC1 characteristics
In the following table, data is guaranteed by design, not tested in production.
Table 44. ADC1 characteristi cs
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 3.6 V
VREF+ Reference suppl y
voltage
2.4 V VDDA3.6 V 2.4 VDDA V
1.8 V VDDA 2.4 V VDDA V
VREF- Lower reference voltage - VSSA V
IVDDA Current on the VDDA
input pin - - 1000 1450 µA
IVREF+ Current on the VREF+
input pin
--
400
700
(peak)(1) µA
-- 450
(average)(1) µA
VAIN Conversion voltage
range -0(2) -VREF+
TATemperature range - -40 - 85 °C
RAIN External resistance on
VAIN on PF0 fast channel - - 50(3) k
on all other channels - -
CADC Internal sample and hold
capacitor on PF0 fast channel - 16 -pF
on all other channels - -
fADC ADC sampling clock
frequency
2.4 VVDDA3.6 V
without zooming 0.320 - 16 MHz
1.8 VVDDA2.4 V
with zooming 0.320 - 8 MHz
fCONV 12-bit conversi on rate
VAIN on PF0 fast
channel --
1(4)(5) MHz
VAIN on all other
channels --
760(4)(5) kHz
fTRIG External trigger
frequency ---
tconv 1/fADC
tLAT External trigger latency - - - 3.5 1/fSYSCLK
Electrical parameters STM8L052C6
90/103 DocID023331 Rev 2
tSSampling time
VAIN on PF0 fast
channel
VDDA < 2.4 V 0.43(4)(5) --µs
VAIN on PF0 fast
channel
2.4 V VDDA3.6 V 0.22(4)(5) --µs
VAIN on slow channe ls
VDDA < 2.4 V 0.86(4)(5) --µs
VAIN on slow channe ls
2.4 V VDDA3.6 V 0.41(4)(5) --µs
tconv 12-bit conversion time - 12 + tS 1/fADC
16 MHz 1(4) µs
tWKUP Wakeup time from OFF
state ---3µs
tIDLE(6) Time before a new
conversion TA +25 °C - - 1(7) s
TA +70 °C - - 20(7) ms
tVREFINT Internal reference
voltage startup time ---
refer to
Table 43 ms
1. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 40 0 = 450 µA at
1Msps
2. VREF- or VDDA must be tied to ground.
3. Guaranteed by design, not tested in production.
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 k.
5. Value obtained for continuous conversion on fast channel.
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE.
7. The tIDLE maximum value is on the “Z” revision code of the device.
Table 44 . A DC1 ch ara ct erist ic s (c on t in ued )
Symbol Parameter Conditions Min Typ Max Unit
DocID023331 Rev 2 91/103
STM8L052C6 Electrical parameters
97
In the following three tables, data is guaranteed by char ac te rization result, not tested in
production.
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Symbol Parameter Conditions Typ Max Unit
DNL Differential non linearity
fADC = 16 MHz 1 1.6
LSB
fADC = 8 MHz 1 1.6
fADC = 4 MHz 1 1.5
INL Integral non linearity
fADC = 16 MHz 1.2 2
fADC = 8 MHz 1.2 1.8
fADC = 4 MHz 1.2 1.7
TUE Total unadjusted error
fADC = 16 MHz 2.2 3.0
fADC = 8 MHz 1.8 2.5
fADC = 4 MHz 1.8 2.3
Offset Offset error
fADC = 16 MHz 1.5 2
LSB
fADC = 8 MHz 1 1.5
fADC = 4 MHz 0.7 1.2
Gain Gain error
fADC = 16 MHz
11.5fADC = 8 MHz
fADC = 4 MHz
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol Parameter Typ Max Unit
DNL Differential non linearity 1 2 LSB
INL Integral non linearity 1.7 3 LSB
TUE Total unadjusted error 24LSB
Offset Offset error 1 2 LSB
Gain Gain error 1.5 3 LSB
Table 47. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol Parameter Typ Max Unit
DNL Differential non linearity 1 2 LSB
INL Integral non linearity 23LSB
TUE Total unadjusted error 35LSB
Offset Offset error 2 3 LSB
Gain Gain error 2 3 LSB
Electrical parameters STM8L052C6
92/103 DocID023331 Rev 2
Figure 33. ADC1 accuracy characteristics
Figure 34. Typical connection diagram using the ADC
1. Refer to Table 44 for the values o f RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
([DPSOHRIDQDFWX DOWUDQVIHUFXUYH
7KHLGHDO WUDQVIHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH



     



DLH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
966$ 9''$
/6%,'($/
('
(/
(2
(7
(*
>/6%,'($/ 
95()

9''$

RUGHSHQGLQJRQSDFNDJH
DLI
670/[[[
,/
Q$

ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
9$,1
5$,1 $,1[
9''
97
9
97
9
&SDUDVLWLF
5$'&

&$'&
DocID023331 Rev 2 93/103
STM8L052C6 Electrical parameters
97
Figure 35. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 36 or Figure 37,
depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF
capacitors should be used. They should be placed as close as possible to the chip.
ADC clock
Sampling (n cycles) Conversion (12 cycles)
Iref+
300µA
700µA
Table 48 . RAIN max for fADC = 16 MHz(1)
Ts
(cycles) Ts
(µs)
RAIN max (kohm)
Slow channels Fast channels
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V
4 0.25 Not allowed Not allowed 0.7 Not allowed
9 0.5625 0.8 Not allowed 2.0 1.0
16 1 2.0 0.8 4.0 3.0
24 1.5 3.0 1.8 6.0 4.5
48 3 6.8 4.0 15.0 10.0
96 6 15.0 10.0 30.0 20.0
192 12 32.0 25.0 50.0 40.0
384 24 50.0 50.0 50.0 50.0
1. Guaranteed by design, not tested in production.
Electrical parameters STM8L052C6
94/103 DocID023331 Rev 2
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA)
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA)
95()
6
70/
670/
9''$
966$9 5()
)Q)
)


Q)
)Q)
6XSSO\
([WHUQDO
UHIHUHQFH
DLF
670/
)Q)
6XSSO\ 95()9''$
95()9''$
DLF
DocID023331 Rev 2 95/103
STM8L052C6 Electrical parameters
97
8.3.12 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two el ectromagnetic event s until a failure o ccurs (indica ted by the
LEDs).
ESD: Electrostatic discharge (p ositive and n egati ve) is applie d on all pins of the device
until a functional disturbance oc curs. This test conforms with the IEC 61000 standard.
FTB: A burst of fa st transient volt age (positive and negative) is a pplied to V DD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table be low based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that go od EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpe cted beh avior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 49. EM S data
Symbol Parameter Conditions Level/
Class
VFESD Voltage limits to be applied on
any I/O pin to induce a functional
disturbance
VDD 3.3 V, TA +25 °C,
fCPU16 MHz,
conforms to IEC 61000 3B
VEFTB
Fast transient voltage burst limits
to be applied through 100 pF on
VDD and VSS pins to induce a
functiona l disturbance
VDD 3.3 V, TA +25 °C,
fCPU 16 MHz,
conforms to IEC 61000
Using HSI 4A
Using HSE 2B
Electrical parameters STM8L052C6
96/103 DocID023331 Rev 2
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on th e number of su pply pin s in the device (3 p a rts*(n+1) supply pin). Two models
can be simulated: human body model and charge device model. This test conforms to the
JESD22-A114A/A115A standard.
Table 50 . EMI da ta(1)
1. Not tested in production.
Symbol Parameter Conditions Monitored
frequency band
Max vs. Unit
16 MHz
SEMI Peak level
VDD 3.6 V,
TA +25 °C,
LQFP32
conforming to
IEC61967-2
0.1 MHz to 30 MHz -3
dBV30 MHz to 130 MHz 9
130 MHz to 1 GHz 4
SAE EMI Level 2 -
Table 51 . ESD abso lu t e maximu m ra ti ng s
Symbol Ratings Conditions Maximum
value (1)
1. Data based on characterization results, not tested in production.
Unit
VESD(HBM) Electrostatic discharge voltage
(human body model) TA +25 °C 2000 V
VESD(CDM) Electrostatic discharge voltage
(charge device model) 500
DocID023331 Rev 2 97/103
STM8L052C6 Electrical parameters
97
Static latch-up
LU: 3 complementary static tests are required on 6 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output a nd configurable I/O pi n) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more det ails,
refer to the application note AN1181.
Table 52. Electrical sensitivities
Symbol Parameter Class
LU Static latch- up cla ss II
Package information STM8L052C6
98/103 DocID023331 Rev 2
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, dependin g on thei r le vel of en vir onmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1 LQFP48 package information
Figure 38. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
DocID023331 Rev 2 99/103
STM8L052C6 Package information
101
Table 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM8L052C6
100/103 DocID0 23331 Rev 2
Figure 39. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 40. LQFP48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
  













AID

069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.-
$5
DocID023331 Rev 2 101/103
STM8L052C6 Part numbering
101
10 Part numbering
For a list of available o ptions (memory, package, a nd so on) or for further information on any
aspect of this device , ple as e contact your nearest ST sales office.
Table 54. Ordering information scheme
Example:STM8L052C6T6x
Device family
STM8 microcontroller
Product type
L = Low-power
Sub-family
052 = STM8L052xx, ultra-low power with LCD
Pin count
C = 48 pins
Code size
6 = 32 Kbytes
Package
T = LQFP
Temperature range
6 = –40 to 85 °C
Options
xxx = programmed parts
TR = tape and reel
Revision history STM8L052C6
102/103 DocID0 23331 Rev 2
11 Revision history
Table 55. Document revision history
Date Revision Changes
15-Jun-2012 1 Initial release.
09-Mar-2015 2
Updated:
the factory default setting for OPT5[3:0] in Table 10:
Option byte addresse s
Section 10: Part numbering,
the disclaimer.
Added:
Figure 40: LQFP48 marking example (package top view).
DocID023331 Rev 2 103/103
STM8L052C6
103
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelec tronics NV and its subs idiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchaser s products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shal l void any warranty granted by ST for such produ ct.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supers edes and repla ces informat ion previou sly supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved