General Description
The MAX4414–MAX4419 operational amplifiers com-
bine high-speed performance, low distortion, and ultra-
low supply current. Consuming just 1.6mA of supply
current per amplifier, these devices operate from a sin-
gle +2.7V to +5.5V supply, have Rail-to-Rail®outputs,
and exhibit a common-mode input voltage range that
extends from 100mV below ground to within 1.5V of the
positive supply rail.
The MAX4414/MAX4416/MAX4418 single/dual/quad op
amps are unity-gain stable and achieve a 400MHz -3dB
bandwidth with a 200V/µs slew rate. The MAX4415/
MAX4417/MAX4419 single/dual/quad op amps are
compensated for closed-loop gains of +5V/V or greater
and achieve a 150MHz -3dB bandwidth with a 470V/µs
slew rate. The combination of high-speed, ultra-low
power, and low-distortion makes the MAX4414–
MAX4419 ideal for low-power/low-voltage, high-speed
portable systems such as video, communications, and
instrumentation.
The MAX4414/MAX4415 single and MAX4416/
MAX4417 dual amplifiers are available in space-saving
8-pin µMAX and SO packages, while the MAX4418/
MAX4419 quad amplifiers are available in a 14-pin
TSSOP package.
________________________Applications
Battery-Powered Instruments
Portable Communications
Keyless Entry Systems
Cellular Telephones
Video Line Drivers
Baseband Applications
Features
Ultra-Low 1.6mA Supply Current
Single +3V/+5V Operation
High Speed
400MHz -3dB Bandwidth
(MAX4414/MAX4416/MAX4418)
200V/µs Slew Rate
(MAX4414/MAX4416/MAX4418)
150MHz -3dB Bandwidth
(MAX4415/MAX4417/MAX4419)
470V/µs Slew Rate
(MAX4415/MAX4417/MAX4419)
Rail-to-Rail Outputs
Input Common-Mode Range Extends Beyond VEE
Low Differential Gain/Phase: 0.03%/0.15°
Low Distortion at 5MHz (MAX4414/MAX4416/MAX4418)
-93dBc SFDR
0.003% Total Harmonic Distortion
Low Cost
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
________________________________________________________________ Maxim Integrated Products 1
PART NO. OF
AMPS
MINIMUM
GAIN
(V/V)
-3dB
BANDWIDTH
(MHz)
SLEW RATE
(V/µs)
MAX4414 1 1 400 200
MAX4415 1 5 150 470
MAX4416 2 1 400 200
MAX4417 2 5 150 470
MAX4418 4 1 400 200
MAX4419 4 5 150 470
PART TEMP. RANGE PIN-PACKAGE
MAX4414EUA -40°C to +85°C8 µMAX
MAX4414ESA -40°C to +85°C 8 SO
MAX4415EUA -40°C to +85°C8 µMAX
MAX4415ESA -40°C to +85°C 8 SO
_____________________Selector Guide
19-1837; Rev 0; 10/00
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Ordering Information
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Pin Configurations appear at end of data sheet.
1.30
1.45
1.40
1.35
1.55
1.50
1.75
1.70
1.65
1.60
1.80
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(PER AMPLIFIER)
MAX4414 toc01
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
Ordering information continued at end of data sheet.
Typical Operating Characteristic
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, VCM = VCC/2 - 0.75V, VEE = 0, RL= to VCC/2, VOUT = VCC/2, TA= TMIN to TMAX, unless otherwise noted.
Typical values are at TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCC to VEE)..................................................+6V
Differential Input Voltage ....................................................±2.5V
IN_-, IN_+, OUT_..............................(VCC + 0.3V) to (VEE - 0.3V)
Current into Input Pins ......................................................±20mA
Output Short-Circuit Duration to VCC or VEE ..............Continuous
Continuous Power Dissipation (TA= +70°C)
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Operating Supply Voltage Range VSGuaranteed by PSRR test 2.7 5.5 V
VCC = +5V 1.6 3
Quiescent Supply Current
(per Amplifier) ISVCC = +3V 1.4 2.6 mA
Input Common-Mode Voltage
Range VCM Guaranteed by CMRR test VEE -
0.1
VCC -
1.5 V
Input Offset Voltage VOS 0.5 6 mV
Input Offset Voltage Temperature TCVOS 3 µV/°C
Input Offset Voltage Matching MAX4416MAX4419 ±1 mV
Input Bias Current IB1.3 4 µA
Input Offset Current IOS 0.1 0.7 µA
Differential mode,
-0.04V (VIN+ - VIN-) +0.04V 60 k
Input Resistance RIN Common mode,
VEE - 0.1V < VCM < VCC - 1.5V 16 M
Common-Mode Rejection Ratio CMRR VEE - 0.1V < VCM < VCC - 1.5V 65 94 dB
+0.2V VOUT +4.8V, RL = 10k78 93
+0.4V VOUT +4.6V, RL = 1k68 80
+0.3V VOUT +4.4V,
RL = 1k to VEE 66 80
V
C C
= + 5V
+1V VOUT +4V, RL = 15065
+0.2V VOUT +2.8V, RL = 10k75 90
+ 0.25V V
OU T
+ 2.75V , RL = 1k 65 78
+0.2V VOUT +2.5V,
RL = 1k to VEE 63 75
Open-Loop Gain AVOL
V
C C
= + 3V
+0.5V VOUT +2.5V, RL = 15062
dB
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 3
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
VCC - VOH 0.085 0.375
RL = 10kVOL - VEE 0.015 0.100
VCC - VOH 0.105 0.400
RL = 1kVOL - VEE 0.035 0.125
VCC - VOH 0.385
V
C C
= + 5V
RL = 150VOL - VEE 0.150
VCC - VOH 0.060 0.365
RL = 10kVOL - VEE 0.010 0.090
VCC - VOH 0.075 0.390
RL = 1kVOL - VEE 0.025 0.115
VCC - VOH 0.275
Output Voltage Swing VOUT
V
C C
= + 3V
RL = 150VOL - VEE 0.070
V
Output Current IOUT RL = 20 connected to VCC or VEE,
VCC = +5V ±25 ±75 mA
Output Short-Circuit Current ISC Sinking or sourcing ±85 mA
Power-Supply Rejection Ratio PSRR VCC = +2.7V to +5.5V, VCM = 0, VOUT = 2V 60 77 dB
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +2.7V to +5.5V, VCM = VCC/2 - 0.75V, VEE = 0, RL= to VCC/2, VOUT = VCC/2, TA= TMIN to TMAX, unless otherwise noted.
Typical values are at TA= +25°C.) (Note 1)
AC ELECTRICAL CHARACTERISTICS
(VCC = +5V, VEE = 0, VCM = +1.75V, RL= 1kconnected to VCC/2, CL= 5pF, AVCL = +1V/V, TA= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX4414/MAX4416/
MAX4418, AV = +1V/V 400
Small Signal -3dB Bandwidth BWSS V
OU T = 100mV p - p
MAX4415/MAX4417/
MAX4419, AV = +5V/V 150
MHz
MAX4414/MAX4416/
MAX4418, AV = +1V/V 32
Large Signal -3dB Bandwidth BWLS VOUT = 2Vp-p
MAX4415/MAX4417/
MAX4419, AV = +5V/V 75
MHz
MAX4414/MAX4416/
MAX4418, AV = +1V/V 43
V
OU T = 100mV p - p
MAX4415/MAX4417/
MAX4419, AV = +5V/V 16
MAX4414/MAX4416/
MAX4418, AV = +1V/V 22
Bandwidth for 0.1dB Flatness BW0.1dB
VOUT = 2Vp-p
MAX4415/MAX4417/
MAX4419, AV = +5V/V 28
MHz
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, RL= 1kconnected to VCC/2, CL= 5pF, AVCL = +1V/V, TA= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX4414/MAX4416/
MAX4418, AV = +1V/V 200
Slew Rate SR VOUT = 2V step
MAX4415/MAX4417/
MAX4419, AV = +5V/V 470
V/µs
MAX4414/MAX4416/
MAX4418, AV = +1V/V 14
Rise/Fall Time tR, tFVOUT = 2V step,
10% to 90% MAX4415/MAX4417/
MAX4419, AV = +5V/V 5
ns
MAX4414/MAX4416/
MAX4418, AV = +1V/V 100
tS 1% VOUT = 2V step
MAX4415/MAX4417/
MAX4419, AV = +5V/V 120
MAX4414/MAX4416/
MAX4418, AV = +1V/V 150
Settling Time
tS 0.1% VOUT = 2V step
MAX4415/MAX4417/
MAX4419, AV = +5V/V 160
ns
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-84
VCC = +5V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-76
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-93
Spurious-Free Dynamic Range SFDR
VCC = +3V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-79
dBc
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 5
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, RL= 1kconnected to VCC/2, CL= 5pF, AVCL = +1V/V, TA= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-84
VCC = +5V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-76
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-93
2nd Harmonic Distortion SFDR
VCC = +3V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-65
dBc
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-95
VCC = +5V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-80
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-95
3rd Harmonic Distortion SFDR
VCC = +3V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-67
dBc
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
6 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, RL= 1kconnected to VCC/2, CL= 5pF, AVCL = +1V/V, TA= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
0.007
VCC = +5V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
0.02
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
0.003
Total Harmonic Distortion SFDR
VCC = +3V,
fC = 5MHz MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
0.01
%
Two-Tone, Third-Order
Intermodulation Distortion IP3 fC = 10MHz, f2 = 9.9MHZ -67 dBc
MAX4414/MAX4416/
MAX4418, AV = +1V/V 0.03
MAX4414/MAX4416/
MAX4418, AV = +2V/V 0.04
Differential Gain Error DG RL = 150, N TS C
MAX4415/MAX4417/
MAX4419, AV = +5V/V 0.05
%
MAX4414/MAX4416/
MAX4418, AV = +1V/V 0.15
MAX4414/MAX4416/
MAX4418, AV = +2V/V 0.25
Differential Phase Error DP RL = 150, N TS C
MAX4415/MAX4417/
MAX4419, AV = +5V/V 0.35
degrees
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 7
Note 1: All devices are 100% production tested at TA= +25°C. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, RL= 1kconnected to VCC/2, CL= 5pF, AVCL = +1V/V, TA= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Gain Matching MAX4416MAX4419,
VOUT = 100mVp-p, f 10MHz 0.1 dB
Phase Matching MAX4416MAX4419,
VOUT = 100mVp-p, f 10MHz 0.1 degrees
Input Noise-Voltage Density enf = 10kHz 10 nV/Hz
Input Noise-Current Density Inf = 10kHz 0.6 pA/Hz
Input Capacitance CIN 1.8 pF
Output Impedance ZOUT f = 1MHz 0.5
Capacitive Load Drive No sustained oscillations 120 pF
Power-Up 1% Settling Time
(Note 2) 1.2 100 µs
Crosstalk XTALK MAX4416MAX4419, f = 10MHz,
VOUT = 2Vp-p -72 dB
Typical Operating Characteristics
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
1.30
1.45
1.40
1.35
1.55
1.50
1.75
1.70
1.65
1.60
1.80
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(PER AMPLIFIER)
MAX4414 toc01
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
3
-7
100k 1M 10M 100M 1G
SMALL-SIGNAL GAIN vs. FREQUENCY
-5
MAX4414 toc02
FREQUENCY (Hz)
SMALL-SIGNAL GAIN (dB)
-3
-1
1
0
-2
-4
-6
2MAX4414/MAX4416/MAX4418
(AVCL = +1V/V)
MAX4415/MAX4417/MAX4419
(AVCL = +5V/V)
8
-6
100k 1M 10M 100M 1G
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL GAIN WITH
CAPACITIVE LOAD vs. FREQUENCY
-4
MAX4414 toc03
FREQUENCY (Hz)
SMALL-SIGNAL GAIN (dB)
-2
2
4
0
622pF
5pF
15pF
AVCL = +1V/V
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
8 _______________________________________________________________________________________
8
-6
100k 1M 10M 100M 1G
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL GAIN WITH
CAPACITIVE LOAD vs. FREQUENCY
-4
MAX4414 toc04
FREQUENCY (Hz)
SMALL-SIGNAL GAIN (dB)
-2
2
4
0
622pF
15pF
AVCL = +5V/V
5pF
3
-7
100k 1M 10M 100M 1G
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD AND
22 ISOLATION RESISTOR vs. FREQUENCY
-5
MAX4414 toc05
FREQUENCY (Hz)
SMALL-SIGNAL GAIN (dB)
-3
-1
1
0
-2
-4
-6
2
A
VCL
= +1V/V
22pF
5pF
15pF
0.5
-0.5
100k 1M 10M 100M 1G
GAIN FLATNESS vs. FREQUENCY
-0.3
MAX4414 toc06
FREQUENCY (Hz)
GAIN FLATNESS (dB)
-0.1
0.1
0.3
0.2
0
-0.2
-0.4
0.4
MAX4414/MAX4416/
MAX4418
(AVCL = +1V/V)
MAX4415/MAX4417/
MAX4419
(AVCL = +5V/V)
3
-7
100k 1M 10M 100M 1G
LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 1Vp-p)
-5
MAX4414 toc07
FREQUENCY (Hz)
LARGE-SIGNAL GAIN (dB)
-3
-1
1
0
-2
-4
-6
2
MAX4414/MAX4416/
MAX4418
(AVCL = +1V/V)
MAX4415/MAX4417/
MAX4419
(AVCL = +5V/V)
3
-7
10k 100k 1M 10M 1G
LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 2Vp-p)
-5
MAX4414 toc08
FREQUENCY (Hz)
LARGE-SIGNAL GAIN (dB)
-3
-1
1
0
-2
-4
-6
2
100M
MAX4414/MAX4416/
MAX4418
(AVCL = +1V/V)
MAX4415/MAX4417/
MAX4419
(AVCL = +5V/V)
100
-60
10k 100k 1M 10M 1G
MAX4414/MAX4416/MAX4418
GAIN AND PHASE vs. FREQUENCY
FREQUENCY (Hz)
GAIN (dB)
20
40
80
60
0
-20
-40
100M
180
-180
0
45
135
90
-45
-90
-135
PHASE (deg)
AVCL = +1000V/V
MAX4414 toc09
GAIN
PHASE
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 9
100
-60
10k 100k 1M 10M 1G
MAX4415/MAX4417/MAX4419
GAIN AND PHASE vs. FREQUENCY
FREQUENCY (Hz)
GAIN (dB)
20
40
80
60
0
-20
-40
100M
180
-180
0
45
135
90
-45
-90
-135
PHASE (deg)
AVCL = +1000V/V
MAX4414 toc10
GAIN
PHASE
MAX4414/MAX4416/MAX4418
DIFFERENTIAL GAIN AND PHASE
MAX4414 toc11
-0.01
0.01
0
0.02
0.03
0.04
DIFFERENTIAL GAIN (%)
0203010 40 50 60 70 80 90 100
IRE
-0.05
0
0.05
0.10
0.15
DIFFERENTIAL PHASE (deg)
0203010 40 50 60 70 80 90 100
IRE
MAX4414 toc12
-0.02
0.02
0
0.04
0.06
DIFFERENTIAL GAIN (%)
0203010 40 50 60 70 80 90 100
IRE
-0.01
0.01
0.03
0.05
DIFFERENTIAL PHASE (deg)
0203010 40 50 60 70 80 90 100
IRE
MAX4415/MAX4417/MAX4419
DIFFERENTIAL GAIN AND PHASE
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc13
50ns/div
INPUT
50mV/div
OUTPUT
50mV/div
RL = 1k
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc14
RL = 1k
50ns/div
INPUT
10mV/div
OUTPUT
50mV/div
MAX4414/MAX4416/MAX4418
LARGE-SIGNAL PULSE RESPONSE
MAX4414 toc15
50ns/div
INPUT
500mV/div
OUTPUT
500mV/div
RL = 1k
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
10 ______________________________________________________________________________________
MAX4415/MAX4417/MAX4419
LARGE-SIGNAL PULSE RESPONSE
MAX4414 toc16
50ns/div
INPUT
100mV/div
OUTPUT
500mV/div
RL = 1k
MAX4414/MAX4416/MAX4418
LARGE-SIGNAL PULSE RESPONSE
MAX4414 toc17
50ns/div
INPUT
1V/div
OUTPUT
1V/div
RL = 1k
MAX4415/MAX4417/MAX4419
LARGE-SIGNAL PULSE RESPONSE
MAX4414 toc18
RL = 1k
50ns/div
INPUT
200mV/div
OUTPUT
1V/div
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc19
50ns/div
INPUT
50mV/div
OUTPUT
50mV/div
RL = 150
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
INPUT
10mV/div
OUTPUT
50mV/div
50ns/div
MAX4414 toc20
RL = 150
INPUT
500mV/div
OUTPUT
500mV/div
50ns/div
RL = 150
MAX4414 toc21
MAX4414/MAX4416/MAX4418
LARGE-SIGNAL PULSE RESPONSE
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 11
INPUT
100mV/div
OUTPUT
500mV/div
50ns/div
RL = 150
MAX4414 toc22
MAX4415/MAX4417/MAX4419
LARGE-SIGNAL PULSE RESPONSE
INPUT
50mV/div
OUTPUT
50mV/div
50ns/div
RL = 150
AV = +1V/V
MAX4414 toc23
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL PULSE RESPONSE
(CLOAD = 15pF)
INPUT
10mV/div
OUTPUT
50mV/div
50ns/div
RL = 150
AV = +5V/V
MAX4414 toc24
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
(CLOAD = 15pF)
1000
0.1
100k 10M 100M1M 1G
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4414 toc25
FREQUENCY (MHz)
OUTPUT IMPEDANCE ()
1
10
100
-80
-70
-60
-50
-40
-30
-20
-10
0
100k 1M 10M 100M 1G
MAX4416–MAX4419
CROSSTALK vs. FREQUENCY
MAX4414 toc26
FREQUENCY (Hz)
CROSSTALK (dB)
450
0
100 1000
SMALL-SIGNAL BANDWIDTH
vs. LOAD RESISTANCE
100
50
MAX4414 toc27
RLOAD ()
BANDWIDTH (MHz)
200
150
300
350
250
400
MAX4414
MAX4416
MAX4418
MAX4415
MAX4417
MAX4419
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
-40
-100
100k 1M 10M 100M 1G
COMMON MODE REJECTION
vs. FREQUENCY
MAX4414 toc31
FREQUENCY (Hz)
CMR (dB)
-50
-60
-70
-80
-90
CURRENT NOISE DENSITY
vs. FREQUENCY
MAX4414 toc33
FREQUENCY (Hz)
100
0
1
10
1 1k 10k 100k10 100 1M
CURRENT NOISE DENSITY (pA/Hz)
140
0
100 10k 100k
20
40
60
80
120
MAX4414 toc28
RLOAD ()
OPEN-LOOP GAIN (dB)
1k
100
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
450
0
100 1k 10k
OUTPUT VOLTAGE SWING
vs. LOAD RESISTANCE
100
50
MAX4414 toc29
RLOAD ()
OUTPUT VOLTAGE SWING (mV)
200
150
300
350
250
400
VOH
VOL
0
-100
100k 1M 10M 100M 1G
POWER SUPPLY REJECTION
vs. FREQUENCY
-80
MAX4414 toc30
FREQUENCY (Hz)
PSR (dB)
-60
-40
-20
-30
-50
-70
-90
-10
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 13
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
100k 1M 10M 100M
MAX4414/MAX4416/MAX4418
DISTORTION vs. FREQUENCY
MAX4414 toc34
FREQUENCY (Hz)
DISTORTION (dBc)
0
-120
-100
-80
-60
-40
-20
AVCL = +1V/V, VOUT = 1Vp-p
2nd HARMONIC
3rd HARMONIC
100k 1M 10M 100M
MAX4415/MAX4417/MAX4419
DISTORTION vs. FREQUENCY
MAX4414 toc35
FREQUENCY (Hz)
DISTORTION (dBc)
-40
-100
-90
-80
-70
-60
-50
AVCL = +5V/V, VOUT = 2Vp-p
2nd HARMONIC
3rd HARMONIC
MAX4414/MAX4416/MAX4418
DISTORTION vs. OUTPUT VOLTAGE
MAX4414 toc36
-100
-95
-85
-90
-70
-65
-75
-80
-60
DISTORTION (dBc)
0 1.0 1.50.5 2.0 2.5 3.0
AVCL = +1V/V, f = 5MHz
3.5
VOUT (V)
2nd HARMONIC
3rd HARMONIC
-100
-90
-95
-75
-80
-85
-65
-70
-60
0 1.5 2.00.5 1.0 2.5 3.0 3.5 4.0 4.5
MAX4414 toc37
VOUT (V)
DISTORTION (dBc)
MAX4415/MAX4417/MAX4419
DISTORTION vs. OUTPUT VOLTAGE
A
VCL
= +5V/V, f = 5MHz
2nd HARMONIC
3rd HARMONIC
100 1k 10k
MAX4414 toc38
RLOAD ()
0
-120
-100
-80
-60
-40
-20
MAX4414/MAX4416/MAX4418
DISTORTION vs. LOAD RESISTANCE
DISTORTION (dBc)
A
VCL
= +1V/V, V
OUT
= 1Vp-p, f = 5MHz
2nd HARMONIC
3rd HARMONIC
100 1k 10k
MAX4414 toc39
RLOAD ()
0
-120
-100
-80
-60
-40
-20
MAX4415/MAX4417/MAX4419
DISTORTION vs. LOAD RESISTANCE
DISTORTION (dBc)
A
VCL
= +5V/V, V
OUT
= 2Vp-p, f = 5MHz
2nd HARMONIC
3rd HARMONIC
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL= 1kto VCC/2, CL= 5pF, TA= +25°C, unless otherwise noted.)
10
14
12
18
16
22
20
24
28
26
30
0 200 300 400100 500 600 700 900800 1000
ISOLATION RESISTANCE
vs. CAPACITIVE LOAD
MAX4414 toc40
CLOAD (pF)
RISO ()
MAX4414/MAX4416/MAX4418
POWER-UP TIME
MAX4414 toc41
500ns/div
VSUPPLY
2V/div
VOUT
750mV/div
0
1.5V
0
5V
MAX4415/MAX4417/MAX4419
POWER-UP TIME
MAX4414 toc42
500ns/div
VSUPPLY
2V/div
VOUT
500mV/div
5V
0
1.5V
0
0
0.5
1.0
1.5
2.0
2.5
-50 -5 10-35 -20 25 40 55 70 85
SUPPLY CURRENT (PER AMPLIFIER)
vs. TEMPERATURE
MAX4414 toc43
TEMPERATURE (°C)
SUPPLY CURRNET (mA)
VCC = +5V
VCC = +3V
0
0.4
0.2
0.8
0.6
1.2
1.0
1.4
1.8
1.6
2.0
-50 -20 -5 10-35 25 40 55 70 85
INPUT BIAS CURRENT vs. TEMPERATURE
MAX4414 toc44
TEMPERATURE (°C)
INPUT BIAS CURRENT (µA)
0
0.02
0.01
0.04
0.03
0.06
0.05
0.07
0.09
0.08
0.10
-50 -20 -5 10-35 25 40 55 70 85
INPUT OFFSET CURRENT
vs. TEMPERATURE
MAX4414 toc45
TEMPERATURE (°C)
INPUT OFFSET CURRENT (µA)
0
40
20
100
80
60
140
120
160
-50 -5 10-35 -20 25 40 55 70
OUTPUT VOLTAGE SWING
vs. TEMPERATURE
MAX4414 toc46
TEMPERATURE (°C)
OUTPUT VOLTAGE SWING (mV)
V
CC
= 5V, R
L
= 10k
V
OH
= V
CC
-V
OUT
V
OL
= V
OUT
-V
EE
-2.0
-1.0
-1.5
-0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
-50 -20 25 55 85
INPUT OFFSET VOLTAGE vs.
TEMPERATURE
MAX4414 toc47
TEMPERATURE (°C)
INPUT OFFSET VOLTAGE (mV)
-5-35 10 40 70
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 15
_______________Detailed Description
The MAX4414MAX4419 single-supply, rail-to-rail, volt-
age-feedback amplifiers achieve high slew rates and
bandwidths, while consuming only 1.6mA of supply
current per amplifier. Excellent harmonic distortion and
differential gain/phase performance make these ampli-
fiers an ideal choice for a wide variety of video and RF
signal-processing applications.
Internal feedback around the output stage ensures low
open-loop output impedance, reducing gain sensitivity
to load variations. This feedback also produces
demand-driven current bias to the output transistors.
Rail-to-Rail Outputs, Ground-Sensing Input
The MAX4414MAX4419 input common-mode range
extends from (VEE - 0.1V) to (VCC - 1.5V) with excellent
common-mode rejection. Beyond this range, the ampli-
fier output is a nonlinear function of the input, but does
not undergo phase reversal or latchup.
The output swings to within 105mV of either power-sup-
ply rail with a 1kload. Input ground sensing and rail-
to-rail output substantially increase the dynamic range.
With a symmetric input in a single +5V application, the
input can swing 3.6Vp-p, and the output can swing
4.6Vp-p with minimal distortion.
Output Capacitive Loading and Stability
The MAX4414MAX4419 are optimized for AC perfor-
mance. They are not designed to drive highly reactive
loads. Such loads decrease phase margin and may
produce excessive ringing and oscillation. The use of
an isolation resistor eliminates this problem (Figure 1).
Figure 2 is a graph of the Optimal Isolation Resistor
(RISO) vs. Capacitive Load.
The Small-Signal Gain vs. Frequency with Capacitive
Load and No Isolation Resistor graph in the Typical
Operating Characteristics shows how a capacitive load
causes excessive peaking of the amplifiers frequency
response if the capacitor is not isolated from the ampli-
fier by a resistor. A small isolation resistor (usually 20
to 30) placed before the reactive load prevents ring-
ing and oscillation. At higher capacitive loads, AC per-
formance is controlled by the interaction of the load
capacitance and the isolation resistor. The Small-Signal
Gain vs. Frequency with Capacitive Load and 22
Isolation Resistor graph shows the effect of a 22isola-
tion resistor on closed-loop response.
Pin Description
PIN
MAX4414
MAX4415
MAX4416
MAX4417
MAX4418
MAX4419
NAME FUNCTION
1, 5, 8 ——N.C. No Connection. Not internally connected.
3——IN+ Amplifier Noninverting Input
3 3 INA+ Amplifier A Noninverting Input
5 5 INB+ Amplifier B Noninverting Input
——10 INC+ Amplifier C Noninverting Input
——12 IND+ Amplifier D Noninverting Input
2——IN- Amplifier Inverting Input
2 2 INA- Amplifier A Inverting Input
6 6 INB- Amplifier B Inverting Input
——9 INC- Amplifier C Inverting Input
——13 IND- Amplifier D Inverting Input
4 4 11 VEE Negative Power Supply
6——OUT Amplifier Output
1 1 OUTA Amplifier A Output
7 7 OUTB Amplifier B Output
——8 OUTC Amplifier C Output
——14 OUTD Amplifier D Output
784V
CC Positive Power Supply
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
16 ______________________________________________________________________________________
Coaxial cable and other transmission lines are easily
driven when properly terminated at both ends with their
characteristic impedance. Driving back-terminated
transmission lines essentially eliminates the lines
capacitance.
___________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4414/MAX4416/MAX4418 are internally com-
pensated for unity gain. When configured for unity gain,
the devices require a 24feedback resistor (RF). This
resistor improves AC response by reducing the Q of the
parallel LC circuit formed by the parasitic feedback
capacitance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG)
resistor values that best fit the application. Large resis-
tor values increase voltage noise and interact with the
amplifiers input and PC board capacitance. This can
generate undesirable poles and zeros and decrease
bandwidth or cause oscillations. For example, a nonin-
verting gain-of-two configuration (RF= RG) using 1k
resistors, combined with 1.8pF of amplifier input capac-
itance and 1pF of PC board capacitance, causes a
pole at 114MHz. Since this pole is within the amplifier
bandwidth, it jeopardizes stability. Reducing the 1k
resistors to 100extends the pole frequency to
1.14GHz, but could limit output swing by adding 200
in parallel with the amplifiers load resistor.
Note: For high gain applications where output offset
voltage is a consideration, choose RSto be equal to the
parallel combination of RFand RG(Figures 3a and 3b):
RRR
RR
SFG
FG
=×
+
VOUT
VOUT = [1+ (RF / RG)] VIN
IN
RF
R0
RS
RG
Figure 3a. Noninverting Gain Configuration
VOUT
IN
RS
RF
RO
RG
VOUT = (RF / RG) VIN
Figure 3b. Inverting Gain Configuration
VOUT
VIN
RBIN
RISO
RF
CL
RG
Figure 1. Driving a Capacitive Load Through an Isolation
Resistor
Figure 2. Capacitive Load vs. Isolation Resistance
10
16
14
12
18
20
22
24
26
28
30
0 400200 600 800 1000
CLOAD (pF)
RISO ()
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 17
Video Line Driver
The MAX4414MAX4419 are designed to minimize dif-
ferential gain error and differential phase error to 0.03%/
0.15°respectively, making them ideal for driving video
loads. See Figure 4.
Active Filters
The low distortion and high bandwidth of the
MAX4414MAX4419 make them ideal for use in active
filter circuits. Figure 5 is a 15MHz lowpass, multiple-
feedback active filter using the MAX4414.
ADC Input Buffer
Input buffer amplifiers can be a source of significant
errors in high-speed ADC applications. The input buffer
is usually required to rapidly charge and discharge the
ADCs input, which is often capacitive (see Output
Capacitive Loading and Stability). In addition, since a
high-speed ADCs input impedance often changes very
rapidly during the conversion cycle, measurement
accuracy must be maintained using an amplifier with
very low output impedance at high frequencies. The
combination of high speed, fast slew rate, low noise,
and a low and stable distortion over load make the
MAX4414MAX4419 ideally suited for use as buffer
amplifiers in high-speed ADC applications.
Layout and Power-Supply Bypassing
These amplifiers operate from a single +2.7V to +5.5V
power supply. Bypass VCC to ground with a 0.1µF
capacitor as close to the pin as possible.
Maxim recommends using microstrip and stripline tech-
niques to obtain full bandwidth. Design the PC board
for a frequency greater than 1GHz to prevent amplifier
performance degradation due to board parasitics.
Avoid large parasitic capacitances at inputs and out-
puts. Whether or not a constant-impedance board is
used, observe the following guidelines:
Do not use wire-wrap boards due to their high induc-
tance.
Do not use IC sockets because of the increased par-
asitic capacitance and inductance.
Use surface-mount instead of through-hole compo-
nents for better high-frequency performance.
Use a PC board with at least two layers; it should be
as free from voids as possible.
Keep signal lines as short and as straight as possible.
Do not make 90°turns; round all corners.
Q
C
CC RR
RR R
=×××
++
2
1223
1
1
1
2
1
3
fRR C C
0
1
2
1
23 1 2
×× ×π
GAIN R
R
=2
1
RO
75
IN
VOUT
ZO = 75
(RL = RO + RTO)
RF
24
RTO
75
RTIN
75
MAX4414
Figure 4. Video Line Driver
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
18 ______________________________________________________________________________________
VOUT
VIN
+5.0V
10k
10k
C1
100pF
R1
150
R2
150
R3
511
C2
15pF
MAX4414
Figure 5. Multiple-Feedback Lowpass Filter
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 19
INB-
INB+VEE
1
2
8
7
VCC
OUTBINA-
INA+
OUTA
µMAX/SO
3
4
6
5
MAX4416
MAX4417
14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUTD
IND-
IND+
VEE
VCC
INA+
INA-
OUTA
MAX4418
MAX4419
INC+
INC-
OUTCOUTB
INB-
INB+
TSSOP
Pin Configurations
OUT
N.C.VEE
1
2
8
7
N.C.
VCC
IN-
IN+
N.C.
µMAX/SO
TOP VIEW
3
4
6
5
MAX4414
MAX4415
_Chip Information
MAX4414/MAX4415 TRANSISTOR COUNT: 95
MAX4416/MAX4417 TRANSISTOR COUNT: 184
MAX4418/MAX4419 TRANSISTOR COUNT: 268
PROCESS: Bipolar
PART TEMP. RANGE PIN-PACKAGE
MAX4416EUA -40°C to +85°C8 µMAX
MAX4416ESA -40°C to +85°C 8 SO
MAX4417EUA -40°C to +85°C8 µMAX
MAX4417ESA -40°C to +85°C 8 SO
MAX4418EUD -40°C to +85°C 14 TSSOP
MAX4419EUD -40°C to +85°C 14 TSSOP
Ordering Information
(continued)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
20 ______________________________________________________________________________________
Package Information
8LUMAXD.EPS
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 21
Package Information (continued)
TSSOP,NO PADS.EPS
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
SOICN.EPS