MRF6V2150NR1 MRF6V2150NBR1
1
RF Device Data
Freescale Semiconductor
RF Power Field--Effect Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
Designed primarily for CW large--signal output and driver applications with
frequencies up to 450 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
!Typical CW Performance at 220 MHz: VDD =50Volts,I
DQ = 450 mA,
Pout = 150 Watts
Power Gain 25 dB
Drain Efficiency 68.3%
!Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 150 Watts CW
Output Power
Features
!Characterized with Series Equivalent Large--Signal Impedance Parameters
!Qualified Up to a Maximum of 50 VDD Operation
!Integrated ESD Protection
!225"C Capable Plastic Package
!RoHS Compliant
!In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain--Source Voltage VDSS -- 0.5, +110 Vdc
Gate--Source Voltage VGS -- 0.5, + 12 Vdc
Storage Temperature Range Tstg -- 65 to +150 "C
Case Operating Temperature TC150 "C
Operating Junction Temperature (1,2) TJ225 "C
Table 2. Thermal Characteristics
Characteristic Symbol Value (2,3) Unit
Thermal Resistance, Junction to Case
Case Temperature 80"C, 150 W CW R#JC 0.24 "C/W
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22--A114) 2 (Minimum)
Machine Model (per EIA/JESD22--A115) A (Minimum)
Charge Device Model (per JESD22--C101) IV (Minimum)
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
Document Number: MRF6V2150N
Rev. 4, 4/2010
Freescale Semiconductor
Technical Data
MRF6V2150NR1
MRF6V2150NBR1
10--450 MHz, 150 W, 50 V
LATERAL N--CHANNEL
SINGLE--ENDED
BROADBAND
RF POWER MOSFETs
CASE 1484--04, STYLE 1
T O -- 2 7 2 W B -- 4
PLASTIC
MRF6V2150NBR1
CASE 1486--03, STYLE 1
T O -- 2 7 0 W B -- 4
PLASTIC
MRF6V2150NR1
PARTS ARE SINGLE--ENDED
(Top View)
RFout/VDS
Figure 1. Pin Connections
RFout/VDS
RFin/VGS
RFin/VGS
Note: Exposed backside of the package is
the source terminal for the transistor.
$Freescale Semiconductor, Inc., 2007--2008, 2010.
A
ll rights reserved.
2
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
Table 4. Moisture Sensitivity Level
Test Methodology Rating Package Peak Temperature Unit
Per JESD22--A113, IPC/JEDEC J--STD--020 3260 "C
Table 5. Electrical Characteristics (TA=25"C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
Off Characteristics
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS =0Vdc)
IDSS 2.5 mA
Zero Gate Voltage Drain Leakage Current
(VDS =50Vdc,V
GS =0Vdc)
IDSS 50 %Adc
Drain--Source Breakdown Voltage
(ID=75mA,V
GS =0Vdc)
V(BR)DSS 110 Vdc
Gate--Source Leakage Current
(VGS =5Vdc,V
DS =0Vdc)
IGSS 10 %Adc
On Characteristics
Gate Threshold Voltage
(VDS =10Vdc,I
D= 400 %Adc)
VGS(th) 11.62 3Vdc
Gate Quiescent Voltage
(VDD =50Vdc,I
D= 450 mAdc, Measured in Functional Test)
VGS(Q) 1.5 2.6 3.5 Vdc
Drain--Source On--Voltage
(VGS =10Vdc,I
D=1Adc)
VDS(on) 0.26 Vdc
Dynamic Characteristics
Reverse Transfer Capacitance
(VDS =50Vdc&30 mV(rms)ac @ 1 MHz, VGS =0Vdc)
Crss 1.6 pF
Output Capacitance
(VDS =50Vdc&30 mV(rms)ac @ 1 MHz, VGS =0Vdc)
Coss 93 pF
Input Capacitance
(VDS =50Vdc,V
GS =0Vdc&30 mV(rms)ac @ 1 MHz)
Ciss 163 pF
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD =50Vdc,I
DQ = 450 mA, Pout = 150 W, f = 220 MHz, CW
Power Gain Gps 23.5 25 26.5 dB
Drain Efficiency 'D66 68.3 %
Input Return Loss IRL -- 1 7 -- 9 dB
Typical Performances (In Freescale 27 MHz and 450 MHz Test Fixtures, 50 ohm system) VDD =50Vdc,I
DQ = 450 mA, Pout = 150 W CW
Power Gain f = 27 MHz
f = 450 MHz
Gps
32.3
22.9
dB
Drain Efficiency f = 27 MHz
f = 450 MHz
'D
78.7
57.6
%
Input Return Loss f = 27 MHz
f = 450 MHz
IRL
--10.6
--17.6
dB
ATTENTION: The MRF6V2150N and MRF6V2150NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to
ensure proper mounting of these devices.
MRF6V2150NR1 MRF6V2150NBR1
3
RF Device Data
Freescale Semiconductor
Figure 2. MRF6V2150NR1(NBR1) Test Circuit Schematic 220 MHz
Z8 0.443(x 0.170(Microstrip
Z9 2.360(x 0.170(Microstrip
Z10 0.502(x 0.170(Microstrip
Z11 0.443(x 0.082(Microstrip
PCB Arlon CuClad 250GX--0300--55--22, 0.030(,)r=2.55
Z1 0.352(x 0.082(Microstrip
Z2 0.944(x 0.082(Microstrip
Z3 1.480(x 0.082(Microstrip
Z4 0.276(x 0.220(Microstrip
Z5 0.434(x 0.220(Microstrip
Z6, Z7 0.298(x 0.630(Microstrip
Z1
RF
INPUT
C12
Z2 Z3 Z4 Z5 Z6
DUT
Z9
C23
RF
OUTPUT
Z10
C5
B1
VBIAS
VSUPPLY
C3
+
C4C2
+
R1
C18 C19C17 C20
+
C1
+
C7C6 B2
Z7 Z11Z8
B3
C22C21
R2 L3
C9C8 C11C10
C13
L1
L2
C14 C15 C16
Table 6. MRF6V2150NR1(NBR1) Test Circuit Component Designations and Values 220 MHz
Part Description Part Number Manufacturer
B1, B2 95 *, 100 MHz Long Ferrite Beads, Surface Mount 2743021447 Fair--Rite
B3 47 *, 100 MHz Short Ferrite Bead, Surface Mount 2743019447 Fair--Rite
C1 47 %F, 50 V Electrolytic Capacitor 476KXM063M Illinois Capacitor
C2 22 %F, 35 V Tantalum Chip Capacitor T494X226K035AT Kemet
C3 10 %F, 35 V Tantalum Chip Capacitor T491D106K035AT Kemet
C4, C17 39 K pF Chip Capacitors ATC200B393KT50XT ATC
C5, C18 22 K pF Chip Capacitors ATC200B203KT50XT ATC
C6,C11,C19 0.1 %F, 50 V Chip Capacitors CDR33BX104AKYS Kemet
C7, C8, C15, C16 2.2 %F, 50 V Chip Capacitors C1825C225J5RAC Kemet
C9, C12, C14, C23 1000 pF Chip Capacitors ATC100B102JT50XT ATC
C10 220 nF Chip Capacitor C1812C224K5RAC Kemet
C13 75 pF Chip Capacitor ATC100B750JT500XT ATC
C20 470 %F, 63 V Electrolytic Capacitor ESME630ELL471MK25S United Chemi--Con
C21 30 pF Chip Capacitor ATC100B300JT500XT ATC
C22 33 pF Chip Capacitor ATC100B330JT500XT ATC
L1 4 Turn #18 AWG, 0.18(ID None None
L2 82 nH Inductor 1812SMS--82NJL Coilcraft
L3 17.5 nH Inductor B06TJL Coilcraft
R1 270 *, 1/4 W Chip Resistor CRCW12062700FKEA Vishay
R2 27 *, 1/4 W Chip Resistor CRCW12064R75FKEA Vishay
4
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
Figure 3. MRF6V2150NR1(NBR1) Test Circuit Component Layout 220 MHz
* Stacked
+
+
MRF6V2150N/NB
Rev. 3
C1 C2 C3
B1
C7
CUT OUT AREA
B2
C4
C5
C6
C8
R1
C9
R2
C12
C13
C10
C11
L3
C22
C21
C23
C14
L1
L2
C17
C18
C19
C15*
C16*
B3
C20
MRF6V2150NR1 MRF6V2150NBR1
5
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
50
1
1000
02010
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 4. Capacitance versus Drain--Source Voltage
C, CAPACITANCE (pF)
30
Ciss
1
100
1
TC=25"C
10
10
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 5. DC Safe Operating Area
ID, DRAIN CURRENT (AMPS)
40
5
0
DRAIN VOLTAGE (VOLTS)
20 120
Figure 6. DC Drain Current versus Drain Voltage
ID, DRAIN CURRENT (AMPS)
60
21
25
1
23
22
26
Pout, OUTPUT POWER (WATTS) CW
Figure 7. CW Power Gain versus Output Power
Gps, POWER GAIN (dB)
VDD =50Vdc
f = 220 MHz
100
10
40 100
24
VGS =3V
Coss
Crss
80 100
2.75 V
2.63 V
2.5 V
2.25 V
27
100
-- 6 0
-- 1 0
5
Pout, OUTPUT POWER (WATTS) PEP
-- 2 5
-- 3 0
-- 3 5
-- 4 0
10 100
Figure 8. Third Order Intermodulation Distortion
versus Output Power
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
VDD = 50 Vdc, f1 = 220 MHz, f2 = 220.1 MHz
Two--Tone Measurements, 100 kHz Tone Spacing
-- 4 5
-- 5 0
32
48
58
22 2624
56
54
52
50
Pin, INPUT POWER (dBm)
Figure 9. CW Output Power versus Input Power
Pout, OUTPUT POWER (dBm)
28 30
P3dB = 52.61 dBm (182.39 W)
Actual
Ideal
P1dB = 52.27 dBm (168.66 W)
VDD =50Vdc,I
DQ = 450 mA
f = 220 MHz
200
3
2
1
0
10 200
563 mA
IDQ = 675 mA
IDQ = 225 mA
336 mA
Measured with &30 mV(rms)ac @ 1 MHz
VGS =0Vdc
4
450 mA
337 mA
225 mA
-- 5 5
-- 1 5
-- 2 0
450 mA
563 mA
685 mA
900 mA
300
6
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
TYPICAL CHARACTERISTICS
Figure 10. Power Gain versus Output Power
Pout, OUTPUT POWER (WATTS) CW
Gps, POWER GAIN (dB)
VDD =20V
25 V
200
14
26
050
18
16
100 150
24
22
IDQ = 450 mA
f = 220 MHz
30 V
35 V
40 V
50 V
20
45 V
35
35
55
10
25_C
TC=--30_C85_C
2515
50
45
40
Pin, INPUT POWER (dBm)
Figure 11. Power Output versus Power Input
Pout, OUTPUT POWER (dBm)
VDD =50Vdc
IDQ = 450 mA
f = 220 MHz
20 30
21
28
5
10
80
10
26
24
70
60
50
40
30
20
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Drain Efficiency
versus CW Output Power
Gps, POWER GAIN (dB)
'D, DRAIN EFFICIENCY (%)
'D
27
25
23
100 200
25_C
TC=--30_C
85_C
85_C
Gps
VDD =50Vdc
IDQ = 450 mA
f = 220 MHz
25_C
-- 3 0 _C
22
250
108
90
TJ, JUNCTION TEMPERATURE ("C)
Figure 13. MTTF versus Junction Temperature
This above graph displays calculated MTTF in hours when the device
is operated at VDD =50Vdc,P
out = 150 W CW, and 'D= 68.3%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
107
106
105
110 130 150 170 190
MTTF (HOURS)
210 230
MRF6V2150NR1 MRF6V2150NBR1
7
RF Device Data
Freescale Semiconductor
Zo=10*Zload
Zsource
f = 220 MHz
f = 220 MHz
VDD =50Vdc,I
DQ = 450 mA, Pout = 150 W CW
f
MHz
Zsource
*
Zload
*
220 2.45 + j6.95 3.90 + j5.50
Zsource = Test circuit impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured from
drain to ground.
Figure 14. Series Equivalent Source and Load Impedance 220 MHz
Zsource Zload
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
8
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
Figure 15. MRF6V2150NR1(NBR1) Test Circuit Component Layout 27 MHz
CUT OUT AREA
C14
27 MHz
272--WB
C15
B1
C6 B2
C7
C8
L3*, R3*, **
T1 L1
C9
C10
C11
C12
C13 L4*, R4*, **
C1
L2*
C2
C3
R1, R2
C5
T2
C4
C16
C17 C18
C20
B3
C19
Rev. 1
Table 7. MRF6V2150NR1(NBR1) Test Circuit Component Designations and Values 27 MHz
Part Description Part Number Manufacturer
B1, B3 95 *, 100 MHz Long Ferrite Beads 2743021447 Fair--Rite
B2 47 *, 100 MHz Short Ferrite Bead 2743019447 Fair--Rite
C1, C4, C5, C16 100 pF Chip Capacitors ATC100B101JT500XT ATC
C2 620 pF Chip Capacitor ATC100B621JT200XT ATC
C3 1000 pF Chip Capacitor ATC100B102JT50XT ATC
C6 2.2 %F, 50 V Chip Capacitor C1825C225J5RAC--TU Kemet
C7 0.1 %F Chip Capacitor CDR33BX104AKYS Kemet
C8 0.22 %F, 50 V Chip Capacitor C1812C224K5RAC--TU Kemet
C9, C12 22K pF Chip Capacitors ATC200B223KT50XT ATC
C10, C18 0.01 %F, 100 V Chip Capacitors C1825C103K1GAC--TU Kemet
C11, C19 0.1 pF Chip Capacitors ATC100B0R1BT500XT ATC
C13, C17 39K pF Chip Capacitors ATC200B393KT50XT ATC
C14 22 %F, 35 V Tantalum Capacitor T491X226K035AT Kemet
C15 10 %F, 35 V Tantalum Capacitor T491D106K035AT Kemet
C20 470 %F, 63 V Electrolytic Capacitor MCGPR63V477M13X26--RH Multicomp
L1 47 nH Inductor 1812SMS--47NJ Coilcraft
L2* 9 Turn, #16 AWG, Inductor, Hand Wound, 0.250(ID Copper Wire
L3* 10 Turn, #16 AWG, Inductor, Hand Wound, 0.375(ID Copper Wire
L4* 9 Turn, #16 AWG, Inductor, Hand Wound, 0.375(ID Copper Wire
R1, R2 3.3 *, 1/2 W Chip Resistors RK73B2ETTD3R3J KOA
R3*, ** 1K*, 1/4 W Resistor MCCFR0W4J0102A50 Multicomp
R4*, ** 510 *, 1/2 W Resistor MCRC1/2G511JT--RH Multicomp
T1 RF600 Transformer 16:1 Impedance Ratio RF600LF--16 Comm Concepts
T2 RF1000 Transformer 9:1 Impedance Ratio RF1000LF--9 Comm Concepts
* Leaded components mounted over traces.
** Resistor is mounted at center of inductor coil.
MRF6V2150NR1 MRF6V2150NBR1
9
RF Device Data
Freescale Semiconductor
Figure 16. MRF6V2150NR1(NBR1) Test Circuit Component Layout 450 MHz
+
CUT OUT AREA
450 MHz
272--WB
C10
Rev. 1
C9
B1
C8 C6
C7
B2
C5
L2
L1
C11
C2
C1
C3
C4
C21
C20
C19
B3 C22
L4
L3
C18
C13
C12C12
C14
C15
C16 C17
Table 8. MRF6V2150NR1(NBR1) Test Circuit Component Designations and Values 450 MHz
Part Description Part Number Manufacturer
B1, B2, B3 47 *, 100 MHz Short Ferrite Beads 2743019447 Fair--Rite
C1 6.8 pF Chip Capacitor ATC100B6R8CT500XT ATC
C2 15 pF Chip Capacitor ATC100B150JT500XT ATC
C3, C5, C17, C18 240 pF Chip Capacitors ATC100B241JT200XT ATC
C4 36 pF Chip Capacitor ATC100B360JT500XT ATC
C6, C21 0.1 %F, 50 V Chip Capacitors CDR33BX104AKYS Kemet
C7, C20 10K pF Chip Capacitors ATC200B103KT50XT ATC
C8, C19 22K pF Chip Capacitors ATC200B223KT50XT ATC
C9 10 %F, 35 V Tantalum Capacitor T491D106K035AS Kemet
C10 22 %F, 35 V Tantalum Capacitor T491X226K035AS Kemet
C11 47 %F, 50 V Electrolytic Capacitor 476KXM050M Illinois Capacitor
C12 18 pF Chip Capacitor ATC100B180JT500XT ATC
C13 10 pF Chip Capacitor ATC100B100JT500XT ATC
C14 0.6 -- 4.5 pF Variable Capacitor 27271SL Johanson
C15 3 pF Chip Capacitor ATC100B3R0CT500XT ATC
C16 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC
C22 470 %F, 63 V Electrolytic Capacitor MCGPR63V477M13X26--RH Multicomp
L1, L2 5 nH Mini Spring Air Core Inductors A02TKLC Coilcraft
L3 17.5 nH Mini Spring Air Core Inductor B06TJLC Coilcraft
L4 82 nH Midi Spring Air Core Inductor 1812SMS--82NJLC Coilcraft
PCB Arlon CuClad 250GX--0300--55--22, 0.030(,)r=2.55 DS2054 DS
10
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
Zo=50*
f=27MHz
Zsource
f = 450 MHz
Zload
f=27MHz
Zload
f = 450 MHz
Zsource
VDD =50Vdc,I
DQ = 450 mA, Pout = 150 W CW
f
MHz
Zsource
*
Zload
*
27 6.57 + j41.4 7.16 + j3.02
450 0.80 + j3.20 2.20 + j2.30
Zsource = Test circuit impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured from
drain to ground.
Figure 17. Series Equivalent Source and Load Impedance 27, 450 MHz
Zsource Zload
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
MRF6V2150NR1 MRF6V2150NBR1
11
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
12
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
MRF6V2150NR1 MRF6V2150NBR1
13
RF Device Data
Freescale Semiconductor
14
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
MRF6V2150NR1 MRF6V2150NBR1
15
RF Device Data
Freescale Semiconductor
16
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
MRF6V2150NR1 MRF6V2150NBR1
17
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
!AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
!AN1955: Thermal Measurement Methodology of RF Power Amplifiers
!AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
!EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
!Electromigration MTTF Calculator
!RF High Power Model
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &
Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision Date Description
0Feb. 2007 !Initial Release of Data Sheet
1May 2007 !Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C4,
C17, C5, C18, C9, C12, C14, C23, C13, C21, and C22, p. 3
2Apr. 2008 !Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150"C, p. 1
!Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection,
Dynamic Characteristics table, p. 2
!Updated PCB information to show more specific material details, Fig. 2, Test Circuit Schematic, p. 3
!Updated Part Numbers in Table 6, Component Designations and Values, to latest RoHS compliant part
numbers, p. 3
!Replaced Case Outline 1486--03, Issue C, with 1486--03, Issue D, p. 8--10. Added pin numbers 1 through 4
on Sheet 1.
!Replaced Case Outline 1484--04, Issue D, with 1484--04, Issue E, p. 11--13. Added pin numbers 1 through
4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations.
3Dec. 2008 !Added Typical Performances table for 27 MHz, 450 MHz applications, p. 2
!Added Figs. 15 and 16, Test Circuit Component Layout -- 27 MHz and 450 MHz, and Tables 7 and 8, Test
Circuit Component Designations and Values -- 27 MHz and 450 MHz, p. 8, 9
!Added Fig. 17, Series Equivalent Source and Load Impedance for 27 MHz, 450 MHz, p. 10
4Apr. 2010 !Operating Junction Temperature increased from 200"C to 225"C in Maximum Ratings table, related
“Continuous use at maximum temperature will affect MTTF” footnote added and changed 200"C to 225"C
in Capable Plastic Package bullet, p. 1
!Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software,
p. 17
18
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescaletand the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
+Freescale Semiconductor, Inc. 2007--2008, 2010. All rights reserved.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33169354848(French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Document Number: MRF6V2150N
Rev. 4, 4/2010