FAST RECOVERY

Features:

- Fast Recovery Time... 200 Nanoseconds Maximum
- Diffused Construction
- For Use in:
 - Inverters — Choppers
 - Low RF Interference Applications
 - Free-Wheeling Rectifier Applications
- Sonar Power Supplies
- Ultrasonic Systems
- DC-DC Power Supplies

maximum allowable ratings (Resistive or Inductive Load)

	1N3889,R	1N3890,R	1N3891,R	1N3892,R	1N3893,F	₹
*Maximum Repetitive Peak Reverse Voltage, $T_{\rm J} = -65^{\circ}{\rm C}$ to	50	100	200	300	400	Volts
$+150$ °C, V_{RM} (rep) (Note 1)						
Maximum RMS Voltage, $T_J = -65^{\circ}\text{C}$ to $+150^{\circ}\text{C}$, V_r (Note 1)	35	70	140	210	280	Volts
*Maximum DC Blocking Voltage, $T_J = -65^{\circ}\text{C}$ to $+100^{\circ}\text{C}$, V_R						
(Note 1)	50	100	200	300	400	Volts
*Maximum Average Forward Current, Single Phase,						
$T_{\rm c} = +100 {\rm ^{\circ}C}, I_{\rm o} \dots $	4	1 2	Ampere	s		
*Maximum Peak One Cycle Surge Current, 60 Cycle, Non-						
Recurrent, $T_{\rm J} = -65^{\circ}{\rm C}$ to $+150^{\circ}{\rm C}$, $I_{\rm FM}$ (surge)	-	150) Amper	es 	/	
*Maximum Peak Ten Cycle Surge Current, 60 cycle, Non-						
Recurrent, $T_J = -65^{\circ}C$ to $+150^{\circ}C$, I_{FM} (surge)	4	70	Ampere	es 		
*Maximum Forward Voltage Drop, $I_F = 12$ ADC, $T_C = +25$ °C, V_F	-	1	.4 Volts			
*Maximum Reverse Current at Full Load, Single Phase Full-Cyle						
Average, $I_0 = 12$ Amp. at $T_C = +100$ °C, $I_{R(AV)}$	4		5.0 mA -			
*Maximum DC Reverse Current at Rated DC Blocking Voltage,						
$ m V_R$, and $ m T_C = +100 ^{\circ} C$, $ m I_R$			3.0 mA -		-	
*Maximum DC Reverse Current at Rated DC Blocking Voltage,						
V_R , and $T_C = +25$ °C, I_R	-		$\cdot 25~\mu\mathrm{A}$ –			
*Junction Operating Temperature Range, T _J	-	65°	C to +1	50°C − −		
*Storage Temperature Range, T _{stg}	4	65°	C to +1	75°C—		
*Stud Torque	-	—15 in-l	bs. Maxi	mum		
*Maximum Reverse Recovery Characteristics:						
(See figure below) Recovery Time, t _{rr}	2 0	0 Nanos	econds I	I aximur	n	
Peak Recovery Current, I _R (recovery) (Note 2)		2.0 Amp	eres Ma	ximum–		

^{*}The asterisk denotes JEDEC (EIA) registered information.

test conditions

These rectifiers are factory tested to reverse recovery limits which correlate with EIA registered values. This testing is in accordance with NEMA-EIA recommendations for silicon rectifier diodes and stacks.

Recovery characteristic test conditions: $I_{FM}=5.0$ amps; di/dt=50 amps/ μ sec switching rate, and a reverse bias of 50% V_R for 200, 300 and 400 volt grades or 100% V_R for 50 and 100 volt grades; $T_C=25\,^{\circ}\mathrm{C}$; $t_{rr}=150$ nanoseconds; and I_R (recovery) = 5.0 amperes max.

TYPICAL RECOVERY WAVE FORMS

NOTES:

1. Rating assumes rectifier heatsink \leq 6°C/W at max. T_J. 2. Some manufacturers call this Overshoot Current and use the symbol I_{os}.

1N3889-93, R

1. Forward Current Rating vs. Case Temperature

NOTE: Case temperature is measured at the center of any flat on the hex base.

OUTLINE DRAWING

- O COPPER TERMINAL,016 THICK, TIN PLATED
- 2 BRASS WASHER, 035 THICK NICKEL PLATED
- (3) MICA WASHERS, TWO, .625 O.D., .204 I.D., .005 THICK
- (4) TEFLON WASHER, 270 O.D. .204 I.D., .050 THICK
- * AVAILABLE UPON REQUEST

COMPLIES WITH EIA REGISTERED OUTLINE DO-4

SYMBOL	INCHES		MILLI	NOTES	
	MIN.	MAX	MIN.	MAX.	MOIDS
A		.405		10.29	
$\phi \mathrm{D}$.424		10.77	ļ
E	.424	.437	10.77	11.10	
F	.075	.175	1.91	4.45	}
J		.800		20.32	
m		.250		6.35	1
N	.422	.453	10.72	11.51	
φ t	.060		1.52		
W					2

NOTES:

- 1. Angular orientation of this terminal is undefined.
- 2. 10-32 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.1697", 4.29 MM) Ref. (Screw thread standards for Federal Services 1957) Handbook H28 1957 P1.