S-814 Series
www.sii-ic.com LOW DROPOUT CMOS VOLTAGE REGULATOR
© Seiko Instruments Inc., 1999-2010 Rev.3.0_00
Seiko Instruments Inc. 1
The S-814 Series is a low dropout voltage, high output voltage accuracy and low current consumption positive
voltage regulator developed utilizing CMOS technology.
Built-in low ON-resistance transistors provide low dropout voltage and large output current. A shutdown circuit
ensures long battery life.
Various types of output capacitors can be used in the S-814 Series compared with the past CMOS voltage
regulators. (i.e., Small ceramic capacitors ca n also be used in the S-814 Series.)
The SOT-23-5 miniaturized package and the SOT-89-5 packages are recommended to use for configuring
portable devices and large output current applications, respectively.
Features
Low current consumption
At operation mode: Typ. 30 μA, Max. 40 μA
At shutdown mode: Typ. 100 nA, Max. 500 nA
Output voltage: 0.1 V steps between 2.0 and 6.0 V
High accuracy output voltage: ±2.0 %
Output current: 110 mA capable: 3.0 V output product, at VIN=4 V*1
180 mA capable: 5.0 V output product, at VIN=6 V*1
Low dropout voltage: Typ. 170 mV: 5.0 V output product, at IOUT=60 mA
Built-in shutdown circuit
Built-in short-circuit protection
Low ESR capacitor, e.g. a ceramic capacitor of 0.47 μF or more, can be used as the outp ut cap acitor.
Lead-free, Sn 100%, halogen-free*2
*1. Attention should be paid to the power dissipation of the package when the output current is large.
*2. Refer to “ Product Name Structure” for details.
Applications
Power source for battery-powered devices, personal communication devices, and home electric/electronic
appliances.
Packages
SOT-23-5
SOT-89-5
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
2
Block Diagram
VOUT
ON/OFF
VSS
VIN
+
*1
Short-circuit
protection
circuit
Shutdown
circuit
Reference
voltage
*1. Parasitic diode
Figure 1
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 3
Product Name Structure
1. Product Name
S-814 x xx A xx- xxx T2
x
Environmental code
U: Lead-free (Sn 100%), halogen-free
G: Lead-free (for details, please contact our sales office)
IC direction in tape specifications*1
Product name (Abbreviation)*2
Package name (Abbreviation)
MC: SOT-23-5
UC: SOT-89-5
Output voltage
20 to 60
(e.g., When output voltage is 2.0 V, it is expressed as 20.)
Product type*3
A: OFF/ON pin positive logic
B: OFF/ON pin negative logic
*1. Refer to the tape specifications at the end of this boo k.
*2. Refer to the Table 1 in “3. Product Name List”.
*3. Refer to “3. ON/OFF pin (Shutdown pin)” in “ Operation”.
2. Package
Drawing Code
Package Name Package Tape Reel
SOT-23-5 MP005-A-P-SD MP005-A-C-SD MP005-A-R-SD
SOT-89-5 UP005-A-P-SD UP005-A-C-SD UP005-A-R-SD
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
4
3. Product Name List
Table1
Output voltage SOT-23-5 SOT-89-5
2.0 V±2.0 % S-814A20AMC-BCKT2x S-814A20AUC-BCKT2x
2.1 V±2.0 % S-814A21AMC-BCLT2x S-814A21AUC-BCLT2x
2.2 V±2.0 % S-814A22AMC-BCMT2x S-814A22AUC-BCMT2x
2.3 V±2.0 % S-814A23AMC-BCNT2x S-814A23AUC-BCNT2x
2.4 V±2.0 % S-814A24AMC-BCOT2x S-814A24AUC-BCOT2x
2.5 V±2.0 % S-814A25AMC-BCPT2x S-814A25AUC-BCPT2x
2.6 V±2.0 % S-814A26AMC-BCQT2x S-814A26AUC-BCQT2x
2.7 V±2.0 % S-814A27AMC-BCRT2x S-814A27AUC-BCRT2x
2.8 V±2.0 % S-814A28AMC-BCST2x S-814A28AUC-BCST2x
2.9 V±2.0 % S-814A29AMC-BCTT2x S-814A29AUC-BCTT2x
3.0 V±2.0 % S-814A30AMC-BCUT2x S-814A30AUC-BCUT2x
3.1 V±2.0 % S-814A31AMC-BCVT2x S-814A31AUC-BCVT2x
3.2 V±2.0 % S-814A32AMC-BCWT2x S-814A32AUC-BCWT2x
3.3 V±2.0 % S-814A33AMC-BCXT2x S-814A33AUC-BCXT2x
3.4 V±2.0 % S-814A34AMC-BCYT2x S-814A34AUC-BCYT2x
3.5 V±2.0 % S-814A35AMC-BCZT2x S-814A35AUC-BCZT2x
3.6 V±2.0 % S-814A36AMC-BDAT2x S-814A36AUC-BDAT2x
3.7 V±2.0 % S-814A37AMC-BDBT2x S-814A37AUC-BDBT2x
3.8 V±2.0 % S-814A38AMC-BDCT2x S-814A38AUC-BDCT2x
3.9 V±2.0 % S-814A39AMC-BDDT2x S-814A39AUC-BDDT2x
4.0 V±2.0 % S-814A40AMC-BDET2x S-814A40AUC-BDET2x
4.1 V±2.0 % S-814A41AMC-BDFT2x S-814A41AUC-BDFT2x
4.2 V±2.0 % S-814A42AMC-BDGT2x S-814A42AUC-BDGT2x
4.3 V±2.0 % S-814A43AMC-BDHT2x S-814A43AUC-BDHT2x
4.4 V±2.0 % S-814A44AMC-BDIT2x S-814A44AUC-BDIT2x
4.5 V±2.0 % S-814A45AMC-BDJT2x S-814A45AUC-BDJT2x
4.6 V±2.0 % S-814A46AMC-BDKT2x S-814A46AUC-BDKT2x
4.7 V±2.0 % S-814A47AMC-BDLT2x S-814A47AUC-BDLT2x
4.8 V±2.0 % S-814A48AMC-BDMT2x S-814A48AUC-BDMT2x
4.9 V±2.0 % S-814A49AMC-BDNT2x S-814A49AUC-BDNT2x
5.0 V±2.0 % S-814A50AMC-BDOT2x S-814A50AUC-BDOT2x
5.1 V±2.0 % S-814A51AMC-BDPT2x S-814A51AUC-BDPT2x
5.2 V±2.0 % S-814A52AMC-BDQT2x S-814A52AUC-BDQT2x
5.3 V±2.0 % S-814A53AMC-BDRT2x S-814A53AUC-BDRT2x
5.4 V±2.0 % S-814A54AMC-BDST2x S-814A54AUC-BDST2x
5.5 V±2.0 % S-814A55AMC-BDTT2x S-814A55AUC-BDTT2x
5.6 V±2.0 % S-814A56AMC-BDUT2x S-814A56AUC-BDUT2x
5.7 V±2.0 % S-814A57AMC-BDVT2x S-814A57AUC-BDVT2x
5.8 V±2.0 % S-814A58AMC-BDWT2x S-814A58AUC-BDWT2x
5.9 V±2.0 % S-814A59AMC-BDXT2x S-814A59AUC-BDXT2x
6.0 V±2.0 % S-814A60AMC-BDYT2x S-814A60AUC-BDYT2x
Remark 1. Please contact the SII marketing department for type B products.
2. x: G or U
3. Please select products of environmental code = U for Sn 100%, halogen-fre e products.
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 5
Pin Configurations
Table 2
Pin No. Symbol Pin description
1 VIN Voltage input pin
2 VSS GND pin
3 ON/OFF Shutdown pin
4 NC*1 No connection
5 VOUT Voltage output pin
SOT-23-5
Top view
5
4
3
2
1
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 2
Table 3
Pin No. Symbol Pin description
1 VOUT Voltage output pin
2 VSS GND pin
3 NC*1 No connection
4 ON/OFF Shutdown pin
5 VIN Voltage input pin
SOT-89-5
Top view
1 3
2
4 5
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 3
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
6
Absolute Maximum Ratings
Table 4 (Ta=25°C unless otherwi se specified)
Item Symbol Absolute maximum rating Unit
VIN VSS0.3 to VSS+12 V
Input voltage VON/OFF VSS0.3 to VSS+12 V
Output voltage VOUT VSS0.3 to VIN+0.3 V
250 (When not mounted on board) mW
SOT-23-5 600*1 mW
500 (When not mounted on board) mW
Power dissipation SOT-89-5 PD
1000*1 mW
Operating ambient temperature Topr 40 to +85 °C
Storage temperature Tstg 40 to +125 °C
*1. When mounted on board
[Mounted on board]
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name : JEDEC STANDARD51-7
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
600
400
0
Power Dissipation (P
D
) [mW]
200
0 50 100 150
Ambient Temperature
(
Ta
)
[°C]
800
1000
SOT-23-5
SOT-89-5
Figure 4 Power Dissipation of Package (When Mounted on Board)
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 7
Electrical Characteristics
Table 5 (Ta=25°C unless otherwi se specified)
Item Symbol Conditions Min. Typ. Max. Units
Test
circuit
Output voltage*1 V
OUT(E) VIN=VOUT(S)+1 V, IOUT=30 mA VOUT(S)
×0.98 VOUT(S)
VOUT(S)
×1.02 V 1
2.0 VVOUT(S)2.9 V 100*3 mA 3
3.0 VVOUT(S)3.9 V 110*3 mA 3
4.0 VVOUT(S)4.9 V 135*3 mA 3
Output current*2 I
OUT VOUT(S)+1 VVIN10 V
5.0 VVOUT(S)6.0 V 180*3 mA 3
2.0 VVOUT(S)2.4 V 0.51 0.87 V 1
2.5 VVOUT(S)2.9 V 0.38 0.61 V 1
3.0 VVOUT(S)3.4 V 0.30 0.44 V 1
3.5 VVOUT(S)3.9 V 0.24 0.33 V 1
4.0 VVOUT(S)4.4 V 0.20 0.26 V 1
4.5 VVOUT(S)4.9 V 0.18 0.22 V 1
5.0 VVOUT(S)5.4 V 0.17 0.21 V 1
Dropout voltage*4 V
drop IOUT=60 mA
5.5 VVOUT(S)6.0 V 0.17 0.20 V 1
Line regulation 1 OUTIN
1OUT
VV
Δ
VΔ
VOUT(S)+0.5 VVIN10 V, IOUT=30 mA 0.05 0.2 %/V 1
Line regulation 2 OUTIN
2OUT
VV
Δ
VΔ
VOUT(S)+0.5 VVIN10 V, IOUT=10 μA 0.05 0.2 %/V 1
Load regulation ΔVOUT3 V
IN=VOUT(S)+1 V, 10 μAIOUT80 mA 30 50 mV 1
Output voltage
temperature
cofficient*5 OUT
OUT
VTa
Δ
VΔ
VIN=VOUT(S)+1 V, IOUT=30 mA,
40°CTa85°C ±100 ppm/
°C 1
Current
consumption during
operation ISS1 VIN=VOUT(S)+1 V, ON/OFF pin=ON, No load 30 40 μA 2
Current
consumption during
shutdown ISS2 VIN=VOUT(S)+1 V, ON/OFF pin=OFF, No load 0.1 0.5 μA 2
Input voltage VIN 10 V 1
ON/OFF pin input
voltage “H” VSH VIN=VOUT(S)+1 V, RL=1 kΩ,
Judged at VOUT level 1.5 V 4
ON/OFF pin input
voltage “L” VSL VIN=VOUT(S)+1 V, RL=1 kΩ,
Judged at VOUT level 0.3 V 4
ON/OFF pin input
current “H” ISH VIN=VOUT(S)+1 V, VON/OFF=7 V 0.1 0.1 μA 4
ON/OFF pin input
current “L” ISL VIN=VOUT(S)+1 V, VON/OFF=0 V 0.1 0.1 μA 4
Short current limit IOS VIN=VOUT(S)+1 V, VOUT pin=0 V 70 mA 3
Ripple rejection RR VIN=VOUT(S)+1 V, f=100 Hz, ΔVrip=0.5 Vrms,
IOUT=30 mA 45 dB 5
*1. V
OUT(E): Effective output voltage
i.e., The output voltage when fixing IOUT(=30 mA) and inputting VOUT(S)+1.0 V.
V
OUT(S): Specified output voltage
*2. Output amperage when output voltage goes below 95 % of VOUT(E) after gradually increasin g output current.
*3. The output current can be at least this value.
Use load amperage not exceeding this value.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
8
*4. Vdrop=VIN1*1(VOUT(E)×0.98)
*1. Input voltage at which the output voltage falls 98 % of VOUT(E) after gradually decreasing the input
voltage.
*5. The change in temperature [mV/°C] is calculated using the following equation.
[] [] []
1000 C/ppm
VTaΔ
VΔ
VV C/mV
TaΔ
VΔ
OUT
OUT
)S(OUT
OUT ÷°
×=° 3*2**1
*1. Change in temperature of the dropout voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 9
Test Circuits
1.
VSS
VOUT VIN
V
A
ON/OFF
Set to po wer
ON
+
+
2.
VSS
VOUTVIN
A
ON/OFF
Set to
V
IN
or GND
+
Figure 5 Figure 6
3.
VSS
VOUT VIN
V
A
ON/OFF
Set to po wer
ON
+
+
4.
VSS
VOUT VIN
V R
L
ON/OFF
A
+
Figure 7 Figure 8
5.
VSS
VOUT VIN
V
ON/OFF
Set to
power ON
R
L
+
Figure 9
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
10
Standard Circuit
VSS
VOUT VIN
CIN
*1
CL
*2
INPUT OUTPUT
GND
Single GND
*1. CIN is a capacitor used to stabilize input.
*2. In addition to a tantalum capacitor, a ceramic capacito r of 0.47 μF or more can be used in CL.
Figure 10
Caution The above connection diagram and constant will not guarantees successful operation.
Perform through evaluation using the actual application to set the constant.
Technical Terms
1. Low dropout voltage regulator
The low dropout voltage regulator is a voltage regulator featuring a low dropout voltage characteristic due
to its internal low ON-resistance characteristic transistors.
2. Low ESR
ESR is the abbreviation for Equivalent Series Resistance. The low ESR output capacitor (CL) can be
used in the S-814 Series.
3. Output voltage (VOUT)
The accuracy of the output voltage is ensured at ±2.0 % under the specified conditions*1 of input voltage,
output current, and temperature, which differ depending upon the product items.
*1. The condition differs depending upon each product.
Caution If you change the above conditions, the output voltage value may vary out of the
accuracy range of the output voltage. Refer to the “ Electrical Characteristics” and “
Characteristics” for details.
4. Line regulation 1 (ΔVOUT1) and Line regulation 2 (ΔVOUT2)
Indicate the input voltage dependencies of output voltage. That is, the value shows how much the output
voltage changes due to a change in the input voltage with the output current remained unchanged.
5. Load regulation (ΔVOUT3)
Indicates the output current dependencies of output voltage. That is, the value shows how much the
output voltage changes due to a chan ge in the output current with the input voltage remained unchanged.
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 11
6. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) an d output voltage when output voltage falls by 98 %
of VOUT(E) by gradually decreasing the input voltage.
Vdrop=VIN1(VOUT(E)×0.98)
7. Temperature coefficient of output voltage
Δ
Δ
OUT
OUT
VTaV
The shadowed area in Figure 11 is the range where VOUT varies in the operating temperature range when
the temperature coefficient of the output voltage is ±100 ppm/°C.
40 25
+
0.28 mV/°C
V
OUT [V]
V
OUT(E)*1
85 Ta [°C]
0.28mV/°C
*1. The mesurement value of output voltage at 25°C.
Figure 11 Typical example of S-814A28 A
A change in temperatures of output voltage [mV/°C] is calculated using the following equation.
[] [] []
1000 C/ppm
VTaV
VV C/mV
Ta
V
OUT
OUT
)S(OUT
OUT ÷°
Δ
Δ
×=°
Δ
Δ3*2**1
*1. The change in temperature of the dropout voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
12
Operation
1. Basic operation
Figure 12 shows the block diagram of the S-814 Series.
The error amplifier compares a reference voltage Vref with part of the output voltage divided by the
feedback resistors Rs and R f. It supplies the output transistor with the gate voltage, necessary to ensure
certain output voltage free of any fluctuations of input voltage and temperature.
VOUT
*1
VSS
VIN
Rs
Rf
Error amplifier
Current source
Vre
f
+
Referenc e voltage
circuit
*1. Parasitic diode Figure 12
2. Output transistor
The S-814 Series uses a low on-resistance Pch MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being broken due to
inverse current flowing from VOUT pin throu gh a parasitic diode to VIN pin.
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 13
3. ON/OFF pin (Shutdo wn pin)
This pin starts and stops the regulator.
When the shutdown pin is switched to the shutdown level, the operation of all internal circuits stops, the
built-in Pch MOSFET output transistor between VIN pin and VOUT pin is shutdown, allowing current
consumption to be drastically reduced. The VOUT pin enters the Vss level due to internally divided
resistance of several MΩ between VOUT pin and VSS pin.
Furthermore, the structure of the ON/OFF pin is as shown in Figure 13. Since the ON/OFF pin is neither
pulled down nor pulled up internally, do not use it in the floating state. In addition, please note that current
consumption increases if a voltage of 0.3 V to VIN0.3 V is applied to the shutdown pin. When the
ON/OFF pin is not used, connect it to the VIN pin in case of the product type is ‘”A” and to the VSS pin in
case of “B”.
V
IN
ON/OFF
V
SS
Figure 13
Table 6
Product type ON/OFF pin Internal circuit VOUT pin voltage Current consumption
A “H”: Power on Operating Set value ISS1
A “L”: Shutdown Stop VSS level ISS2
B “H”: Shutdown Stop VSS level ISS2
B “L”: Power on Operating Set value ISS1
4. Short-circuit protection circuit
The S-814 Series incorporates a short-circuit protection circuit to protect the output transistor against
short-circuiting between VOUT pin and VSS pin.
The short-circuit protection circuit controls output current as shown in “1. Output voltage vs. Output
current (When load current increases)” curve in “ Characteristics”, and prevents output current of
approx. 70 mA or more from flowing even if VOUT pin and VSS pin are shorted. However, the short-
circuit protection circuit does not protect thermal sh utdown. Be sure that input voltage and load current do
not exceed the specified power dissipation level.
When output current is large and a difference between input and output voltages is large even if not
shorted, the short-circuit protection circuit may start functioning and the output current may be controlled
to the specified amperage. For details, refer to “ 3. Maximum output current vs. Input voltage” curve in
Characteristics”.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
14
Selection of Output Capacitor (CL)
Mount an output capacitor between VOUT pin and VSS pin for phase compensation. The S-814 Series
enables customers to use a cerami c capacitor as well as a tantalum or an aluminum electrolytic capacitor.
A ceramic cap acitor or an OS capa citor:
Use a capacitor of 0.47 μF or more.
A tantalum or an aluminum electrolytic capacitor:
Use a capacitor of 0.47 μF or more and ESR of 10 Ω or less.
Pay special attention not to cause an oscillation due to an increase in ESR at low temperatures, when
you use the aluminum electrolytic capacitor. Evaluate the capacitor taking into consideration its
performance inclu ding temperature characteristics.
Overshoot and undershoot characteristics differ depending upon the type of the output capacitor you
select. Refer to “CL dependencies of overshoot” and “CL dependencies of un dershoot” in
Transient Response Characteristics”.
Precautions
Wiring patterns for VIN pin, VOUT pin and GND pin should be designed so that the impedance is low.
When mounting an output capacitor, the distance from the capacitor to the VOUT pin and the VSS pin
should be as short as possible.
Note that output voltage may increase when a series regulator is used at low load current (Less than 10
μA).
Generally, a series regulator may cause oscillation, depending on the selection of external parts. The
following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under
the actual usage conditions to select the seri es regulator.
Output capacitor (CL): 0.47 μF or more
Equivalent Series Resistance (ES R): 10 Ω or less
Input series resistan ce (RIN): 10 Ω or less
The voltage regulator may oscillate when the impedance of the power supply is high and the input
capacitor is small or an input capacitor is not connected.
The application conditions for input voltage and load current do not exceed the power dissipation level of
the package.
In determining the output current, attention should be paid to the output current value specified and
footnote *3 in Table 5 in the “ Electrical Characteristics”.
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by
products including this IC of patents o wned by a third party.
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 15
Characteristics (Typical data)
1. Output voltage (VOUT) vs. Output current (IOUT) (When load current increases)
S-814A20A S-814A30A
(Ta=25°C)
0
1.0
2.0
0 50 100 150 200 250
IOUT [mA]
VOUT [V]
3 V
V
IN
=2.3 V
2.5 V
10 V
4 V
(Ta=25°C)
0
1.0
2.0
3.0
0 100 200 300 400
IOUT [mA]
VOUT [V]
VIN=3.3 V
4 V
5 V
3.5 V
6 V
10 V
S-814A50A
(Ta=25°C)
0
1.0
2.0
3.0
4.0
5.0
0 200 400 600 800
IOUT [mA]
VOUT [V]
VIN=5.3 V
6 V
7 V
5.5 V
10 V
8 V
Remark In determining th e output current, attention
should be paid to the following.
1. The minimum output current value and footnote *
3
in Table 5 in the Electrical characte ristics”.
2. The package power dissipation.
2. Output voltage (VOUT) vs. Input voltage (VIN)
S-814A20A (Ta = 25°C) S-814A30A (Ta = 25°C)
60 mA
30 mA
1 mA
I
OUT
= 10 μA
100 μA
1 2 3 4
1
1.0
1.5
2.0
2.5
V
IN
(V)
V
OUT
(V)
60 mA
30 mA
2.0
2.5
3.0
3.5
I
OUT
= 10 μA
100 μA
1 mA
V
IN
(V)
V
OUT
(V)
2 3 4 5
1.5
S-814A50A (Ta = 25°C)
4.5
5.0
5.5
V
IN
(V)
V
OUT
(V)
4 5 6 7
4.0
60 mA
30 mA
I
OUT
= 10 μA
100 μA
1 mA
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
16
3. Maximum output current (IOUTmax) vs. Input voltage (VIN)
S-814A20A S-814A30A
0
100
200
300
1 2 3 4 5 6 7 8 9 10
VIN [V]
IOUTmax [mA]
Ta=−40°C
25°C
85°C
0
200
400
600
2 3 4 5 6 7 8 9 10
VIN [V]
IOUTmax [mA]
Ta=−40°C
25°C
85°C
S-814A50A
0
200
400
600
800
4 5 6 7 8 9 10
VIN [V]
IOUTma
[mA]
Ta=−40°C
25°C 85°C
Remark In determining th e output current, attention
should be paid to the following.
1. The minimum output current value and footnote *
3
in Table 5 in the Electrical characte ristics”.
2. The package power dissipatio n.
4. Dropout voltage (Vdrop) vs. Output current (IOUT)
S-814A20A S-814A30A
0
50
100
150
200
250
300
0 5 10 15 20 25 30
IOUT [mA]
Vdrop [mV]
Ta
=
40°C
25°C
85°C
0
30
60
90
120
0 5 10 15 20 25 30
IOUT [mA]
Vdrop [mV]
25°C
Ta=−40°C
85°C
S-814A50A
0
40
80
120
160
0 10 20 30 40 50 60
IOUT [mA]
Vdrop [mV]
Ta=−40°C
25°C
85°C
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 17
5. Output voltage (VOUT) v s. Ambient temperature (Ta)
S-814A20A S-814A30A
1.96
1.98
2.00
2.02
2.04
50 0 50 100
Ta [°C]
VOUT [V]
VIN=3V, IOUT=30mA
2.94
2.97
3.00
3.03
3.06
50 050 100
Ta [°C]
VOUT [V]
VIN=4V, IOUT=30mA
S-814A50A
4.90
4.95
5.00
5.05
5.10
50 0 50 100
Ta [°C]
VOUT [V]
VIN=6V, IOUT=30mA
6. Line regulation (ΔVOUT1) vs. Ambient temperature (Ta)
S-814A20A/S-814A30A/S-814A50A
0
5
10
15
20
25
30
35
50 0 50 100
Ta [° C]
3 V
VOUT=2 V
5 V
VIN=VOUT(S)+0.5
10 V, IOUT=30 mA
ΔVOUT1 [mV]
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
18
7. Load regulation (ΔVOUT3) vs. Ambient temperature (Ta)
S-814A20A/S-814A30A/S-814A50A
0
10
20
30
40
50
50 0 50 100
Ta [°C]
3 V
5 V
VOUT=2 V
VIN=VOUT(S)+1 V, IOUT=10 μA80 mA
ΔVOUT3 [mV]
8. Current consumption (ΔISS1) vs. Input voltage (V IN)
S-814A20A S-814A30A
4 V
IN
(V)
Δ
I
SS1
(μA)
6 8 100 2
40
30
20
10
0
Ta =
40 °C
25 °C
85 °C
4 V
IN
(V)
Δ
I
SS1
(μA)
6 8 100 2
40
30
20
10
0
Ta = 40 °C
25 °C
85 °C
S-814A50A
4 V
IN
(V)
Δ
I
SS1
(μA)
6 8 100 2
40
30
20
10
0
Ta =
40 °C
25 °C
85 °C
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 19
9. Threshold voltage of shutd own pin (VSH/VSL) vs. Input voltage (VIN)
S-814A20A S-814A30A
0
0.5
1.0
1.5
2.0
2.5
2 4 6 8 10
VIN [V]
VSH/VSL [V]
VSH
VSL
0
0.5
1.0
1.5
2.0
2.5
3 5 7 8 10
VIN [V]
VSH/VSL [V]
VSH
VSL
S-814A50A
0
0.5
1.0
1.5
2.0
2.5
5 6 8 9 10
VIN [V]
VSH/VSL [V]
VSL
VSH
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
20
Reference Data
1. Transient Response Characteristics (S-814A30 A, Typical data, Ta=25°C)
Overshoot
Input voltage
or
Load current
Output volatage Undershoot
1-1. At power on
Output voltage (VOUT) – Time (t)
VIN=010 V, IOUT
=
30 mA
t
[
50
μ
s/div
]
VOUT [0.5V/div]
0 V
0 V
10 V
CL=4.7
μ
F
CL=1
μ
F
VOUT
VIN
Load dependenci es of overshoot CL dependencies of overshoot
0
0.2
0.4
0.6
0.8
1.E05 1.E04 1.E
03 1.E02 1.E01 1.E
+
00
IOUT [A]
Overshoot [V]
5 V
VIN=0VOUT(S)+1 V, CL=1 μF
3 V VOUT=2 V
0
0.2
0.4
0.6
0.8
1.0
0.1 1 10 100
CL [uF]
Overshoot
[
V
]
VOUT
=
2 V
5 V
3 V
VIN
=
0VOUT(S)+1 V, IOUT=30 mA
VDD dependencies of overshoot Temperature dependen cies of overshoot
0
0.2
0.4
0.6
0.8
1.0
0 2 4 6 8
10
VDD [V]
Overshoot [V]
VIN=0VDD, IOUT=30 mA, CL=1
μ
F
VOUT=2 V 3 V 5 V
0
0.2
0.4
0.6
0.8
1.0
50 0 50 100
Ta [°C]
Overshoot [V]
VIN
=
0VOUT(S)
+
1 V, IOUT=30 mA, CL
=
1
μ
F
VOUT
=
2 V
3 V 5 V
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 21
1-2. At power on/off control
Output voltage (VOUT) – Time (t)
VIN=10 V, ON/OFF =010 V, IOUT
=
30 m
A
t [50 μs/div]
VOUT [0.5 V/div]
10 V
0 V
0 V
CL=4.7 μF
CL=1
μ
F
VOUT
ON/OFF
Load dependenci es of overshoot CL dependencies of overshoot
0
0.2
0.4
0.6
0.8
1.E05 1.E04 1.E
03 1.E02 1.E01 1.E
+
00
IOUT [A]
Overshoot [V]
5 V
VOUT=2 V 3 V
VIN=VOUT(S)+1 V, CL=1 μF, ON/OFF=0VOUT(S)
+
1 V
0
0.2
0.4
0.6
0.8
1.0
0.1 1 10 100
CL [μF]
Overshoot
[
V
]
VIN
=
VOUT(S)
+
1 V, IOUT
=
30 mA, ON/OFF=0VOUT(S)
+
1
V
VOUT=2 V
3 V 5 V
VDD dependencies of overshoot Temperature dependencies of overshoot
0
0.2
0.4
0.6
0.8
1.0
0 2 4 6 8 10
VDD [V]
Overshoot [V]
VIN=VDD, IOUT=30 mA, CL
=
1 μF, ON/OFF
=
0VDD
VOUT=2 V
5 V
3 V
0
0.2
0.4
0.6
0.8
1.0
50 0 50 100
Ta
[
°C
]
Overshoot [V]
5 V
3 V
VIN=VOUT(S)+1 V, IOUT=30 mA, CL=1 μF,
ON/OFF=0VOUT(S)+1V
VOUT
=
2 V
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
22
1-3. At power fluctuation
Output voltage (VOUT) – Time (t)
VIN=4.010 V, IOUT=30 m
A
t [50 μs/div]
VOUT [0. 5 V/div]
3 V CL=4.7 μF
CL
=
1 μF
VIN
4 V
10 V
VOUT
VIN=104.0 V, IOUT
=
30 m
A
t [50 μs/div]
VOUT [0.5 V/div]
3 V
4
V
10 V
VIN CL=4.7 μF
CL=1 μF
VOUT
Load dependenci es of overshoot CL dependencies of overshoot
0
0.2
0.4
0.6
0.8
1.E05 1.E04 1.E
03 1.E02 1.E01 1.E
+
00
IOUT [A]
Overshoot [V]
5 V
VIN=VOUT(S)+1 VVOUT(S)+2 V, CL
=
1
μ
F
VOUT=2 V
3 V
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1 1 10 100
CL [μF]
Overshoot [V]
5 V 3 V
VOUT
=
2 V
VIN
=
VOUT(S)
+
1 VVOUT(S)+2 V, IOUT=30 m
A
VDD dependencies of overshoot Temperature dependencies of overshoot
0
0.5
1.0
1.5
2.0
0 2 4 6 8 10
VDD [V]
Overshoot [V]
VIN=VOUT(S)+1 VVDD, IOUT=30 mA, CL
=
1
μ
F
VOUT=2
V
3 V
5 V
0
0.2
0.4
0.6
0.8
1.0
50 050 100
Ta [°C]
Overshoot [V]
5 V
3 V
VOUT
=
2 V
VIN
=
VOUT(S)
+
1 VVOUT(S)+2 V, IOUT=30 mA, CL
=
1
μ
F
Load dependenci es of undershoot CL dependencies of undersho ot
0
0.2
0.4
0.6
0.8
1.E05 1.E04 1.E
03 1.E02 1.E01 1.E
+
00
IOUT [A]
Undershoot [V]
5 V
VOUT
=
2 V
VIN=VOUT(S)+2 VVOUT(S)+1 V, CL
=
1
μ
F
3 V
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1 1 10 100
CL [μF]
Undershoot [V]
5 V
3 V
VOUT
=
2 V
VIN
=
VOUT(S)
+
2 VVOUT(S)+1 V, I OUT=30 m
A
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 23
VDD dependencies of unde rshoot Temperature dependencies of undershoot
0
0.2
0.4
0.6
0.8
1.0
0 2 4 6 8 10
VDD [V]
Undershoot [V]
5 V
3 V
VIN=VDDVOUT(S)+1 V, IOUT=30 mA, CL
=
1
μ
F
VOUT=2 V
0
0.2
0.4
0.6
0.8
1.0
50 0 50 100
Ta [°C]
Undershoot [V]
5 V
3 V
VOUT
=
2 V
VIN
=
VOUT(S)
+
2 VVOUT(S)+1 V, IOUT=30 mA, CL
=
1
μ
F
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series Rev.3.0_00
Seiko Instruments Inc.
24
1-4. At load fluctuation
Output voltage (VOUT) – Time (t)
IOUT=10
μ
A30 mA, VIN
=
4
V
t [20
μ
s/div]
VOUT [0.2 V/div]
30 mA
VOUT
I
OU
T
3
V
10
μ
A
CL=4.7
μ
F
CL=1
μ
F
IOUT=30 mA10
μ
A, VIN
=
4 V
t [20 m s/div]
VOUT [0.1 V/div]
30 mA
VOUT
IOUT
3
V
10
μ
A
CL=1
μ
F
CL
=
4.7
μ
F
Load current dependencie s of overshoot CL dependencies of overshoot
0
0.2
0.4
0.6
0.8
1
1.E03 1.E02 1.E01 1.E
+
00
Δ
IOUT [A]
Overs h o ot [V]
5 V
VOUT=2 V
VIN=VOUT(S)+1 V, CL=1 μF
3 V
Remark ΔIOUT shows larger load current at load
current fluctuation. Smaller current at load
current fluctuation is fixed to 10 µA.
i.e. ΔIOUT=1.E02 [A] means load current
fluctuation from 10 mA to 10 µA.
0
0.2
0.4
0.6
0.8
1.0
0.1 110 100
CL
[
μ
F
]
Over s h o ot [V]
5 V
3 V
VIN
=
VOUT(s)
+
1 V, IOUT
=
30 mA10 μA
VOUT
=
2 V
VDD dependencies of overshoot Temperature dependencies of overshoot
0
0.2
0.4
0.6
0.8
1.0
0 2 4 6 8 10
VDD [V]
Overshoot [V]
5 V
3 V
VOUT=2 V
VIN=VDD, IOUT=30 mA10 μA, CL
=
1
μ
F
0
0.2
0.4
0.6
0.8
1.0
50 0 50 100
Ta [°C]
Overshoot [V]
3 V
VIN
=
VOUT(S)
+
1 V, IOUT
=
30 mA10 μA, CL
=
1
μ
F
VOUT
=
2 V
5 V
LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-814 Series
Seiko Instruments Inc. 25
Load current dependencie s of undershoot CL dependence of undershoot
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.E03 1.E02 1.E01 1.E
+
00
Δ
IOUT [A]
Undershoot [V]
VIN
=
VOUT(S)+1 V, CL
=
1
μ
F
3 V 5 V
VOUT=2 V
Remark ΔIOUT shows larger load current at load
current fluctuation. Lower current at load
current fluctuation is fixed to 10 µA.
i.e. ΔIOUT=1.E02 [A] means load current
fluctuation from 10 µA to 10 mA.
0
0.2
0.4
0.6
0.8
1.0
1.2
0.1 1 10 100
CL [μF]
Undershoot [V]
5 V
VIN
=
VOUT(S)
+
1 V, IOUT=10 μA30 m
A
3 V
VOUT
=
2 V
VDD dependencies of unde rshoot Temperature dependencies of undershoot
0
0.2
0.4
0.6
0.8
1.0
0 2 4 6 8 10
VDD [V]
Undershoot [V]
5 V
3 V
VIN=VDD, IOUT
=
10 μA30 mA, CL
=
1
μ
F
VOUT=2 V
0
0.2
0.4
0.6
0.8
1.0
50 0 50 100
Ta [°C]
Undershoot [V]
VIN
=
VOUT(S)
+
1 V, IOUT
=
10 μA30 mA, CL
=
1
μ
F
VOUT
=
2 V
3 V 5 V
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.9±0.2
1.9±0.2
0.95±0.1
0.4±0.1
0.16 +0.1
-0.06
123
4
5
No. MP005-A-P-SD-1.2
MP005-A-P-SD-1.2
SOT235-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
ø1.5 +0.1
-0 2.0±0.05
ø1.0 +0.2
-0 4.0±0.1
1.4±0.2
0.25±0.1
3.2±0.2
123
45
No. MP005-A-C-SD-2.1
MP005-A-C-SD-2.1
SOT235-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches:40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
ø13±0.2
(60°) (60°)
QTY. 3,000
No. MP005-A-R-SD-1.1
MP005-A-R-SD-1.1
SOT235-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
1.5±0.1 1.5±0.1
1.6±0.2
4.5±0.1
132
1.5±0.1
0.4±0.05
0.4±0.1
0.45±0.1
0.4±0.1
45°
0.3
54
No. UP005-A-P-SD-1.1
UP005-A-P-SD-1.1
SOT895-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.0±0.1
0.3±0.05
8.0±0.1
ø1.5+0.1
-0
2.0±0.05
ø1.5+0.1
-0
4.75±0.1
5° max.
1
32
54
No. UP005-A-C-SD-1.1
UP005-A-C-SD-1.1
SOT895-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches : 40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
QTY. 1,000
(60°)
(60°)
No. UP005-A-R-SD-1.1
UP005-A-R-SD-1.1
SOT895-A-Reel
Enlarged drawing in the central part
www.sii-ic.com
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the approp riate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permissi on of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicle s, without prior written permission of Seiko Instrum ents Inc.
The products described herein are not designed to be radiation-proof.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or comm unity damage that may ensue.