July 2020 DS13315 Rev 1 1/259
STM32H730AB STM32H730IB
STM32H730VB STM32H730ZB
32-bit Arm
®
Cortex
®
-M7 550 MHz MCU, 128 KB Flash, 564 KB
RAM, 35 comms peripherals and analog interfaces, HW crypto/hash
Datasheet - production data
Features
Core
32-bit Arm® Cortex®-M7 CPU with DP-FPU, L1
cache: 32-Kbyte data cache and 32-Kbyte
instruction cache allowing 0-wait state
execution from embedded Flash memory and
external memories, frequency up to 550 MHz,
MPU, 1177 DMIPS/2.14 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions
Memories
128 Kbytes of embedded Flash memory with
ECC
SRAM: total 564 Kbytes all with ECC, including
128 Kbytes of data TCM RAM for critical real-
time data + 432 Kbytes of system RAM (up to
256 Kbytes can remap on instruction TCM
RAM for critical real time instructions) +
4 Kbytes of backup SRAM (available in the
lowest-power modes)
Flexible external memory controller with up to
24-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
2 x Octo-SPI interface with XiP and on-the-fly
decryption support
2 x SD/SDIO/MMC interface
Bootloader with security services support (SFI
and SB-SFU)
Graphics
Chrom-ART Accelerator graphical hardware
accelerator enabling enhanced graphical user
interface to reduce CPU load
LCD-TFT controller supporting up to XGA
resolution
Clock, reset and supply management
1.62 V to 3.6 V application supply and I/O
POR, PDR, PVD and BOR
Dedicated USB power
Embedded DCDC and LDO regulator
Internal oscillators: 64 MHz HSI, 48 MHz
HSI48, 4 MHz CSI, 32 kHz LSI
External oscillators: 4-50 MHz HSE,
32.768 kHz LSE
Low power
Sleep, Stop and Standby modes
VBAT supply for RTC, 32×32-bit backup
registers
Analog
2×16-bit ADC, up to 3.6 MSPS in 16-bit: up to
22 channels and 7.2 MSPS in double-
interleaved mode
1 x 12-bit ADC, up to 5 MSPS in 12-bit, up to 12
channels
2 x comparators
2 x operational amplifier GBW = 8 MHz
FBGA
LQFP100 (14 x 14 mm)
LQFP144 (20 x 20 mm)
LQFP176 (24 x 24 mm)
FBGA
TFBGA100 (8 x 8 mm)
UFBGA144 (7 x 7 mm)
UFBGA 169 (7 x 7 mm)
UFBGA 176+25 (10 x 10 mm)
www.st.com
STM32H730xB
2/259 DS13315 Rev 1
2× 12-bit D/A converters
Digital filters for sigma delta modulator
(DFSDM)
8 channels/4 filters
4 DMA controllers to offload the CPU
1 × MDMA with linked list support
2 × dual-port DMAs with FIFO
1 × basic DMA with request router capabilities
24 timers
Seventeen 16-bit (including 5 x low power
16-bit timer available in stop mode) and four
32-bit timers, each with up to 4 IC/OC/PWM or
pulse counter and quadrature (incremental)
encoder input
2x watchdogs, 1x SysTick timer
Debug mode
SWD andJTAG interfaces
2-Kbyte embedded trace buffer
Up to 128 I/O ports with interrupt
capability
Up to 35 communication interfaces
Up to 5 × I2C FM+ interfaces
(SMBus/PMBus™)
Up to 5 USARTs/5 UARTs (ISO7816 interface,
LIN, IrDA, modem control) and 1 x LPUART
Up to 6 SPIs with 4 with muxed duplex I2S for
audio class accuracy via internal audio PLL or
external clock and up to 5 x SPI (from 5 x
USART when configured in synchronous
mode)
2x SAI (serial audio interface)
1× FD/TT-CAN and 2xFD-CAN
8- to 14-bit camera interface
16-bit parallel slave synchronous interface
SPDIF-IN interface
HDMI-CEC
Ethernet MAC interface with DMA controller
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip FS PHY and ULPI for external
HS PHY
SWPMI single-wire protocol master I/F
MDIO slave interface
Mathematical acceleration
CORDIC for trigonometric functions
acceleration
FMAC: Filter mathematical accelerator
Digital temperature sensor
Cryptographic/HASH acceleration
AES 128, 192, 256, TDES, HASH (MD5, SHA-
1, SHA-2), HMAC
2x OTFDEC AES-128 in CTR mode for Octo-
SPI memory encryption/decryption
True random number generator
CRC calculation unit
RTC with sub-second accuracy and
hardware calendar
ROP, PC-ROP, tamper detection, secure
firmware upgrade support
96-bit unique ID
All packages are ECOPACK2 compliant
DS13315 Rev 1 3/259
STM32H730xB Contents
8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Error code correction (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.4 Secure access mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 CORDIC co-processor (CORDIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CORDIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.7 Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 26
FMAC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.8 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.12 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.13 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.14 Chrom-ART Accelerator (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.15 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 34
3.16 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 34
3.17 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 34
3.18 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Contents STM32H730xB
4/259 DS13315 Rev 1
3.19 Octo-SPI memory interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.20 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.21 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.22 Digital temperature sensor (DTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.23 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.24 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.25 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.26 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.27 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39
3.28 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.29 PSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.30 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.31 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.32 Cryptographic acceleration (CRYP and HASH) . . . . . . . . . . . . . . . . . . . . 42
3.33 On-the-fly decryption engine (OTFDEC) . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.34 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.34.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.34.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.34.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 47
3.34.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.35 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 48
3.36 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.37 Universal synchronous/asynchronous receiver transmitter (USART) . . . 49
3.38 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 50
3.39 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 51
3.40 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.41 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.42 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 52
3.43 Management data input/output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . . 53
3.44 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 53
3.45 Controller area network (FDCAN1, FDCAN2, FDCAN3) . . . . . . . . . . . . . 53
DS13315 Rev 1 5/259
STM32H730xB Contents
8
3.46 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 54
3.47 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 54
3.48 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.49 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5 Pinouts, pin descriptions and alternate functions . . . . . . . . . . . . . . . . 57
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 114
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . 115
6.3.6 Embedded reference voltage characteristics . . . . . . . . . . . . . . . . . . . . 116
6.3.7 Embedded USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . 117
6.3.8 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Typical and maximum current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Typical SMPS efficiency versus load current and temperature . . . . . . . . . . . . .124
I/O system current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
6.3.9 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.10 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 129
High-speed external user clock generated from an external source . . . . . . . . .129
Low-speed external user clock generated from an external source . . . . . . . . . .130
High-speed external clock generated from a crystal/ceramic resonator. . . . . . .131
Low-speed external clock generated from a crystal/ceramic resonator . . . . . . .132
Contents STM32H730xB
6/259 DS13315 Rev 1
6.3.11 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 133
48 MHz high-speed internal RC oscillator (HSI48) . . . . . . . . . . . . . . . . . . . . . . .133
64 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . . . . . . . .134
4 MHz low-power internal RC oscillator (CSI) . . . . . . . . . . . . . . . . . . . . . . . . . .135
Low-speed internal (LSI) RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
6.3.12 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . . . . . . .141
Designing hardened software to avoid noise problems . . . . . . . . . . . . . . . . . . .141
Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 143
Electrostatic discharge (ESD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Static latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
General input/output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Output voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Output buffer timing characteristics (HSLV option disabled) . . . . . . . . . . . . . . .148
Output buffer timing characteristics (HSLV option enabled). . . . . . . . . . . . . . . .150
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.18 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Asynchronous waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Synchronous waveforms and timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
NAND controller waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
SDRAM waveforms and timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
6.3.19 Octo-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.20 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.21 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
6.3.22 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.3.23 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.24 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.25 Analog temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . 198
6.3.26 Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . 199
6.3.27 Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
DS13315 Rev 1 7/259
STM32H730xB Contents
8
6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 204
6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 207
6.3.33 Parallel synchronous slave interface (PSSI) characteristics . . . . . . . . 208
6.3.34 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 209
6.3.35 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.36 Low-power timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.37 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
USART interface characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
I2S Interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
MDIO characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . . . . . . . .223
USB OTG_FS characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
USB OTG_HS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
Ethernet interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Device marking for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
7.2 TFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Device marking for TFBGA100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
7.3 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Device marking for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
7.4 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Device marking for UFBGA144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
7.5 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Device marking for UFBGA169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
7.6 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Device marking for LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
7.7 UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Device marking for UFBGA176+25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.8.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Contents STM32H730xB
8/259 DS13315 Rev 1
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
DS13315 Rev 1 9/259
STM32H730xB List of tables
11
List of tables
Table 1. STM32H730xB features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 2. System versus domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 3. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 5. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 7. STM32H730xB pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 8. STM32H730xB pin alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 9. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 10. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 11. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 12. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 13. Supply voltage and maximum temperature configuration. . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 14. VCAP operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 15. Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 111
Table 16. SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 111
Table 17. Inrush current and inrush electric charge characteristics for LDO and SMPS . . . . . . . . . 112
Table 18. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 114
Table 19. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 20. Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 21. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 22. USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 23. Typical and maximum current consumption in Run mode,
code with data processing running from ITCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 25. Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory, cache OFF. . . . . . . . . . . . . . . . 121
Table 26. Typical consumption in Run mode and corresponding performance
versus code position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 27. Typical current consumption in Autonomous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 28. Typical current consumption in Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 29. Typical current consumption in System Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 30. Typical current consumption in Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 31. Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 124
Table 32. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 33. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 34. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 35. 4-50 MHz HSE oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 36. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 37. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 38. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 39. CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 40. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 41. PLL1 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 42. PLL1 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 43. PLL2 and PLL3 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . 138
Table 44. PLL2 and PLL3 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . 139
List of tables STM32H730xB
10/259 DS13315 Rev 1
Table 45. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 46. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 47. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 48. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 49. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 52. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 53. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 . . . . . . . . 146
Table 54. Output voltage characteristics for PC13, PC14, PC15 and PI8 . . . . . . . . . . . . . . . . . . . . 147
Table 55. Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 56. Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 153
Table 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 153
Table 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 155
Table 61. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 155
Table 62. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 63. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 157
Table 64. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 65. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 158
Table 66. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 67. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 68. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 69. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 70. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 71. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 72. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 73. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 74. SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 75. LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 76. OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 77. OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 78. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus . . . . . . . . . . . . 176
Table 79. Delay Block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 80. 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 81. Minimum sampling time vs RAIN (16-bit ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 82. 16-bit ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 83. 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 84. Minimum sampling time vs RAIN (12-bit ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 85. 12-bit ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 86. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 87. DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 88. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 89. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 90. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 91. Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 92. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 93. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 94. Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 95. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 96. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
DS13315 Rev 1 11/259
STM32H730xB List of tables
11
Table 97. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 98. DFSDM measured timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 99. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 100. PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 101. PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 102. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 103. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 104. LPTIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 105. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 106. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 107. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 108. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 109. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 110. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 111. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Table 112. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 223
Table 113. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 224
Table 114. USB OTG_FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 115. Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 116. Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 117. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 118. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 119. Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Table 120. Dynamics SWD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Table 121. LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Table 122. TFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 123. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 238
Table 124. LQFP144 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Table 125. UFBGA144 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Table 126. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 244
Table 127. UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table 128. LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Table 129. UFBGA176+25 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table 130. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 253
Table 131. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 132. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
List of figures STM32H730xB
12/259 DS13315 Rev 1
List of figures
Figure 1. STM32H730xB block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 3. STM32H730xB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 4. TFBGA100 pinout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5. LQFP100 pinout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 6. TFBGA144 ballout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 7. LQFP144 pinout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 8. LQFP176 pinout (with SMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 9. UFBGA169 ballout (with SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 10. UFBGA176+25 ballout (with SMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 11. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 13. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 15. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 16. External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 124
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . . 125
Figure 19. Typical SMPS efficiency (%) vs load current (A) in Stop and
DStop modes at TJ = 30 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 126
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 25. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 26. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 27. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 152
Figure 28. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 154
Figure 29. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 30. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 31. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 32. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 33. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 34. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 35. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 36. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 168
Figure 37. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 169
Figure 38. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 39. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 40. OCTOSPI SDR read/write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 41. OCTOSPI DTR mode timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 42. OCTOSPI Hyperbus clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 43. OCTOSPI Hyperbus read timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 44. OCTOSPI Hyperbus write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 45. ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 46. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 47. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 186
DS13315 Rev 1 13/259
STM32H730xB List of figures
13
Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 186
Figure 49. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 50. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 51. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 52. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 53. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 54. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 55. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 56. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 57. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 58. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 59. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 60. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 61. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 62. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 63. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 64. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 65. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 66. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 67. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 68. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Figure 69. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Figure 70. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Figure 71. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 72. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 73. LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Figure 74. LQFP100 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 75. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 76. TFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 77. TFBGA100 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 78. TFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Figure 79. LQFP144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Figure 80. LQFP144 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 81. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Figure 82. UFBGA144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 83. UFBGA144 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Figure 84. UFBGA144 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 85. UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 86. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Figure 87. LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 88. LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 89. LQFP176 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Figure 90. UFBGA176+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Figure 91. UFBGA176+25 package recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Figure 92. UFBGA176+25 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Introduction STM32H730xB
14/259 DS13315 Rev 1
1 Introduction
This document provides information on STM32H730xB microcontrollers, such as
description, functional overview, pin assignment and definition, packaging, and ordering
information.
This document should be read in conjunction with the STM32H730xB reference manual
(RM0468), available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M7 core, refer to the Cortex®-M7 Technical
Reference Manual, available from the http://www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS13315 Rev 1 15/259
STM32H730xB Description
56
2 Description
STM32H730xB devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC
core operating at up to 550 MHz. The Cortex® -M7 core features a floating point unit (FPU)
which supports Arm® double-precision (IEEE 754 compliant) and single-precision data-
processing instructions and data types. The Cortex -M7 core includes 32 Kbytes of
instruction cache and 32 Kbytes of data cache. STM32H730xB devices support a full set of
DSP instructions and a memory protection unit (MPU) to enhance application security.
STM32H730xB devices incorporate high-speed embedded memories with 128 Kbytes of
Flash memory, up to 564 Kbytes of RAM (including 192 Kbytes that can be shared between
ITCM and AXI, plus 64 Kbytes exclusively ITCM, plus 128 Kbytes exclusively AXI,
128 Kbyte DTCM, 48 Kbytes AHB and 4 Kbytes of backup RAM), as well as an extensive
range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit
multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external
memory access. To improve application robustness, all memories feature error code
correction (one error correction, two error detections).
The devices embed peripherals allowing mathematical/arithmetic function acceleration
(CORDIC co-processor for trigonometric functions and FMAC unit for filter functions). All the
devices offer three ADCs, two DACs, two operational amplifiers, two ultra-low power
comparators, a low-power RTC, 4 general-purpose 32-bit timers, 12 general-purpose 16-bit
timers including two PWM timers for motor control, five low-power timers, a true random
number generator (RNG), and a cryptographic acceleration cell, and a HASH processor.
The devices support four digital filters for external sigma-delta modulators (DFSDM). They
also feature standard and advanced communication interfaces.
Standard peripherals
–Five I
2Cs
Five USARTs, five UARTs and one LPUART
Six SPIs, four I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked by a dedicated internal audio PLL or by an external
clock to allow synchronization. (Note that the five USARTs also provide SPI slave
capability.)
Two SAI serial audio interfaces
One SPDIFRX interface with four inputs
One SWPMI (Single Wire Protocol Master Interface)
Management Data Input/Output (MDIO) slaves
Two SDMMC interfaces
A USB OTG high-speed interface with full-speed capability (with the ULPI)
Two FDCANs plus one TT-FDCAN interface
An Ethernet interface
Chrom-ART Accelerator
HDMI-CEC
Description STM32H730xB
16/259 DS13315 Rev 1
Advanced peripherals including
A flexible memory control (FMC) interface
Two Octo-SPI memory interfaces with on-the-fly decryption (OTFDEC)
A camera interface for CMOS sensors
An LCD-TFT display controller
Refer to Table 1: STM32H730xB features and peripheral counts for the list of peripherals
available on each part number.
To reduce the power consumption some STM32H730xB devices include an optional step-
down converter that can be used either for internal or external supply, or both.
STM32H730xB devices operate in the –40 to +85 °C ambient temperature range from a
1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an
external power supervisor (see Section 3.8.2: Power supply supervisor) and connecting the
PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the
embedded power voltage detector enabled.
Dedicated supply inputs for USB are available to allow a greater power supply choice.
A comprehensive set of power-saving modes allows the design of low-power applications.
STM32H730xB devices are offered in several packages ranging from 100 to 176 pins/balls.
The set of included peripherals changes with the device chosen.
These features make STM32H730xB microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smart watches.
Figure 1 shows the device block diagram.
DS13315 Rev 1 17/259
STM32H730xB Description
56
Figure 1. STM32H730xB block diagram
MSv65314V2
TT-FDCAN1
FDCAN2
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
AXI/AHB12 (275MHz)
CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2
as AF
APB1 30MHz
SCL, SDA, SMBA as AF
APB1 138 MHz (max)
MDMA
PJ,PK[11:0]
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
TX, RX, RXFD_MODE,
TXFD_MODE as AF
CH[4;1], ETR as AF
FIFO
LCD-TFT
FIFO
CHROM-ART
(DMA2D)
LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,
LCD_VSYNC, LCD_DE, LCD_CLK
64-bit AXI BUS-MATRIX
CEC as AF
IN[1:4] as AF
MDC, MDIO as AF
AXIM
A
XI
M
Arm CPU
Cortex-M7
550 MHz
AHBP
AHBS
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWDIO, JTDO
JTAG/SW
ETM
I-Cache
32KB
D-Cache
32KB
I-TCM 64KB
D-TCM
64KB
16 Streams
FIFO
SDMMC1
D[7:0], D123DIR, D0DIR,
CMD, CKas AF FIFO
DMA1
FIFOs
8 Stream
DMA2
FIFOs
ETHER
MAC
FIFO
SDMMC2
FIFO
OTG_HS
FIFO
SRAM1
16 KB
8 Stream
FMC_signals
DMA/ DMA/
PHY
MII / RMII
MDIO
as AF
DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,
ID, VBUS
AHB1 (275MHz)
ADC1
OUT1, OUT2 as AF
16b
AXI/AHB34 (275MHz)
WWDG
AHB2 (275MHz)
AHB2 (275MHz)
PA..H[15:0]
HSYNC, VSYNC, PIXCLK, D[13:0]
PDCK, DE, RDY, D[15:0]
UART9
MOSI, MISO, SCK, NSS as AF
MOSI, MISO, SCK, NSS as AF
32-bit AHB BUS-MATRIX
BDMA
DMA
Mux2
Up to 20 analog inputs Most
are common to ADC1 & 2
HSEM
AHB4 (275MHz)
AHB4
AHB4_MEMD3 (275MHz)
AHB4
AHB4
AHB4
VDDA, VSSA
NRESET
WKUP[1;2;4;6]
@VDD
RCC
Reset &
control
OSC32_IN
OSC32_OUT
AWU
VCORE BBgen + POWER MNGT
LS LS
OSC_IN
OSC_OUT
TS, TAMP1, TAMP3,
OUT, REFIN
VDD
VSS
VCAP, VDDLDO
VDDSMPS, VSSSMPS,
VLXSMPS, VFBSMPS
@VDD
@VDD
@VSW
PWRCTRL
AHB4 (275MHz)
SUPPLY SUPERVISION
Int
POR
reset
@VDD
VINM, VINP, VOUT as AF
CKOUT, DATIN[7:0], CKIN[7:0]
2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF
1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF
1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF
D[7:0],
D123DIR,
D0DIR,
CMD, CKas AF
Up to 17 analog inputs
Some common to ADC1 and 2
SD_[A;B], SCK_[A;B], FS_[A;B],
MCLK_[A;B], D[3:1], CK[2:1] as AF
SCL, SDA, SMBA as AF
COMPx_INP, COMPx_INM,
COMPx_OUT as AF
OUT as AF
D-TCM
64KB
AHB/APB
OCTOSPI1
128KB
FLASH
128 KB AXI
SRAM
FMC
AHB/APB
DFSDM
USART10
SD_[A;B], SCK_[A;B], FS_[A;B],
MCLK_[A;B], D[3:1], CK[2:1] as AF
FIFO
SAI1
SPI5
TIM17
TIM16
TIM15
SPI4
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF SPI1/I2S1
USART6
USART1
TIM1/PWM 16b
TIM8/PWM 16b
APB2 138 MHz (max)
ADC3
GPIO PORTA.. H
GPIO PORTJ,K
SAI4
COMP1&2
LPTIM5
OUT as AF LPTIM4
OUT as AF LPTIM3
I2C4
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF SPI6/I2S6
RX, TX, CK, CTS, RTS as AF LPUART1
LPTIM2
VREF
SYSCFG
EXTI WKUP
CRC
DAP
RNG
DMA
Mux1
To APB1-2
peripherals
SRAM2
16 KB
ADC2
AHB/APB
TIM6 16b
TIM7 16b
SWPMI
TIM2
32b
TIM3
16b
TIM4
16b
TIM5
32b
TIM12
16b
TIM13
16b
TIM14
16b
USART2
USART3
UART4
UART5
UART7
UART8
SPI2/I2S2
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
SPI3/I2S3
MDIOS
10 KB SRAM
RAM
I/F
USBCR
SPDIFRX1
HDMI-CEC
DAC
LPTIM1
OPAMP2
AHB/APB
XTAL 32 kHz
RTC
Backup registers
XTAL OSC
4- 48 MHz
CSI RC
LSI RC
PLL1+PLL2+PLL3
POR/PDR/BOR
PVD
Voltage
regulator
3.3 to 1.2V
LSI
HSI
CSI
HSI48
IN1, IN2, ETR, OUT as AF
AHB1 (275MHz)
16 KB SRAM 4 KB BKP
RAM
AHB4
32-bit AHB BUS-MATRIX
APB4 138 MHz (max)
APB4 138 MHz (max)
APB4 138 MHz (max)
IWDG
Temperature
sensor
HASH
3DES/AES
Shared AXI
I-TCM 192KB
OTFDEC1
OCTOSPI2
OTFDEC2
OCTOSPIM
AHB4
OCTOSPI2
signals
OCTOSPI1
signals
DLYBSD1
APB3 (138MHz)
DLYBOS1-2
AHB3
FDCAN3
FIFO
DCMI
PSSI
RX, TX, CK, CTS, RTS, DE as AF
RX, TX, CTS, RTS, DE as AF
CORDIC
FMAC
TIM23
TIM24
32b
32b
I2C5/SMBUS SCL, SDA, SMBA as AF
Digital filter
RX, TX, CK, CTS, RTS, DE as AF
RX, TX, CK, CTS, RTS, DE as AF
RX, TX, CK, CTS, RTS, DE as AF
RX, TX, CK, CTS, RTS, DE as AF
RX, TX, CTS, RTS, DE as AF
RX, TX, CTS, RTS, DE as AF
RX, TX, CTS, RTS, DE as AF
RX, TX, CTS, RTS, DE as AF
CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2
as AF
16b
16b
16b
16b
CH[4;1], ETR as AF
CH[4;1], ETR as AF
CH[4;1], ETR as AF
CH[4;1], ETR as AF
CH[4;1], ETR as AF
CH[2;1] as AF
CH1 as AF
CH1 as AF
TX, RX, RXFD_MODE,
TXFD_MODE as AF
TX, RX, RXFD_MODE,
TXFD_MODE as AF
OPAMP1
VINM, VINP, VOUT as AF
HSI48 RC
HSI RC
VBAT
DLYBSD2
IN1, IN2, ETR, OUT as AF
Description STM32H730xB
18/259 DS13315 Rev 1
Table 1. STM32H730xB features and peripheral counts
Peripherals
no SMPS SMPS
STM32H730VBT6
STM32H730VBH6
STM32H730ZBT6
STM32H730ZBI6
STM32H730ABI6Q
STM32H730IBK6Q
STM32H730IBT6Q
Flash memory (Kbytes) 128
SRAM
(Kbytes)
SRAM mapped
onto AXI bus 128
SRAM1
(D2 domain) 16
SRAM2
(D2 domain) 16
SRAM4
(D3 domain) 16
RAM shared between ITCM
and AXI (Kbytes) 192
TCM RAM
in Kbytes
ITCM RAM
(instruction) 64
DTCM RAM
(data) 128
Backup SRAM (Kbytes) 4
FMC
Interface 1
NOR Flash
memory/RAM
controller
- - yes yes yes yes yes
Multiplexed I/O
NOR Flash
memory
yes yes yes yes yes yes yes
16-bit NAND
Flash memory yes yes yes yes yes yes yes
16-bit SDRAM
controller - - yes yes yes yes yes
24-bit SDRAM
controller(1) -----yes-
GPIO 80 112 114 121 128 119
DS13315 Rev 1 19/259
STM32H730xB Description
56
Octo-SPI interface 2(2) 2(2) 22222
OTFDEC yes
Cordic yes
FMAC yes
Timers
General purpose
32 bits 2222222
General purpose
16 bits 10 10 10 10 10 10 10
Advanced control
(PWM) 2222222
Basic 2222222
Low-power 5555555
RTC 1111111
Window
watchdog /
independent
watchdog
2222222
Wakeup pins 4444444
Tamper pins 2222222
Random number generator yes
Cryptographic accelerator yes
Table 1. STM32H730xB features and peripheral counts (continued)
Peripherals
no SMPS SMPS
STM32H730VBT6
STM32H730VBH6
STM32H730ZBT6
STM32H730ZBI6
STM32H730ABI6Q
STM32H730IBK6Q
STM32H730IBT6Q
Description STM32H730xB
20/259 DS13315 Rev 1
Communic
ation
interfaces
SPI / I2S 5/4 5/4 6/4 6/4 4/4 6/4 6/4
I2C 5555555
USART/UART/
LPUART 5/5/1 5/5/1 5/5/1 5/5/1 5/5/1 5/5/1 5/5/1
SAI/PDM 2/1(3) 2/1(3) 2/1 2/1 2/1 2/1 2/1
SPDIFRX 1
HDMI-CEC 1
SWPMI 1
MDIO 1
SDMMC 2
FDCAN/TT-
FDCAN 2/1 2/1 2/1 2/1 2/1 2/1 2/1
USB
[OTG_HS(ULPI)/
FS(PHY)]
1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1]
Ethernet
[MII/RMII] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1]
Camera interface/PSSI yes
LCD-TFT yes
Chrom-ART Accelerator
(DMA2D) yes
16-bit
ADCs
Number of ADCs 2
Number of Direct
channels
ADC1/ADC2
0 2/2 0 2/2 2/2 2/2 0
Number of Fast
channels
ADC1/ADC2
3/2 3/2 4/3 4/3 6/5 6/5 4/3
Number of Slow
channels
ADC1/ADC2
11/10 9/8 12/11 12/11 12/11 12/11 12/11
Table 1. STM32H730xB features and peripheral counts (continued)
Peripherals
no SMPS SMPS
STM32H730VBT6
STM32H730VBH6
STM32H730ZBT6
STM32H730ZBI6
STM32H730ABI6Q
STM32H730IBK6Q
STM32H730IBT6Q
DS13315 Rev 1 21/259
STM32H730xB Description
56
12-bit
ADCs
Number of ADCs 1
Number of Direct
channels 2222222
Number of Fast
channels 2666666
Number of Slow
channels 0949994
12-bit DAC
Present in IC yes
Number of
channels 2
Comparators 2
Operational amplifiers 2
DFSDM Present in IC yes
Maximum CPU frequency 550 MHz
USB separate supply pad - yes yes yes yes yes yes
USB internal regulator ----yesyesyes
LDO yes
SMPS step-down converter no yes
Operating voltage 1.71 to
3.6 V 1.62 to 3.6 V
Operating temperature -40°C to +85°C
Package LQFP
100
TFBGA
100
LQFP
144
UFBGA
144
UFBGA
169
UFBGA
176+25 LQFP176
1. The 24-bit SDRAM controller is a 32-bit controller with only a 24-bit data bus and without NBL2-3. It can be used for
graphical purposes to access aligned 32-bit words ignoring upper 8 bits.
2. The two Octo-SPI/Quad-SPI interfaces are available only in Muxed mode.
3. For limitations on peripheral features depending on packages, check the available pins/balls in Table 7: STM32H730xB pin
and ball descriptions.
Table 1. STM32H730xB features and peripheral counts (continued)
Peripherals
no SMPS SMPS
STM32H730VBT6
STM32H730VBH6
STM32H730ZBT6
STM32H730ZBI6
STM32H730ABI6Q
STM32H730IBK6Q
STM32H730IBT6Q
Functional overview STM32H730xB
22/259 DS13315 Rev 1
3 Functional overview
3.1 Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm
processors for embedded systems. It was developed to provide a low-cost platform that
meets the needs of MCU implementation, with a reduced pin count and optimized power
consumption, while delivering outstanding computational performance and low interrupt
latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard architecture with L1 caches (32 Kbytes of I-cache and 32 Kbytes of D-cache)
64-bit AXI interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The following memory interfaces are supported:
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM
accesses
AXI Bus interface to optimize Burst transfers
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
It also supports single and double precision FPU (floating point unit) speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 1 shows the general block diagram of the STM32H730xB family.
3.2 Memory protection unit (MPU)
The memory protection unit (MPU) manages the CPU access rights and the attributes of the
system resources. It has to be programmed and enabled before use. Its main purposes are
to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by
a privileged task, but also to protect data processes or read-protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It
allows defining up to 16 protected regions that can in turn be divided into up to 8
independent subregions, where region address, size, and attributes can be configured. The
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.
When an unauthorized access is performed, a memory management exception is
generated.
DS13315 Rev 1 23/259
STM32H730xB Functional overview
56
3.3 Memories
3.3.1 Embedded Flash memory
The STM32H730xB devices embed 128 Kbytes of Flash memory that can be used for
storing programs and data.
The Flash memory is organized as 266-bit Flash words memory that can be used for storing
both code and data constants. Each word consists of:
one Flash word (8 words, 32 bytes or 256 bits)
10 ECC bits (single-error correction and double-error detection).
The Flash memory is organized as follows:
One sector of 128 Kbytes of user Flash memory (4 K Flash memory words)
128 Kbytes of system Flash memory from which the device can boot
2 Kbytes (64 Flash words) of user option bytes for user configuration
3.3.2 Embedded SRAM
All devices feature:
from 128 to 320 Kbytes of AXI-SRAM mapped onto the AXI bus on D1 domain
SRAM1 mapped on D2 domain: 16 Kbytes
SRAM2 mapped on D2 domain: 16 Kbytes
SRAM4 mapped on D3 domain: 16 Kbytes
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses, and
can be retained in Standby or VBAT mode.
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either
from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the
Cortex®-M7CPU(AHBSAHBP):
64 to 256 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical
real-times routines by the CPU.
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for
load/store operations) thanks to the Cortex®-M7 dual issue capability.
The MDMA can be used to load code or data in ITCM or DTCM RAMs. As reflected
above, 192 Kbyte of RAM can be used either for AXI SRAM or ITCM, with a 64Kbyte
granularity.
Functional overview STM32H730xB
24/259 DS13315 Rev 1
Error code correction (ECC)
Over the product lifetime, and/or due to external events such as radiations, invalid bits in
memories may occur. They can be detected and corrected by ECC. This is an expected
behavior that has to be managed at final-application software level in order to ensure data
integrity through ECC algorithms implementation.
SRAM data are protected by ECC:
7 ECC bits are added per 32-bit word.
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction
and double-error detection.
3.4 Secure access mode
In addition to other typical memory protection mechanism (RDP, PCROP), STM32H730xB
devices introduce the Secure access mode, a new enhanced security feature. This mode
allows developing user-defined secure services by ensuring, on the one hand code and
data protection and on the other hand code safe execution.
Two types of secure services are available:
STMicroelectronics Root Secure Services:
These services are embedded in System memory. They provide a secure solution for
firmware and third-party modules installation. These services rely on cryptographic
algorithms based on a device unique private key.
User-defined secure services:
These services are embedded in user Flash memory. Examples of user secure
services are proprietary user firmware update solution, secure Flash integrity check or
any other sensitive applications that require a high level of protection.
The secure firmware is embedded in specific user Flash memory areas configured
through option bytes.
Secure services are executed just after a reset and preempt all other applications to
guarantee protected and safe execution. Once executed, the corresponding code and data
are no more accessible.
The above secure services is activated for the next reset exits through an option bit.
DS13315 Rev 1 25/259
STM32H730xB Functional overview
56
3.5 Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
All Flash address space
All RAM address space: ITCM, DTCM RAMs and SRAMs
The System memory bootloader
The boot loader is located in non-user System memory. It is used to reprogram the Flash
memory through a serial interface (USART, I2C, SPI, FDCAN, USB-DFU). Refer to
application note AN2606 “STM32 microcontroller System memory Boot mode” for details.
3.6 CORDIC co-processor (CORDIC)
The CORDIC co-processor provides hardware acceleration of certain mathematical
functions, notably trigonometric, commonly used in motor control, metering, signal
processing and many other applications.
It speeds up the calculation of these functions compared to a software implementation,
allowing a lower operating frequency, or freeing up processor cycles in order to perform
other tasks.
The filter mathematical accelerator unit performs arithmetic operations on vectors. It
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,
which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters
to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing
up the processor for other tasks. In many cases it can accelerate such calculations
compared to a software implementation, resulting in a speed-up of time critical tasks.
CORDIC features
24-bit CORDIC rotation engine
Circular and Hyperbolic modes
Rotation and Vectoring modes
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,
Natural logarithm
Programmable precision up to 20-bit
Fast convergence: 4 bits per clock cycle
Supports 16-bit and 32-bit fixed point input and output formats
Low latency AHB slave interface
Results can be read as soon as ready without polling or interrupt
DMA read and write channels
Functional overview STM32H730xB
26/259 DS13315 Rev 1
3.7 Filter mathematical accelerator (FMAC)
The filter mathematical accelerator unit performs arithmetic operations on vectors. It
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,
which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters
to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing
up the processor for other tasks. In many cases it can accelerate such calculations
compared to a software implementation, resulting in a speed-up of time critical tasks.
FMAC features
16 x 16-bit multiplier
24+2-bit accumulator with addition and subtraction
16-bit input and output data
256 x 16-bit local memory
Up to three areas can be defined in memory for data buffers (two input, one output),
defined by programmable base address pointers and associated size registers
Input and output sample buffers can be circular
Buffer “watermark” feature reduces overhead in interrupt mode
Filter functions: FIR, IIR (direct form 1)
AHB slave interface
DMA read and write data channels
3.8 Power supply management
3.8.1 Power supply scheme
STM32H730xB power supply voltages are the following:
VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD
pins.
VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE
VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and
OPAMP.
VDD33USB: allows the support of a VDD supply different from 3.3 V while powering the
USB transceiver with 3.3V on VDD33USB.
VDD50USB can be supplied through the USB cable to generate the VDD33USB via the
USB internal regulator. This allows support of a VDD supply different to 3.3 V.
The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.
VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V,
1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register. The
DS13315 Rev 1 27/259
STM32H730xB Functional overview
56
VCORE domain is split into the following power domains that can be independently
switch off.
D1 domain containing some peripherals and the Cortex®-M7 core
D2 domain containing a large part of the peripherals
D3 domain containing some peripherals and the system control
VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply VDDSMPS
must be kept at the same voltage level as VDD
VLXSMPS = SMPS step-down converter output coupled to an inductor
VFBSMPS = VCORE or 1.8 V or 2.5 V external SMPS step-down converter feedback
voltage sense input.
During power-up and power-down phases, the following power sequence requirements
must be respected (see Figure 2):
When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB) must
remain below VDD + 300 mV.
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the microcontroller remains below 1 mJ. This allows external
decoupling capacitors to be discharged with different time constants during the power-down
transient phase.
Figure 2. Power-up/power-down sequence
1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB.
MSv47490V1
0.3
1
VBOR0
3.6
Operating modePower-on Power-down time
V
VDDX(1)
VDD
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD
Functional overview STM32H730xB
28/259 DS13315 Rev 1
3.8.2 Power supply supervisor
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry:
Power-on reset (POR)
The POR supervisor monitors VDD power supply and compares it to a fixed threshold.
The devices remain in Reset mode when VDD is below this threshold,
Power-down reset (PDR)
The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops
below a fixed threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
Brownout reset (BOR)
The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to
2.7 V) can be configured through option bytes. A reset is generated when VDD drops
below this threshold.
DS13315 Rev 1 29/259
STM32H730xB Functional overview
56
3.8.3 Voltage regulator
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can
be independently switched off.
Voltage regulator output can be adjusted according to application needs through 6 power
supply levels:
Run mode (VOS0 to VOS3)
Scale 0: boosted performance (available only with LDO regulator)
Scale 1: high performance
Scale 2: medium performance and consumption
Scale 3: optimized performance and low-power consumption
Stop mode (SVOS3 to SVOS5)
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,
LPTIM) are operational
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled. The
peripheral functionality is disabled but wakeup from Stop mode is possible through
GPIO or asynchronous interrupt.
3.9 Low-power strategy
There are several ways to reduce power consumption on STM32H730xB:
Decrease the dynamic power consumption by slowing down the system clocks even in
Run mode and by individually clock gating the peripherals that are not used.
Save power when the CPU is idle, by selecting among the available low-power modes
according to the user application needs. This allows the best compromise between
short startup time and low power consumption to be achieved, according to the
available wakeup sources.
The devices feature several low-power modes:
CSleep (CPU clock stopped)
CStop (CPU sub-system clock stopped)
DStop (Domain bus matrix clock stopped)
Stop (System clock stopped)
DStandby (Domain powered down)
Standby (System powered down)
CSleep and CStop low-power modes are entered by the MCU when executing the WFI
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of
the Cortex®-Mx core is set after returning from an interrupt service routine.
A domain can enter low-power mode (DStop or DStandby) when the processor, its
subsystem and the peripherals allocated in the domain enter low-power mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared
and the power domains are in DStop or DStandby mode.
Functional overview STM32H730xB
30/259 DS13315 Rev 1
3.10 Reset and clock controller (RCC)
The clock and reset controller is located in D3 domain. The RCC manages the generation of
all the clocks, as well as the clock gating and the control of the system and peripheral
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock
ratios to improve the power consumption. In addition, on some communication peripherals
that are capable to work with two different clock domains (either a bus interface clock or a
kernel peripheral clock), thus the system frequency can be changed without modifying the
baudrate.
3.10.1 Clock management
The devices embed four internal oscillators, two oscillators with external crystal or
resonator, two internal oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
Internal oscillators:
64 MHz HSI clock
48 MHz RC oscillator
4 MHz CSI clock
32 kHz LSI clock
External oscillators:
HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated
from a crystal/ceramic resonator)
LSE clock: 32.768 kHz
The RCC provides three PLLs: one for system clock, two for kernel clocks.
The system starts on the HSI clock. The user application can then select the clock
configuration.
Table 2. System versus domain low-power mode
System power mode D1 domain power mode D2 domain power mode D3 domain power mode
Run DRun/DStop/DStandby DRun/DStop/DStandby DRun
Stop DStop/DStandby DStop/DStandby DStop
Standby DStandby DStandby DStandby
DS13315 Rev 1 31/259
STM32H730xB Functional overview
56
3.10.2 System reset sources
Power-on reset initializes all registers while system reset reinitializes the system except for
the debug, part of the RCC and power controller status registers, as well as the backup
power domain.
A system reset is generated in the following cases:
Power-on reset (pwr_por_rst)
Brownout reset
Low level on NRST pin (external reset)
Window watchdog
Independent watchdog
Software reset
Low-power mode security reset
Exit from Standby
3.11 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
After reset, all GPIOs (except debug pins) are in Analog mode to reduce power
consumption (refer to GPIOs register reset values in the device reference manual).
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.12 Bus-interconnect matrix
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow
the interconnection of bus masters with bus slaves (see Figure 3).
Functional overview STM32H730xB
32/259 DS13315 Rev 1
Figure 3. STM32H730xB bus matrix
DS13315 Rev 1 33/259
STM32H730xB Functional overview
56
3.13 DMA controllers
The devices feature four DMA instances and a DMA request router to unload CPU activity:
A master direct memory access (MDMA)
The MDMA is a high-speed DMA controller, which is in charge of all types of memory
transfers (peripheral to memory, memory to memory, memory to peripheral), without
any CPU action. It features a master AXI interface and a dedicated AHB interface to
access Cortex®-M7 TCM memories.
The MDMA is located in D1 domain. It is able to interface with the other DMA
controllers located in D2 domain to extend the standard DMA capabilities, or can
manage peripheral DMA requests directly.
Each of the 16 channels can perform single block transfers, repeated block transfers
and linked list transfers.
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request
router capabilities.
One basic DMA (BDMA) located in D3 domain, with request router capabilities.
A DMA request multiplexer (DMAMUX)
The DMA request router could be considered as an extension of the DMA controller. It
routes the DMA peripheral requests to the DMA controller itself. This allowing
managing the DMA requests with a high flexibility, maximizing the number of DMA
requests that run concurrently, as well as generating DMA requests from peripheral
output trigger or DMA event.
3.14 Chrom-ART Accelerator (DMA2D)
The Chrom-Art Accelerator (DMA2D) is a specialized DMA dedicated to image manipulation.
It can perform the following operations:
Filling a part or the whole of a destination image with a specific color
Copying a part or the whole of a source image into a part or the whole of a destination
image
Copying a part or the whole of a source image into a part or the whole of a destination
image with a pixel format conversion
Blending a part and/or two complete source images with different pixel format and copy
the result into a part or the whole of a destination image with a different color format.
All the classical color coding schemes are supported from 4-bit up to 32-bit per pixel
with indexed or direct color mode, including block based YCbCr to handle JPEG
decoder output.
The DMA2D has its own dedicated memories for CLUTs (color look-up tables).
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automated and are running independently from the CPU or the
DMAs.
Functional overview STM32H730xB
34/259 DS13315 Rev 1
3.15 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller which is able to manage 16
priority levels, and handle up to 140 maskable interrupt channels plus the 16 interrupt lines
of the Cortex®-M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor context automatically saved on interrupt entry, and restored on interrupt exit
with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.16 Extended interrupt and event controller (EXTI)
The EXTI controller performs interrupt and event management. In addition, it can wake up
the processor, power domains and/or D3 domain from Stop mode.
The EXTI handles up to 80 independent event/interrupt lines split as 26 configurable events
and 54 direct events.
Configurable events have dedicated pending flags, active edge selection, and software
trigger capable.
Direct events provide interrupts or events from peripherals having a status flag.
3.17 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
programmable polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
DS13315 Rev 1 35/259
STM32H730xB Functional overview
56
3.18 Flexible memory controller (FMC)
The FMC controller main features are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-, 24-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the
FMC kernel clock divided by 2.
3.19 Octo-SPI memory interface (OCTOSPI)
The OCTOSPI is a specialized communication interface targeting single, dual, quad or octal
SPI memories. The STM32H730xB embeds two separate Octo-SPI interfaces.
Each OCTOSPI instance supports single/dual/quad/octal SPI formats. multiplexing of
single/dual/quad/octal SPI over the same bus can be achieved using the integrated Octo-
SPI I/O manager (OCTOSPIM).
The OCTOSPI can operate in any of the three following modes:
Indirect mode: all the operations are performed using the OCTOSPI registers
Status-polling mode: the external memory status register is periodically read and an
interrupt can be generated in case of flag setting
Memory-mapped mode: the external memory is memory mapped and it is seen by the
system as if it was an internal memory supporting both read and write operations.
The OCTOSPI supports two frame formats supported by most external serial memories
such as serial PSRAMs, serial NAND and serial NOR Flash memories, Hyper RAMs and
Hyper Flash memories.
Multi chip package (MCP) combining any of the above mentioned memory types can also
be supported.
The classical frame format with the command, address, alternate byte, dummy cycles
and data phase
The HyperBus™ frame format.
Functional overview STM32H730xB
36/259 DS13315 Rev 1
3.20 Analog-to-digital converters (ADCs)
STM32H730xB devices embed three analog-to-digital converters, two of 16-bit resolution,
and the third of 12-bit resolution. The 16-bit resolution ADCs can be configured as 16, 14,
12, 10 or 8 bits. The 12-bit resolution ADC can be configured to 12, 10 or 8 bits.
Each ADC shares up to 20 external channels, performing conversions in Single-shot or
Scan mode. In Scan mode, automatic conversion is performed on a selected group of
analog inputs.
Additional logic functions embedded in the ADC interface allow:
simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller, thus allowing automatic transfer of ADC
converted values to a destination location without any software action.
In addition, an analog watchdog feature can accurately monitor the converted voltage of
one, some, or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs can be triggered by any of the TIM1,
TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, TIM23, TIM24, and LPTIM1 timers.
3.21 Temperature sensor
STM32H730xB devices embed a temperature sensor that generates a voltage (VTS) that
varies linearly with the temperature. This temperature sensor is internally connected to
ADC3_IN17. The conversion range is between 1.7 V and 3.6 V. It can measure the device
junction temperature ranging from 40 to +125°C.
The temperature sensor have a good linearity, but it has to be calibrated to obtain a good
overall accuracy of the temperature measurement. As the temperature sensor offset varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only. To improve the accuracy of
the temperature sensor measurement, each device is individually factory-calibrated by ST.
The temperature sensor factory calibration data are stored by ST in the System memory
area, which is accessible in Read-only mode.
3.22 Digital temperature sensor (DTS)
STM32H730xB devices embed a sensor that converts the temperature into a square wave
the frequency of which is proportional to the temperature. The PCLK or the LSE clock can
be used as the reference clock for the measurements. A formula given in the product
reference manual allows calculation of the temperature according to the measured
frequency stored in the DTS_DR register.
DS13315 Rev 1 37/259
STM32H730xB Functional overview
56
3.23 VBAT operation
The VBAT power domain contains the RTC, the backup registers and the backup SRAM.
To optimize battery duration, this power domain is supplied by VDD when available or by the
voltage applied on VBAT pin (when VDD supply is not present). VBAT power is switched
when the PDR detects that VDD dropped below the PDR level.
The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or
directly by VDD, in which case, the VBAT mode is not functional.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
3.24 Digital-to-analog converters (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel including DMA underrun error detection
external triggers for conversion
input voltage reference VREF+ or internal VREFBUF reference.
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA streams.
Functional overview STM32H730xB
38/259 DS13315 Rev 1
3.25 Ultra-low-power comparators (COMP)
STM32H730xB devices embed two rail-to-rail comparators (COMP1 and COMP2). They
feature programmable reference voltage (internal or external), hysteresis and speed (low
speed for low-power) as well as selectable output polarity.
The reference voltage can be one of the following:
An external I/O
A DAC output channel
An internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,
and be combined into a window comparator.
3.26 Operational amplifiers (OPAMP)
STM32H730xB devices embed two rail-to-rail operational amplifiers (OPAMP1 and
OPAMP2) with external or internal follower routing and PGA capability.
The operational amplifier main features are:
PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3,
-7 or -15
One positive input connected to DAC
Output connected to internal ADC
Low input bias current down to 1 nA
Low input offset voltage down to 1.5 mV
Gain bandwidth up to 7.3 MHz
The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs
and one output each. These three I/Os can be connected to the external pins, thus enabling
any type of external interconnections. The operational amplifiers can be configured
internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with
inverting gain ranging from -1 to -15.
DS13315 Rev 1 39/259
STM32H730xB Functional overview
56
3.27 Digital filter for sigma-delta modulators (DFSDM)
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external  modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on  modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
hardware. DFSDM features optional parallel data stream inputs from internal ADC
peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various 
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
8 multiplexed input digital serial channels:
configurable SPI interface to connect various SD modulator(s)
configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
internal sources: ADC data or memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
–Sinc
x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
integrator: oversampling ratio (1..256)
up to 24-bit output data resolution, signed output data format
automatic data offset correction (offset stored in register by user)
continuous or single conversion
start-of-conversion triggered by:
software trigger
internal timers
external events
start-of-conversion synchronously with first digital filter module (DFSDM0)
analog watchdog feature:
low value and high value data threshold registers
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
input from final output data or from selected input digital serial channels
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
monitoring continuously each input serial channel
break signal generation on analog watchdog event or on short circuit detector event
Functional overview STM32H730xB
40/259 DS13315 Rev 1
extremes detector:
storage of minimum and maximum values of final conversion data
refreshed by software
DMA capability to read the final conversion data
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
“regular” or “injected” conversions:
“regular” conversions can be requested at any time or even in Continuous mode
without having any impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority
Pulse skipper feature to support beamforming applications (delay-line like behavior).
Table 3. DFSDM implementation
DFSDM features DFSDM1
Number of filters 4
Number of input
transceivers/channels 8
Internal ADC parallel input X
Number of external triggers 16
Regular channel information in
identification register X
DS13315 Rev 1 41/259
STM32H730xB Functional overview
56
3.28 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It
features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports Continuous mode or Snapshot (a single frame) mode
Capability to automatically crop the image
3.29 PSSI
The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It
allows the transmitter to send a data valid signal to indicate when the data is valid, and the
receiver to output a flow control signal to indicate when it is ready to sample the data.
The main PSSI features are:
Slave mode operation
8- or 16-bit parallel data input or output
8-word (32-byte) FIFO
Data enable (DE) alternate function input and Ready (RDY) alternate function output.
When enabled, these signals can either allow the transmitter to indicate when the data is
valid or, the receiver to indicate when it is ready to sample the data, or both.
The PSSI shares most of its circuitry with the digital camera interface (DCMI). It therefore
cannot be used simultaneously with the DCMI.
3.30 LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024 x 768) resolution with the following features:
2 display layers with dedicated FIFO (64x64-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
Up to 8 input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events
AXI master interface with burst of 16 words
Functional overview STM32H730xB
42/259 DS13315 Rev 1
3.31 Random number generator (RNG)
The RNG is a true random number generator that provides full entropy outputs to the
application as 32-bit samples. It is composed of a live entropy source (analog) and an
internal conditioning component.
The RNG can be used to construct a Non-deterministic Random Bit Generator (NDRBG), as
a NIST SP 800-90B compliant entropy source.
The RNG true random number generator has been tested using German BSI statistical tests
of AIS-31 (T0 to T8), and NIST SP800-90B statistical test suite.
3.32 Cryptographic acceleration (CRYP and HASH)
The devices embed a cryptographic processor that supports the advanced cryptographic
algorithms usually required to ensure confidentiality, authentication, data integrity and non-
repudiation when exchanging messages
with a peer:
Encryption/Decryption
DES/TDES (data encryption standard/triple data encryption standard): ECB
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,
128- or 192-bit key
AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter
mode) chaining algorithms, 128, 192 or 256-bit key
Universal HASH
– SHA-1 and SHA-2 (secure HASH algorithms)
–– MD5
–– HMAC
The cryptographic accelerator supports DMA request generation.
3.33 On-the-fly decryption engine (OTFDEC)
The embedded OTFDEC decrypts in real-time the encrypted content stored in the external
Octo-SPI memories used in Memory-mapped mode.
The OTFDEC uses the AES-128 algorithm in counter mode (CTR).
Code execution on external Octo-SPI memories can be protected against fault injection
thanks to
STMicroelectronics enhanced encryption mode (refer to RM0468 for details).
DS13315 Rev 1 43/259
STM32H730xB Functional overview
56
The OTFDEC main features are as follow:
On-the-fly 128-bit decryption during STM32 Octo-SPI read operations (single or
multiple).
AES-CTR algorithm with keystream FIFO (depth= 4)
Support for any read size
Up to four independent encrypted regions
Region definition granularity: 4096 bytes
Region configuration write locking mechanism
Two optional decryption modes: execute-only and execute-never
128-bit key for each region, two-byte firmware version, and eight-byte application-
defined nonce
Encryption keys confidentiality and integrity protection
Write only registers with software locking mechanism
Availability of 8-bit CRC as public key information
Support for STM32 Octo-SPI prefetching mechanism.
Functional overview STM32H730xB
44/259 DS13315 Rev 1
3.34 Timers and watchdogs
The devices include two advanced-control timers, twelve general-purpose timers, two basic
timers, five low-power timers, two watchdogs and a SysTick timer.
All timer counters can be frozen in Debug mode.
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Comple-
mentary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
Advanced
-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 Yes 137.5 275
General
purpose
TIM2,
TIM5,
TIM23,
TIM24
32-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 137.5 275
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 137.5 275
TIM12 16-bit Up
Any
integer
between 1
and
65536
No 2 No 137.5 275
TIM13,
TIM14 16-bit Up
Any
integer
between 1
and
65536
No 1 No 137.5 275
TIM15 16-bit Up
Any
integer
between 1
and
65536
Yes 2 1 137.5 275
TIM16,
TIM17 16-bit Up
Any
integer
between 1
and
65536
Yes 1 1 137.5 275
DS13315 Rev 1 45/259
STM32H730xB Functional overview
56
Basic TIM6,
TIM7 16-bit Up
Any
integer
between 1
and
65536
Yes 0 No 137.5 275
Low-
power
timer
LPTIM1,
LPTIM2,
LPTIM3,
LPTIM4,
LPTIM5
16-bit Up
1, 2, 4, 8,
16, 32,
64, 128
No 0 No 137.5 275
1. The maximum timer clock is up to 550 MHz depending on theTIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in
RCC_D2CFGR register.
Table 4. Timer feature comparison (continued)
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Comple-
mentary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
Functional overview STM32H730xB
46/259 DS13315 Rev 1
3.34.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (Edge- or Center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.34.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32H730xB
devices (see Table 4: Timer feature comparison for differences).
TIM2, TIM3, TIM4, TIM5, TIM23, TIM24
The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4, TIM5,
TIM23 and TIM24. TIM2, TIM5, TIM23 and TIM24 are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit
auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent
channels for input capture/output compare, PWM or One-pulse mode output. This
gives up to 24 input capture/output compare/PWMs on the largest packages.
TIM2, TIM3, TIM4, TIM5, TIM23 and TIM24 general-purpose timers can work together,
or with the other general-purpose timers and the advanced-control timers TIM1 and
TIM8 via the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5, TIM23, and TIM24 all have independent DMA request
generation. They are capable of handling quadrature (incremental) encoder signals
and the digital outputs from 1 to 4 hall-effect sensors.
TIM12, TIM13, TIM14, TIM15, TIM16, TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12
and TIM15 have two independent channels for input capture/output compare, PWM or
One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5,
TIM23, and TIM24 full-featured general-purpose timers or used as simple time bases.
DS13315 Rev 1 47/259
STM32H730xB Functional overview
56
3.34.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)
The low-power timers have an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / One-shot mode
Selectable software / hardware input trigger
Selectable clock source:
Internal clock source: LSE, LSI, HSI or APB clock
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
Programmable digital glitch filter
Encoder mode
3.34.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
A window option allows the device to be reset when a reload operation is made too early
after the previous reload.
3.34.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
Debug mode.
3.34.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
Functional overview STM32H730xB
48/259 DS13315 Rev 1
3.35 Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and
wakeup the device from the low-power modes.
DS13315 Rev 1 49/259
STM32H730xB Functional overview
56
3.36 Inter-integrated circuit interface (I2C)
STM32H730xB devices embed five I2C interfaces.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and Master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
3.37 Universal synchronous/asynchronous receiver transmitter
(USART)
STM32H730xB devices have five embedded universal synchronous receiver transmitters
(USART1, USART2, USART3, USART6, and USART10) and five universal asynchronous
receiver transmitters (UART4, UART5, UART7, UART8, and UART9). Refer to Table 5:
USART features for a summary of USARTx and UARTx features.
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire Half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
12.5 Mbit/s.
USART1, USART2, USART3, USART6, and USART10 also provide Smartcard mode (ISO
7816 compliant) and SPI-like communication capability.
The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode
is enabled by software and is disabled by default.
Functional overview STM32H730xB
50/259 DS13315 Rev 1
All USART have a clock domain independent from the CPU clock, allowing the USARTx to
wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can
be done on:
Start bit detection
Any received data frame
A specific programmed data frame
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
All USART interfaces can be served by the DMA controller.
3.38 Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART (LPUART1). The LPUART supports
asynchronous serial communication with minimum power consumption. It supports half
duplex single wire communication and modem operations (CTS/RTS). It allows
multiprocessor communication.
The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO
mode is enabled by software and is disabled by default.
Table 5. USART features
USART modes/features(1)
1. X = supported.
USART1/2/3/6/10 UART4/5/7/8/9
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode (Master/Slave) X -
Smartcard mode X -
Single-wire Half-duplex communication X X
IrDA SIR ENDEC block X X
LIN mode X X
Dual clock domain and wakeup from low power mode X X
Receiver timeout interrupt X X
Modbus communication X X
Auto baud rate detection X X
Driver Enable X X
USART data length 7, 8 and 9 bits
Tx/Rx FIFO X X
Tx/Rx FIFO size 16
DS13315 Rev 1 51/259
STM32H730xB Functional overview
56
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode. The wakeup from Stop mode are programmable and can be done
on:
Start bit detection
Any received data frame
A specific programmed data frame
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame
while having an extremely low energy consumption. Higher speed clock can be used to
reach higher baudrates.
LPUART interface can be served by the DMA controller.
3.39 Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI2S6) that
allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Full-
duplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the
frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode,
Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.
Four standard I2S interfaces (multiplexed with SPI1, SPI2, SPI3 and SPI6) are available.
They can be operated in Master or Slave mode, in Simplex communication modes, and can
be configured to operate as a 16-/32-bit resolution input or output channel (except SPI2S6
which is limited to 16 bits). Audio sampling frequencies from 8 kHz up to 192 kHz are
supported. When either or both of the I2S interfaces is/are configured in Master mode, the
master clock can be output to the external DAC/CODEC at 256 times the sampling
frequency. All I2S interfaces support 16x 8-bit embedded Rx and Tx FIFOs with DMA
capability.
3.40 Serial audio interfaces (SAI)
The devices embed 2 SAIs (SAI1, and SAI4) that allow designing many stereo or mono
audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF
output is available when the audio block is configured as a transmitter. To bring this level of
flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each
block has it own clock generator and I/O line controller.
Audio sampling frequencies up to 192 kHz are supported.
In addition, up to 8 microphones can be supported thanks to an embedded PDM interface.
The SAI can work in master or slave configuration. The audio sub-blocks can be either
receiver or transmitter and can work synchronously or asynchronously (with respect to the
other one). The SAI can be connected with other SAIs to work synchronously.
Functional overview STM32H730xB
52/259 DS13315 Rev 1
3.41 SPDIFRX Receiver Interface (SPDIFRX)
The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main SPDIFRX features are the following:
Up to 4 inputs available
Automatic symbol rate detection
Maximum symbol rate: 12.288 MHz
Stereo stream from 32 to 192 kHz supported
Supports Audio IEC-60958 and IEC-61937, consumer applications
Parity bit management
Communication using DMA for audio samples
Communication using DMA for control and user channel information
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream. The user can select the wanted SPDIF input, and when a
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the
Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the
CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.
3.42 Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
Full-duplex communication mode
automatic SWP bus state management (active, suspend, resume)
configurable bitrate up to 2 Mbit/s
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
DS13315 Rev 1 53/259
STM32H730xB Functional overview
56
3.43 Management data input/output (MDIO) slaves
The devices embed an MDIO slave interface it includes the following features:
32 MDIO Registers addresses, each of which is managed using separate input and
output data registers:
32 x 16-bit firmware read/write, MDIO read-only output data registers
32 x 16-bit firmware read-only, MDIO write-only input data registers
Configurable slave (port) address
Independently maskable interrupts/events:
MDIO Register write
MDIO Register read
MDIO protocol error
Able to operate in and wake up from Stop mode
3.44 SD/SDIO/MMC card host interfaces (SDMMC)
Two SDMMC host interfaces are available. They support MultiMediaCard System
Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.
Both interfaces support the SD memory card specifications version 4.1. and the SDIO card
specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits.
Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a
stack of MMC Version 4.51 or previous.
The SDMMC host interface embeds a dedicated DMA controller allowing high-speed
transfers between the interface and the SRAM.
3.45 Controller area network (FDCAN1, FDCAN2, FDCAN3)
The controller area network (CAN) subsystem consists of two CAN modules, a shared
message RAM memory and a clock calibration unit.
All CAN modules (FDCAN1, FDCAN2, and FDCAN3) are compliant with ISO 11898-1 (CAN
protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.
FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including
event synchronized time-triggered communication, global system time, and clock drift
compensation. The FDCAN1 contains additional registers, specific to the time triggered
feature. The CAN FD option can be used together with event-triggered and time-triggered
CAN communication.
A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,
transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is
shared between the three modules - FDCAN1 FDCAN2 and FDCAN3.
The common clock calibration unit is optional. It can be used to generate a calibrated clock
for FDCAN1, FDCAN2 and FDCAN3 from the HSI internal RC oscillator and the PLL, by
evaluating CAN messages received by the FDCAN1.
Functional overview STM32H730xB
54/259 DS13315 Rev 1
3.46 Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral
that supports both full-speed and high-speed operations. It integrates the transceivers for
full-speed operation (12 Mbit/s) and a UTMI low-pin interface (ULPI) for high-speed
operation (480 Mbit/s). When using the USB OTG_HS interface in HS mode, an external
PHY device connected to the ULPI is required.
The USB OTG_HS peripheral is compliant with the USB 2.0 specification and with the OTG
2.0 specification. It features software-configurable endpoint setting and supports
suspend/resume. The USB OTG_HS controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The main features are:
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
8 bidirectional endpoints
16 host channels with periodic OUT support
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Battery Charging Specification Revision 1.2 support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.47 Ethernet MAC interface with dedicated DMA controller (ETH)
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
DS13315 Rev 1 55/259
STM32H730xB Functional overview
56
The devices include the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
3.48 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC)
The devices embed a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wakeup the MCU from Stop mode on data reception.
3.49 Debug infrastructure
The devices offer a comprehensive set of debug and trace features to support software
development and system integration.
Breakpoint debugging
Code execution tracing
Software instrumentation
JTAG debug port
Serial-wire debug port
Trigger input and output
Serial-wire trace port
Trace port
Arm® CoreSight™ debug and trace components
The debug can be controlled via a JTAG/Serial-wire debug access port, using industry
standard debugging tools. The trace port performs data capture for logging and analysis.
Memory mapping STM32H730xB
56/259 DS13315 Rev 1
4 Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
DS13315 Rev 1 57/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
5 Pinouts, pin descriptions and alternate functions
Figure 4. TFBGA100 pinout (without SMPS)
1. The above figure shows the package top view.
MSv52520V1.
PC14-
OSC32_IN PC13 PE2 PB9 PB7 PB4 PB3 PA15 PA14 PA13
12345678910
A
B
C
D
E
F
G
H
J
K
PC15-
OSC32_OUT VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12
PH0-OSC_IN VSS PE4 PE1 PB5 PC12 PA9 PA11
PH1-
OSC_OUT VDD PE5 PA10
NRST PC2_C PE6 PC7
PC0 PC1
VSSA PA0
VDDA PA1 PA5 PB14
VSS PA2 PA6 PD13
VDD PA3 PA7 PB1 PE9 PB12 PD8 PD12
PE0 BOOT0 PD7 PD4
PD6 PD3
PD0 PA8
VSS VSS VSS VCAP PD1 PC9
PC3_C VDD VDD VDD33USB PDR_ON VCAP PC8
PA4 PC4 PB2 PE10 PE14 PD15 PD11
PC6
PB15
PC5 PE7 PE11 PE15 PD14 PD10
PB0 PE8 PE12 PB10 PB13 PD9
PE13 PB11
Pinouts, pin descriptions and alternate functions STM32H730xB
58/259 DS13315 Rev 1
Figure 5. LQFP100 pinout (without SMPS)
1. The above figure shows the package top view.
MSv52521V1.
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89
88
87
86
85
84
83
82
81
80
79
78
77
76
92
90
97
95
93
100
99
98
96
94
35
37
38
39
40
41
42
43
44
45
46
47
48
49
50
34
36
29
31
33
26
27
28
30
32
PE2
PE3
PE4
PE6
PC13
PC15-OSC32_OUT
VDD
NRST
PC2_C
PE5
VBAT
PC14-OSC32_IN
VSS
PH1-OSC_OUT
PC1
VSSA
PA0
PA2
PH0-OSC_IN
PC0
PC3_C
VREF+
PA1
PA3
VDDA
VDD
VSS
VCAP
PA12
PA10
PA8
PC8
PD15
PD12
PA13
PA11
PA9
PC9
PC6
PD13
PD10
PB15
PB13
PC7
PD14
PD11
PD9
PB14
PB12
PD8
VSS
VDD
PA4
PA6
PC4
PB0
PB2
PE9
PE12
PA5
PA7
PC5
PB1
PE8
PE11
PE14
PB11
VSS
PE7
PE10
PE13
PE15
VCAP
VDD
PB10
VDD
VSS
PE1
PB9
BOOT0
PB6
PB4
PD6
PD3
PE0
PB8
PB7
PB5
PD7
PD4
PD1
PC11
PA15
PB3
PD5
PD2
PD0
PC10
PA14
PC12
DS13315 Rev 1 59/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
Figure 6. TFBGA144 ballout (without SMPS)
1. The above figure shows the package top view.
MSv65136V1
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
C1 C2 C3 C4 C5 C8 C9 C10 C11 C12
D1 D2 D3 D10 D11 D12
E1 E2 E3 E10 E11 E12
F1 F2 F11 F12
G1 G2 G11 G12
H1 H2 H3 H10 H11 H12
J1 J2 J3 J10 J11 J12
K1 K2 K4 K5 K8 K9 K10 K11 K12
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
D4 D5 D6 D7
C6 C7
D8 D9
E8 E9E6 E7E4 E5
F3 F10F8 F9F6 F7F4 F5
G3 G10G8 G9G6 G7G4 G5
H8 H9H6 H7H4
J8 J9J6 J7J4 J5
K6 K7
H5
K3
Pinouts, pin descriptions and alternate functions STM32H730xB
60/259 DS13315 Rev 1
Figure 7. LQFP144 pinout (without SMPS)
1. The above figure shows the package top view.
MSv52522V1.
LQFP144
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
22
15
17
19
13
14
16
18
88
86
85
84
83
82
81
80
79
78
77
76
75
74
73
89
87
94
92
90
97
96
95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47
49
50
51
52
53
54
55
56
57
58
59
60
61
72
46
48
41
43
45
38
39
40
42
44
120
119
118
117
116
115
114
113
112
111
110
109
108 VDD
104
107
106
105
103
99
98
101
100
102
68
69
70
71
64
65
66
67
62
63
37
12
11
6
8
10
4
5
7
9
3
2
1PE2
21
PC13
PC15-OSC32_OUT
PF1
PF3
PF5
VDD
PF7
PF9
PH0-OSC_IN
NRST
PC1
PC3_C
VSSA
VDDA
PA1
PE3
PE5
PC14-OSC32_IN
PF0
PF2
PF4
VSS
PF6
PF8
PF10
PH1-OSC_OUT
PC0
PC2_C
VDD
VREF+
PA0
PA2
PE4
VBAT
PE6
PA10
PA8
PC8
PC6
VSS
PG7
PG5
PG3
PD15
VDD
PD13
PD11
PD9
PB15
PB13
VSS
PA13
PA9
PC9
PC7
VDD33USB
PG8
PG6
PG4
PG2
PD14
VSS
PD12
PD10
PD8
PB14
PB12
VCAP
PA11
PA12
VDD
BOOT0
PB6
PB4
PG15
VSS
PG13
PG11
PG9
PD6
VSS
PD4
PD2
PD0
PC11
PA15
PDR_ON
PE0
PB7
PB5
PB3
VDD
PG14
PG12
PG10
PD7
VDD
PD5
PD3
PD1
PC12
PC10
PA14
PE1
PB8
PB9
PA3
PA7
PC5
PB1
PF11
VSS
PF13
PF15
PG1
PE8
VSS
PE10
PE12
PE14
PB10
VCAP
VSS
PA4
PC4
PB0
PB2
PF12
VDD
PF14
PG0
PE7
PE9
VDD
PE11
PE13
PE15
PB11
VDD
VDD
PA6
PA5
DS13315 Rev 1 61/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
Figure 8. LQFP176 pinout (with SMPS)
1. The above figure shows the package top view.
MSv52553V1.
LQFP176
83
82
81
80
79
78
77
76
75
74
73
89
94
92
90
97
96
95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47
49
50
51
52
53
54
55
56
57
58
59
60
61
72
46
48
45
120
119
118
117
116
115
114
113
112
111
110
109
108 PK1
104
107
106
105
103
99
98
101
100
102
68
69
70
71
64
65
66
67
62
63
1PE2
VDD
PC13
PC15-OSC32_OUT
VDD
VLXSMPS
VFBSMPS
PF1
PF3
PF5
VDD
PF7
PF9
PH0-OSC_IN
NRST
PC1
PE3
PE5
VBAT
PC14-OSC32_IN
VSS
VSSSMPS
VDDSMPS
PF0
PF2
PF4
VSS
PF6
PF8
PF10
PH1-OSC_OUT
PC0
PC2_C
PE4
VSS
PE6
PJ9
VSS
PD15
PD13
PD11
VDD
PD9
PB15
PB13
VDD
VDDLDO
VCAP
PB10
PE14
PE12
PK0
VDD
PJ8
VDD
PD14
PD12
VSS
PD10
PD8
PB14
PB12
VSS
VSS
PB11
PE15
PE13
PE11
VSS
PJ10
PJ11
PD1
PA14
VDD
VSS
PA13
PA11
PA9
VDD
PC8
PC6
VDD50USB
PG8
PG6
PG4
VSS
PG2
PD0
PC11
VSS
VDDLDO
VCAP
PA12
PA10
PA8
PC9
PC7
VDD33USB
VSS
PG7
PG5
VDD
PG3
PK2
PC12
PA15
PC10
VSS
VSS
PA4
PA6
PC4
PB0
PB2
PF12
PF14
PG0
VDD
PE7
PE9
VDD
PA3
VDD
PA5
PA7
PC5
PB1
PF11
PF13
PF15
VSS
PG1
PE8
VSS
PE10
PC3_C
PA2
VSSA
VDDA
VDD
VREF+
PA1
PA0
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
22
15
17
19
13
14
16
18
12
11
6
8
10
4
5
7
9
3
2
21
41
43
38
39
40
42
44
37
84
88
87
86
85
147
145
148
146
153
151
149
156
155
154
152
150
159
157
160
158
165
163
161
168
167
166
164
162
171
169
172
170
175
173
176
174
PG12
PD7
PD5
PD3
PG11
PG9
PD6
PD4
PD2
PG10
VSS
VDD
PB8
PB3
VDD
PG14
BOOT0
PB6
PG15
VSS
PG13
PB7
PB4
PB5
PDR_ON
VCAP
PE0
VSS
PE1
PB9
VDDLDO
VDD
Pinouts, pin descriptions and alternate functions STM32H730xB
62/259 DS13315 Rev 1
Figure 9. UFBGA169 ballout (with SMPS)
1. The above figure shows the package top view.
Figure 10. UFBGA176+25 ballout (with SMPS)
1. The above figure shows the package top view.
MSv52551V1.
PE4 PE2 VDD VCAP PB6 VDD VDD PG10 PD5 VDD PC12 PC10
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
PC15-
OSC32_OUT PE3 VSS VDDLDO PB8 PB4 VSS PG11 PD6 VSS PC11 PA14
PC14-
OSC32_IN PE6 PE5 PDR_ON PB9 PG9 PD4 PD1 PA15 VSS
VDD VSS PC13 PD0 PA13 VDDLDO
VLXSMPS VSSSMPS VBAT PA10 PA9 PA8
VDDSMPS VFBSMPS PC9 PC8
VDD VSS PG8 VDD50USB
PH0-OSC_IN PH1-
OSC_OUT PF10 PG3 PG5 VSS
PC0 PC1 VSSA PD11 PD13 PD15
PC3_C PC2_C PA1 PA6 PE13 PH10 PH12 PD9 PD10
VDDA VREF+ PA1_C PA5 PB1 PB2 PG1 PE12 PB10 PH11 PB13 VSS
VDD VSS PH3 VSS PB0 PF11 VSS PE10 PB11 VDDLDO VSS PD8
PE1 PE0 PB7 PG13
PB5 PG14
PD7 PD3
PG12 PD2BOOT0 PG15PF1 PF3
PF0 PC7PG4 PC6PF7 PB3PF2 PF5
PF4 PG7PE7 PG6NRST PF13PF6 PF9
PE8 PG2PA4 PF14PF8
PE9 PE14PA7 PF15PC3 PA0
PC4 PG0
PH14
13
PH13
VDD
VCAP
PA12
PA11
VDD33USB
VDD
PD14
PD12
VDD
PB15
NPA2 PH2 PA3 VDD PC5 PF12 VDD PE11 PE15 VCAP VDD PB12 PB14
PA0_C
PC2
MSv52552V1.
VSS PB8 VDDLDO VCAP PB6 PB3 PG11 PG9 PD3 PD1 PA15 PA14
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
PE4 PE3 PB9 PE0 PB7 PB4 PG13 PD7 PD5 PD2 PC12 PH14
PC13 VSS PE2 PE1 BOOT0 PG10 PD4 PD0 PC11 PC10
PC15-
OSC32_OUT
PC14-
OSC32_IN PE5 VSS VDD PH15
VSS VBAT PE6 VDD
VLXSMPS VSSSMPS VSS
VDDSMPS VFBSMPS PG8
PF6 PF4 PF5 VSS VDD
PH0-OSC_IN PF8 PF7 VSS PD15
PH1-
OSC_OUT VSS VDD VSS VSS VSS VSS
NRST PC0 PC1 VREF- VDD
PC2 PC3 VREF+ VDDA PE14
PDR_ON VDD VSS PG15
PB5 PG14
PG12 PD6
VDD
PF1 VSSVSS VSSVSS VSSPF0
PF2 VSSVSS VSSVSS VSSVDD
VSS VSSVSS VSSPF3
VSS VSSVSS VSSPF9
VSS VSS
VDDLDO
13
PA13
PH13
PA9
PC9
VDD33USB
PG7
PG3
PD11
PD9
PD10
PH11
NPC2_C PC3_C VSSA PH2 PA3 PA7 PF11 PE8 PG1 PF15 PF13 PB10 PH8
PF10
VCAP
14
PA8
PA10
PC8
PC6
PG6
PG4
PD14
VSS
PB15
PD8
PH9
PH10
VSS
15
PA12
PA11
PC7
VDD50USB
PG5
PG2
PD13
PD12
PB14
PB13
PB12
PH12
PPA0 PA1 PA1_C PH4 PA4 PA 5 PB2 PG0 PE7 PB11 PF12 PE12 PE13 PE15 PH6
RVSS PA2 PA0_C PH3 PH5 PC4 PA 6 PB0 PE10 PF14 PE9 PE11 VCAP VDDLDO VSS
VDD VSS PC5 PB1 VDD VSS PH7
DS13315 Rev 1 63/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
Table 6. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
ANA Analog-only Input
I/O structure
FT 5 V tolerant I/O
TT 3.3 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Option for TT and FT I/Os
_f I2C FM+ option
_a analog option (supplied by VDDA)
_u USB option (supplied by VDD33USB)
_h High-speed low-voltage I/O
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.
Pin functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Pinouts, pin descriptions and alternate functions STM32H730xB
64/259 DS13315 Rev 1
Table 7. STM32H730xB pin and ball descriptions
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
A3 1 1 A3 A2 C3 1 PE2 I/O FT
_h -
TRACECLK, SAI1_CK1,
USART10_RX, SPI4_SCK,
SAI1_MCLK_A,
SAI4_MCLK_A,
OCTOSPIM_P1_IO2,
SAI4_CK1, ETH_MII_TXD3,
FMC_A23, EVENTOUT
-
B3 2 2 A2 B2 B2 2 PE3 I/O FT
_h -
TRACED0, TIM15_BKIN,
SAI1_SD_B, SAI4_SD_B,
USART10_TX, FMC_A19,
EVENTOUT
-
C3 3 3 B2 A1 B1 3 PE4 I/O FT
_h -
TRACED1, SAI1_D2,
DFSDM1_DATIN3,
TIM15_CH1N, SPI4_NSS,
SAI1_FS_A, SAI4_FS_A,
SAI4_D2, FMC_A20,
DCMI_D4/PSSI_D4, LCD_B0,
EVENTOUT
-
D3 4 4 B3 C3 D3 4 PE5 I/O FT
_h -
TRACED2, SAI1_CK2,
DFSDM1_CKIN3, TIM15_CH1,
SPI4_MISO, SAI1_SCK_A,
SAI4_SCK_A, SAI4_CK2,
FMC_A21,
DCMI_D6/PSSI_D6, LCD_G0,
EVENTOUT
-
E3 5 5 B4 C2 E3 5 PE6 I/O FT
_h -
TRACED3, TIM1_BKIN2,
SAI1_D1, TIM15_CH2,
SPI4_MOSI, SAI1_SD_A,
SAI4_SD_A, SAI4_D1,
SAI4_MCLK_B,
TIM1_BKIN2_COMP12,
FMC_A22,
DCMI_D7/PSSI_D7, LCD_G1,
EVENTOUT
-
- - - - - - 6 VSS S - - - -
--- - - -7 VDD S-- - -
B2 6 6 C2 E3 E2 8 VBAT S - - - -
A2 7 7 A1 D3 C1 9 PC13 I/O FT - EVENTOUT RTC_TAMP1/
RTC_TS, WKUP4
A1 8 8 B1 C1 D2 10 PC14-OSC32_IN I/O FT - EVENTOUT OSC32_IN
DS13315 Rev 1 65/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
B1 9 9 C1 B1 D1 11 PC15-
OSC32_OUT I/O FT - EVENTOUT OSC32_OUT
- - - - - - 12 VSS S - - - -
--- - - -13 VDD S-- - -
- - - - E2 F2 14 VSSSMPS S - - - -
- - - - E1 F1 15 VLXSMPS S - - - -
- - - - F1 G1 16 VDDSMPS S - - - -
- - - - F2 G2 17 VFBSMPS S - - - -
- - 10 C3 F3 F4 18 PF0 I/O FT
_fh -
I2C2_SDA(boot), I2C5_SDA,
OCTOSPIM_P2_IO0,
FMC_A0, TIM23_CH1,
EVENTOUT
-
- - 11 C4 E4 F3 19 PF1 I/O FT
_fh -
I2C2_SCL(boot), I2C5_SCL,
OCTOSPIM_P2_IO1,
FMC_A1, TIM23_CH2,
EVENTOUT
-
- - 12 D4 F4 G3 20 PF2 I/O FT
_h -
I2C2_SMBA, I2C5_SMBA,
OCTOSPIM_P2_IO2,
FMC_A2, TIM23_CH3,
EVENTOUT
-
- - 13 E2 E5 H4 21 PF3 I/O FT
_ha -
OCTOSPIM_P2_IO3,
FMC_A3, TIM23_CH4,
EVENTOUT
ADC3_INP5
- - 14 E3 G3 H2 22 PF4 I/O FT
_ha -OCTOSPIM_P2_CLK,
FMC_A4, EVENTOUT
ADC3_INN5,
ADC3_INP9
- - 15 E4 F5 H3 23 PF5 I/O FT
_ha -OCTOSPIM_P2_NCLK,
FMC_A5, EVENTOUT ADC3_INP4
- 10 16 - - - 24 VSS S - - - -
-1117- - -25 VDD S-- - -
- - 18 F3 G4 H1 26 PF6 I/O FT
_ha -
TIM16_CH1, FDCAN3_RX,
SPI5_NSS, SAI1_SD_B,
UART7_RX, SAI4_SD_B,
OCTOSPIM_P1_IO3,
TIM23_CH1, EVENTOUT
ADC3_INN4,
ADC3_INP8
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
66/259 DS13315 Rev 1
- - 19 F2 F6 J3 27 PF7 I/O FT
_ha -
TIM17_CH1, FDCAN3_TX,
SPI5_SCK, SAI1_MCLK_B,
UART7_TX, SAI4_MCLK_B,
OCTOSPIM_P1_IO2,
TIM23_CH2, EVENTOUT
ADC3_INP3
- - 20 G3 H4 J2 28 PF8 I/O FT
_ha -
TIM16_CH1N, SPI5_MISO,
SAI1_SCK_B,
UART7_RTS/UART7_DE,
SAI4_SCK_B, TIM13_CH1,
OCTOSPIM_P1_IO0,
TIM23_CH3, EVENTOUT
ADC3_INN3,
ADC3_INP7
- - 21 G2 G5 J4 29 PF9 I/O FT
_ha -
TIM17_CH1N, SPI5_MOSI,
SAI1_FS_B, UART7_CTS,
SAI4_FS_B, TIM14_CH1,
OCTOSPIM_P1_IO1,
TIM23_CH4, EVENTOUT
ADC3_INP2
- - 22 G1 H3 K3 30 PF10 I/O FT
_ha -
TIM16_BKIN, SAI1_D3,
PSSI_D15,
OCTOSPIM_P1_CLK,
SAI4_D3,
DCMI_D11/PSSI_D11,
LCD_DE, EVENTOUT
ADC3_INN2,
ADC3_INP6
C1 12 23 D1 H1 J1 31 PH0-OSC_IN I/O FT - EVENTOUT OSC_IN
D1 13 24 E1 H2 K1 32 PH1-OSC_OUT I/O FT - EVENTOUT OSC_OUT
E1 14 25 F1 G6 L1 33 NRST I/O RS
T-- -
F1 15 26 H1 J1 L2 34 PC0 I/O FT
_ha -
FMC_D12/FMC_AD12,
DFSDM1_CKIN0,
DFSDM1_DATIN4,
SAI4_FS_B, FMC_A25,
OTG_HS_ULPI_STP,
LCD_G2, FMC_SDNWE,
LCD_R5, EVENTOUT
ADC123_INP10
F2 16 27 H2 J2 L3 35 PC1 I/O FT
_ha -
TRACED0, SAI4_D1,
SAI1_D1, DFSDM1_DATIN0,
DFSDM1_CKIN4,
SPI2_MOSI/I2S2_SDO,
SAI1_SD_A, SAI4_SD_A,
SDMMC2_CK,
OCTOSPIM_P1_IO4,
ETH_MDC, MDIOS_MDC,
LCD_G5, EVENTOUT
ADC123_INN10,
ADC123_INP11,
RTC_TAMP3,
WKUP6
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 67/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
- - - H3 H5 M1 - PC2 I/O FT
_a -
PWR_DEEPSLEEP,
DFSDM1_CKIN1,
OCTOSPIM_P1_IO5,
SPI2_MISO/I2S2_SDI,
DFSDM1_CKOUT,
OCTOSPIM_P1_IO2,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0, EVENTOUT
ADC123_INN11,
ADC123_INP12
E2 17 28 - K2 N1 36 PC2_C AN
A
TT
_a -- ADC3_INN1,
ADC3_INP0
- - - H4 J4 M2 - PC3 I/O FT
_a -
PWR_SLEEP,
DFSDM1_DATIN1,
OCTOSPIM_P1_IO6,
SPI2_MOSI/I2S2_SDO,
OCTOSPIM_P1_IO0,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0, EVENTOUT
ADC12_INN12,
ADC12_INP13
F3 18 29 - K1 N2 37 PC3_C AN
A
TT
_a - - ADC3_INP1
--30- - -- VDD S-- - -
G1 19 31 J1 J3 N3 38 VSSA S - - - -
---K1-L4- VREF- S-- - -
-2032L1L2M339 VREF+ S-- - -
H1 21 33 M1 L1 M4 40 VDDA S - - - -
G2 22 34 J2 J5 P1 41 PA0 I/O FT
_ha -
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
TIM15_BKIN,
SPI6_NSS/I2S6_WS,
USART2_CTS/USART2_NSS,
UART4_TX, SDMMC2_CMD,
SAI4_SD_B, ETH_MII_CRS,
FMC_A19, EVENTOUT
ADC1_INP16,
WKUP1
- - - - K3 R3 - PA0_C AN
A
TT
_a -- ADC12_INN1,
ADC12_INP0
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
68/259 DS13315 Rev 1
H2 23 35 K2 K4 P2 42 PA1 I/O FT
_ha -
TIM2_CH2, TIM5_CH2,
LPTIM3_OUT, TIM15_CH1N,
USART2_RTS/USART2_DE,
UART4_RX,
OCTOSPIM_P1_IO3,
SAI4_MCLK_B,
ETH_MII_RX_CLK/ETH_RMII
_REF_CLK,
OCTOSPIM_P1_DQS,
LCD_R2, EVENTOUT
ADC1_INN16,
ADC1_INP17
- - - - L3 P3 - PA1_C AN
A
TT
_a - - ADC12_INP1
J2 24 36 L2 N1 R2 43 PA2 I/O FT
_ha -
TIM2_CH3, TIM5_CH3,
LPTIM4_OUT, TIM15_CH1,
OCTOSPIM_P1_IO0,
USART2_TX(boot),
SAI4_SCK_B, ETH_MDIO,
MDIOS_MDIO, LCD_R1,
EVENTOUT
ADC12_INP14,
WKUP2
- - - - N2 N4 - PH2 I/O FT
_ha -
LPTIM1_IN2,
OCTOSPIM_P1_IO4,
SAI4_SCK_B, ETH_MII_CRS,
FMC_SDCKE0, LCD_R0,
EVENTOUT
ADC3_INP13
--- - - -44 VDD S-- - -
- - - - - - 45 VSS S - - - -
- - - - M3 R4 - PH3 I/O FT
_ha -
OCTOSPIM_P1_IO5,
SAI4_MCLK_B,
ETH_MII_COL, FMC_SDNE0,
LCD_R1, EVENTOUT
ADC3_INN13,
ADC3_INP14
- - - - - P4 - PH4 I/O FT
_fa -
I2C2_SCL, LCD_G5,
OTG_HS_ULPI_NXT,
PSSI_D14, LCD_G4,
EVENTOUT
ADC3_INN14,
ADC3_INP15
- - - - - R5 - PH5 I/O
FT
_fh
a
-I2C2_SDA, SPI5_NSS,
FMC_SDNWE, EVENTOUT
ADC3_INN15,
ADC3_INP16
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 69/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
K2 25 37 M2 N3 N5 46 PA3 I/O FT
_ha -
TIM2_CH4, TIM5_CH4,
LPTIM5_OUT, TIM15_CH2,
I2S6_MCK,
OCTOSPIM_P1_IO2,
USART2_RX(boot), LCD_B2,
OTG_HS_ULPI_D0,
ETH_MII_COL,
OCTOSPIM_P1_CLK,
LCD_B5, EVENTOUT
ADC12_INP15
- 26 38 - - - 47 VSS S - - - -
-2739- - -48 VDD S-- - -
G3 28 40 J3 H6 P5 49 PA4 I/O TT
_ha -
D1PWREN, TIM5_ETR,
SPI1_NSS(boot)/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
SPI6_NSS/I2S6_WS,
FMC_D8/FMC_AD8,
DCMI_HSYNC/PSSI_DE,
LCD_VSYNC, EVENTOUT
ADC12_INP18,
DAC1_OUT1
H3 29 41 K3 L4 P6 50 PA5 I/O TT
_ha -
D2PWREN,
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK(boot)/I2S1_CK,
SPI6_SCK/I2S6_CK,
OTG_HS_ULPI_CK,
FMC_D9/FMC_AD9,
PSSI_D14, LCD_R4,
EVENTOUT
ADC12_INN18,
ADC12_INP19,
DAC1_OUT2
J3 30 42 L3 K5 R7 51 PA6 I/O FT
_ha -
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN,
SPI1_MISO(boot)/I2S1_SDI,
OCTOSPIM_P1_IO3,
SPI6_MISO/I2S6_SDI,
TIM13_CH1,
TIM8_BKIN_COMP12,
MDIOS_MDC,
TIM1_BKIN_COMP12,
DCMI_PIXCLK/PSSI_PDCK,
LCD_G2, EVENTOUT
ADC12_INP3
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
70/259 DS13315 Rev 1
K3 31 43 M3 J6 N6 52 PA7 I/O TT
_ha -
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI(boot)/I2S1_SDO,
SPI6_MOSI/I2S6_SDO,
TIM14_CH1,
OCTOSPIM_P1_IO2,
ETH_MII_RX_DV/ETH_RMII_
CRS_DV, FMC_SDNWE,
LCD_VSYNC, EVENTOUT
ADC12_INN3,
ADC12_INP7,
OPAMP1_VINM
G4 32 44 J4 K6 R6 53 PC4 I/O TT
_ha -
PWR_DEEPSLEEP,
FMC_A22, DFSDM1_CKIN2,
I2S1_MCK, SPDIFRX1_IN3,
SDMMC2_CKIN,
ETH_MII_RXD0/ETH_RMII_R
XD0, FMC_SDNE0, LCD_R7,
EVENTOUT
ADC12_INP4,
OPAMP1_VOUT,
COMP1_INM
H4 33 45 K4 N5 M7 54 PC5 I/O TT
_ha -
PWR_SLEEP, SAI4_D3,
SAI1_D3, DFSDM1_DATIN2,
PSSI_D15, SPDIFRX1_IN4,
OCTOSPIM_P1_DQS,
ETH_MII_RXD1/ETH_RMII_R
XD1, FMC_SDCKE0,
COMP1_OUT, LCD_DE,
EVENTOUT
ADC12_INN4,
ADC12_INP8,
OPAMP1_VINM
J4 34 46 L4 M5 R8 55 PB0 I/O TT
_ha -
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
OCTOSPIM_P1_IO1,
DFSDM1_CKOUT,
UART4_CTS, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2, LCD_G1,
EVENTOUT
ADC12_INN5,
ADC12_INP9,
OPAMP1_VINP,
COMP1_INP
K4 35 47 M4 L5 M8 56 PB1 I/O FT
_ha -
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
OCTOSPIM_P1_IO0,
DFSDM1_DATIN1, LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3, LCD_G0,
EVENTOUT
ADC12_INP5,
COMP1_INM
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 71/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
G5 36 48 J5 L6 P7 57 PB2 I/O FT
_ha -
RTC_OUT, SAI4_D1,
SAI1_D1, DFSDM1_CKIN1,
SAI1_SD_A,
SPI3_MOSI/I2S3_SDO,
SAI4_SD_A,
OCTOSPIM_P1_CLK,
OCTOSPIM_P1_DQS,
ETH_TX_ER, TIM23_ETR,
EVENTOUT
COMP1_INP
- - 49 M5 M6 N7 58 PF11 I/O FT
_ha -
SPI5_MOSI,
OCTOSPIM_P1_NCLK,
SAI4_SD_B, FMC_NRAS,
DCMI_D12/PSSI_D12,
TIM24_CH1, EVENTOUT
ADC1_INP2
- - 50 L5 N6 P11 59 PF12 I/O FT
_ha -
OCTOSPIM_P2_DQS,
FMC_A6, TIM24_CH2,
EVENTOUT
ADC1_INN2,
ADC1_INP6
- - 51 - - - - VSS S - - - -
--52- - -- VDD S-- - -
- - 53 K5 G7 N11 60 PF13 I/O FT
_ha -
DFSDM1_DATIN6,
I2C4_SMBA, FMC_A7,
TIM24_CH3, EVENTOUT
ADC2_INP2
- - 54 M6 H7 R10 61 PF14 I/O
FT
_fh
a
-
DFSDM1_CKIN6, I2C4_SCL,
FMC_A8, TIM24_CH4,
EVENTOUT
ADC2_INN2,
ADC2_INP6
- - 55 L6 J7 N10 62 PF15 I/O FT
_fh -I2C4_SDA, FMC_A9,
EVENTOUT -
- - 56 K6 K7 P8 63 PG0 I/O FT
_h -
OCTOSPIM_P2_IO4,
UART9_RX, FMC_A10,
EVENTOUT
-
- - - - - - 64 VSS S - - - -
--- - - -65 VDD S-- - -
- - 57 J6 L7 N9 66 PG1 I/O TT
_h -
OCTOSPIM_P2_IO5,
UART9_TX, FMC_A11,
EVENTOUT
OPAMP2_VINM
H5 37 58 M7 G8 P9 67 PE7 I/O TT
_ha -
TIM1_ETR, DFSDM1_DATIN2,
UART7_RX,
OCTOSPIM_P1_IO4,
FMC_D4/FMC_AD4,
EVENTOUT
OPAMP2_VOUT,
COMP2_INM
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
72/259 DS13315 Rev 1
J5 38 59 L7 H8 N8 68 PE8 I/O TT
_ha -
TIM1_CH1N,
DFSDM1_CKIN2, UART7_TX,
OCTOSPIM_P1_IO5,
FMC_D5/FMC_AD5,
COMP2_OUT, EVENTOUT
OPAMP2_VINM
K5 39 60 K7 J8 R11 69 PE9 I/O TT
_ha -
TIM1_CH1, DFSDM1_CKOUT,
UART7_RTS/UART7_DE,
OCTOSPIM_P1_IO6,
FMC_D6/FMC_AD6,
EVENTOUT
OPAMP2_VINP,
COMP2_INP
- - 61 - - - 70 VSS S - - - -
--62- - -71 VDD S-- - -
G6 40 63 J7 M8 R9 72 PE10 I/O FT
_ha -
TIM1_CH2N,
DFSDM1_DATIN4,
UART7_CTS,
OCTOSPIM_P1_IO7,
FMC_D7/FMC_AD7,
EVENTOUT
COMP2_INM
H6 41 64 H8 N8 R12 73 PE11 I/O FT
_ha -
TIM1_CH2, DFSDM1_CKIN4,
SPI4_NSS(boot), SAI4_SD_B,
OCTOSPIM_P1_NCS,
FMC_D8/FMC_AD8, LCD_G3,
EVENTOUT
COMP2_INP
J6 42 65 J8 L8 P12 74 PE12 I/O FT
_h -
TIM1_CH3N,
DFSDM1_DATIN5,
SPI4_SCK(boot),
SAI4_SCK_B,
FMC_D9/FMC_AD9,
COMP1_OUT, LCD_B4,
EVENTOUT
-
K6 43 66 K8 K8 P13 75 PE13 I/O FT
_h -
TIM1_CH3, DFSDM1_CKIN5,
SPI4_MISO(boot),
SAI4_FS_B,
FMC_D10/FMC_AD10,
COMP2_OUT, LCD_DE,
EVENTOUT
-
G7 44 67 L8 J9 M12 76 PE14 I/O FT
_h -
TIM1_CH4, SPI4_MOSI(boot),
SAI4_MCLK_B,
FMC_D11/FMC_AD11,
LCD_CLK, EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 73/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
H7 45 68 M8 N9 P14 77 PE15 I/O FT
_h -
TIM1_BKIN, USART10_CK,
FMC_D12/FMC_AD12,
TIM1_BKIN_COMP12,
LCD_R7, EVENTOUT
-
J7 46 69 M9 L9 N12 78 PB10 I/O FT
_fh -
TIM2_CH3, LPTIM2_IN1,
I2C2_SCL,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN7,
USART3_TX(boot),
OCTOSPIM_P1_NCS,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER, LCD_G4,
EVENTOUT
-
K7 47 70 M10 M9 P10 79 PB11 I/O FT
_f -
TIM2_CH4, LPTIM2_ETR,
I2C2_SDA, DFSDM1_CKIN7,
USART3_RX(boot),
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_RMII_T
X_EN, LCD_G5, EVENTOUT
-
F8 48 71 H7 N10 R13 80 VCAP S - - - -
- 49 - - - - 81 VSS S - - - -
- - - - M10 R14 82 VDDLDO S - - - -
-5072- - - - VDD S-- - -
- - - - - P15 - PH6 I/O FT
_h -
TIM12_CH1, I2C2_SMBA,
SPI5_SCK, ETH_MII_RXD2,
FMC_SDNE1,
DCMI_D8/PSSI_D8,
EVENTOUT
-
- - - - - M11 - PH7 I/O FT
_fh -
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9/PSSI_D9,
EVENTOUT
-
- - - - - N13 - PH8 I/O FT
_fh -
TIM5_ETR, I2C3_SDA,
FMC_D16,
DCMI_HSYNC/PSSI_DE,
LCD_R2, EVENTOUT
-
- - - - - M14 - PH9 I/O FT
_h -
TIM12_CH2, I2C3_SMBA,
FMC_D17,
DCMI_D0/PSSI_D0, LCD_R3,
EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
74/259 DS13315 Rev 1
- - - - K9 N14 - PH10 I/O FT
_h -
TIM5_CH1, I2C4_SMBA,
FMC_D18,
DCMI_D1/PSSI_D1, LCD_R4,
EVENTOUT
-
- - - - L10 M13 - PH11 I/O FT
_fh -
TIM5_CH2, I2C4_SCL,
FMC_D19,
DCMI_D2/PSSI_D2, LCD_R5,
EVENTOUT
-
- - - - - - 83 VSS S - - - -
--- - - -84 VDD S-- - -
- - - - K10 N15 - PH12 I/O FT
_fh -
TIM5_CH3, I2C4_SDA,
FMC_D20,
DCMI_D3/PSSI_D3, LCD_R6,
EVENTOUT
-
K8 51 73 M11 N12 M15 85 PB12 I/O FT
_h -
TIM1_BKIN,
OCTOSPIM_P1_NCLK,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN1,
USART3_CK, FDCAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_RMII_TX
D0, OCTOSPIM_P1_IO0,
TIM1_BKIN_COMP12,
UART5_RX, EVENTOUT
-
J8 52 74 M12 L11 L15 86 PB13 I/O FT
_h -
TIM1_CH1N, LPTIM2_OUT,
OCTOSPIM_P1_IO2,
SPI2_SCK/I2S2_CK,
DFSDM1_CKIN1,
USART3_CTS/USART3_NSS,
FDCAN2_TX,
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_RMII_TX
D1, SDMMC1_D0,
DCMI_D2/PSSI_D2,
UART5_TX, EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 75/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
H10 53 75 L11 N13 K15 87 PB14 I/O FT
_h -
TIM1_CH2N, TIM12_CH1,
TIM8_CH2N, USART1_TX,
SPI2_MISO/I2S2_SDI,
DFSDM1_DATIN2,
USART3_RTS/USART3_DE,
UART4_RTS/UART4_DE,
SDMMC2_D0,
FMC_D10/FMC_AD10,
LCD_CLK, EVENTOUT
-
G10 54 76 L12 M13 K14 88 PB15 I/O FT
_h -
RTC_REFIN, TIM1_CH3N,
TIM12_CH2, TIM8_CH3N,
USART1_RX,
SPI2_MOSI/I2S2_SDO,
DFSDM1_CKIN2,
UART4_CTS, SDMMC2_D1,
FMC_D11/FMC_AD11,
LCD_G7, EVENTOUT
-
K9 55 77 L9 M12 L14 89 PD8 I/O FT
_h -
DFSDM1_CKIN3,
USART3_TX(boot),
SPDIFRX1_IN2,
FMC_D13/FMC_AD13,
EVENTOUT
-
J9 56 78 K9 K11 K13 90 PD9 I/O FT
_h -
DFSDM1_DATIN3,
USART3_RX(boot),
FMC_D14/FMC_AD14,
EVENTOUT
-
H9 57 79 J9 K12 L13 91 PD10 I/O FT
_h -
DFSDM1_CKOUT,
USART3_CK,
FMC_D15/FMC_AD15,
LCD_B3, EVENTOUT
-
--- - - -92 VDD S-- - -
- - - - - - 93 VSS S - - - -
G9 58 80 H9 J10 J13 94 PD11 I/O FT
_h -
LPTIM2_IN2, I2C4_SMBA,
USART3_CTS/USART3_NSS,
OCTOSPIM_P1_IO0,
SAI4_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
76/259 DS13315 Rev 1
K10 59 81 L10 K13 J15 95 PD12 I/O FT
_fh -
LPTIM1_IN1, TIM4_CH1,
LPTIM2_IN1, I2C4_SCL,
FDCAN3_RX,
USART3_RTS/USART3_DE,
OCTOSPIM_P1_IO1,
SAI4_FS_A,
FMC_A17/FMC_ALE,
DCMI_D12/PSSI_D12,
EVENTOUT
-
J10 60 82 K10 J11 H15 96 PD13 I/O FT
_fh -
LPTIM1_OUT, TIM4_CH2,
I2C4_SDA, FDCAN3_TX,
OCTOSPIM_P1_IO3,
SAI4_SCK_A,
UART9_RTS/UART9_DE,
FMC_A18,
DCMI_D13/PSSI_D13,
EVENTOUT
-
- - 83 - - - - VSS S - - - -
--84- - -- VDD S-- - -
H8 61 85 K11 J13 H14 97 PD14 I/O FT
_h -
TIM4_CH3, UART8_CTS,
UART9_RX,
FMC_D0/FMC_AD0,
EVENTOUT
-
G8 62 86 K12 J12 J12 98 PD15 I/O FT
_h -
TIM4_CH4,
UART8_RTS/UART8_DE,
UART9_TX,
FMC_D1/FMC_AD1,
EVENTOUT
-
--- - - -99 VDD S-- - -
- - - - - - 100 VSS S - - - -
- - - - - - 101 PJ8 I/O FT -
TIM1_CH3N, TIM8_CH1,
UART8_TX, LCD_G1,
EVENTOUT
-
- - - - - - 102 PJ9 I/O FT -
TIM1_CH3, TIM8_CH1N,
UART8_RX, LCD_G2,
EVENTOUT
-
- - - - - - 103 PJ10 I/O FT -
TIM1_CH2N, TIM8_CH2,
SPI5_MOSI, LCD_G3,
EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 77/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
- - - - - - 104 PJ11 I/O FT -
TIM1_CH2, TIM8_CH2N,
SPI5_MISO, LCD_G4,
EVENTOUT
-
- - - - - - 105 VDD S - - - -
- - - - - - 106 VSS S - - - -
- - - - - - 107 PK0 I/O FT -
TIM1_CH1N, TIM8_CH3,
SPI5_SCK, LCD_G5,
EVENTOUT
-
- - - - - - 108 PK1 I/O FT -
TIM1_CH1, TIM8_CH3N,
SPI5_NSS, LCD_G6,
EVENTOUT
-
- - - - - - 109 PK2 I/O FT -
TIM1_BKIN, TIM8_BKIN,
TIM8_BKIN_COMP12,
TIM1_BKIN_COMP12,
LCD_G7, EVENTOUT
-
- - 87 J12 H9 G15 110 PG2 I/O FT
_h -
TIM8_BKIN,
TIM8_BKIN_COMP12,
FMC_A12, TIM24_ETR,
EVENTOUT
-
- - 88 J11 H10 H13 111 PG3 I/O FT
_h -
TIM8_BKIN2,
TIM8_BKIN2_COMP12,
FMC_A13, TIM23_ETR,
EVENTOUT
-
- - - - - - 112 VSS S - - - -
--- - - -113 VDD S-- - -
- - 89 J10 F8 G14 114 PG4 I/O FT
_h -
TIM1_BKIN2,
TIM1_BKIN2_COMP12,
FMC_A14/FMC_BA0,
EVENTOUT
-
- - 90 H12 H11 F15 115 PG5 I/O FT
_h -
TIM1_ETR,
FMC_A15/FMC_BA1,
EVENTOUT
-
- - 91 H11 G9 F14 116 PG6 I/O FT
_h -
TIM17_BKIN,
OCTOSPIM_P1_NCS,
FMC_NE3,
DCMI_D12/PSSI_D12,
LCD_R7, EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
78/259 DS13315 Rev 1
- - 92 H10 G10 G13 117 PG7 I/O FT
_h -
SAI1_MCLK_A, USART6_CK,
OCTOSPIM_P2_DQS,
FMC_INT,
DCMI_D13/PSSI_D13,
LCD_CLK, EVENTOUT
-
- - 93 G11 G11 G12 118 PG8 I/O FT
_h -
TIM8_ETR,
SPI6_NSS/I2S6_WS,
USART6_RTS/USART6_DE,
SPDIFRX1_IN3,
ETH_PPS_OUT,
FMC_SDCLK, LCD_G7,
EVENTOUT
-
- - 94 - - - 119 VSS S - - - -
- - - - G12 E15 120 VDD50USB S - - - -
F6 - 95 C11 G13 F13 121 VDD33USB S - - - -
F10 63 96 G12 F9 E14 122 PC6 I/O FT
_h -
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3, I2S2_MCK,
USART6_TX,
SDMMC1_D0DIR,
FMC_NWAIT, SDMMC2_D6,
SDMMC1_D6,
DCMI_D0/PSSI_D0,
LCD_HSYNC, EVENTOUT
SWPMI_IO
E10 64 97 F12 F10 D15 123 PC7 I/O FT
_h -
DBTRGIO, TIM3_CH2,
TIM8_CH2, DFSDM1_DATIN3,
I2S3_MCK, USART6_RX,
SDMMC1_D123DIR,
FMC_NE1, SDMMC2_D7,
SWPMI_TX, SDMMC1_D7,
DCMI_D1/PSSI_D1, LCD_G6,
EVENTOUT
-
F9 65 98 F11 F12 D14 124 PC8 I/O FT
_h -
TRACED1, TIM3_CH3,
TIM8_CH3, USART6_CK,
UART5_RTS/UART5_DE,
FMC_NE2/FMC_NCE,
FMC_INT, SWPMI_RX,
SDMMC1_D0,
DCMI_D2/PSSI_D2,
EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 79/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
E9 66 99 E11 F11 E13 125 PC9 I/O FT
_fh -
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA(boot),
I2S_CKIN, I2C5_SDA,
UART5_CTS,
OCTOSPIM_P1_IO0,
LCD_G3, SWPMI_SUSPEND,
SDMMC1_D1,
DCMI_D3/PSSI_D3, LCD_B2,
EVENTOUT
-
- - - - - - 126 VDD S - - - -
D9 67 100 E12 E12 B14 127 PA8 I/O FT
_fh -
MCO1, TIM1_CH1,
TIM8_BKIN2, I2C3_SCL(boot),
I2C5_SCL, USART1_CK,
OTG_HS_SOF, UART7_RX,
TIM8_BKIN2_COMP12,
LCD_B3, LCD_R6,
EVENTOUT
-
C9 68 101 D12 E11 D13 128 PA9 I/O FT
_u -
TIM1_CH2, LPUART1_TX,
I2C3_SMBA,
SPI2_SCK/I2S2_CK,
I2C5_SMBA,
USART1_TX(boot),
ETH_TX_ER,
DCMI_D0/PSSI_D0, LCD_R5,
EVENTOUT
OTG_HS_VBUS
D10 69 102 D11 E10 C14 129 PA10 I/O FT
_u -
TIM1_CH3, LPUART1_RX,
USART1_RX(boot),
OTG_HS_ID, MDIOS_MDIO,
LCD_B4, DCMI_D1/PSSI_D1,
LCD_B1, EVENTOUT
-
C10 70 103 C12 F13 C15 130 PA11 I/O FT
_u -
TIM1_CH4, LPUART1_CTS,
SPI2_NSS/I2S2_WS,
UART4_RX,
USART1_CTS/USART1_NSS,
FDCAN1_RX, LCD_R4,
EVENTOUT
OTG_HS_DM
(boot)
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
80/259 DS13315 Rev 1
B10 71 104 B12 E13 B15 131 PA12 I/O FT
_u -
TIM1_ETR,
LPUART1_RTS/LPUART1_DE
, SPI2_SCK/I2S2_CK,
UART4_TX,
USART1_RTS/USART1_DE,
SAI4_FS_B, FDCAN1_TX,
TIM1_BKIN2, LCD_R5,
EVENTOUT
OTG_HS_DP
(boot)
A10 72 105 A12 D11 B13 132 PA13(JTMS/
SWDIO) I/O FT - JTMS/SWDIO, EVENTOUT -
E7 73 106 G9 D13 A14 133 VCAP S - - - -
- 74 107 - - - 134 VSS S - - - -
- - - - D12 A13 135 VDDLDO S - - - -
- 75 108 - - - 136 VDD S - - - -
- - - - B13 C13 - PH13 I/O FT
_h -
TIM8_CH1N, UART4_TX,
FDCAN1_TX(boot), FMC_D21,
LCD_G2, EVENTOUT
-
- - - - A13 B12 - PH14 I/O FT
_h -
TIM8_CH2N, UART4_RX,
FDCAN1_RX(boot),
FMC_D22,
DCMI_D4/PSSI_D4, LCD_G3,
EVENTOUT
-
- - - - - D12 - PH15 I/O FT
_h -
TIM8_CH3N, FMC_D23,
DCMI_D11/PSSI_D11,
LCD_G4, EVENTOUT
-
- - - - - - 137 VSS S - - - -
A9 76 109 A11 B12 A12 138 PA14(JTCK/
SWCLK) I/O FT - JTCK/SWCLK, EVENTOUT -
A8 77 110 A10 C11 A11 139 PA15(JTDI) I/O FT -
JTDI, TIM2_CH1/TIM2_ETR,
CEC, SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
SPI6_NSS/I2S6_WS,
UART4_RTS/UART4_DE,
LCD_R3, UART7_TX,
LCD_B6, EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 81/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
B9 78 111 B11 A12 C12 140 PC10 I/O FT
_fh -
DFSDM1_CKIN5, I2C5_SDA,
SPI3_SCK(boot)/I2S3_CK,
USART3_TX, UART4_TX,
OCTOSPIM_P1_IO1, LCD_B1,
SWPMI_RX, SDMMC1_D2,
DCMI_D8/PSSI_D8, LCD_R2,
EVENTOUT
-
B8 79 112 B10 B11 C11 141 PC11 I/O FT
_fh -
DFSDM1_DATIN5, I2C5_SCL,
SPI3_MISO(boot)/I2S3_SDI,
USART3_RX, UART4_RX,
OCTOSPIM_P1_NCS,
SDMMC1_D3,
DCMI_D4/PSSI_D4, LCD_B4,
EVENTOUT
-
C8 80 113 C10 A11 B11 142 PC12 I/O FT
_h -
TRACED3,
FMC_D6/FMC_AD6,
TIM15_CH1, I2C5_SMBA,
SPI6_SCK/I2S6_CK,
SPI3_MOSI(boot)/I2S3_SDO,
USART3_CK, UART5_TX,
SDMMC1_CK,
DCMI_D9/PSSI_D9, LCD_R6,
EVENTOUT
-
D8 81 114 E10 D10 C10 143 PD0 I/O FT
_h -
DFSDM1_CKIN6, UART4_RX,
FDCAN1_RX(boot),
UART9_CTS,
FMC_D2/FMC_AD2, LCD_B1,
EVENTOUT
-
E8 82 115 D10 C10 A10 144 PD1 I/O FT
_h -
DFSDM1_DATIN6,
UART4_TX,
FDCAN1_TX(boot),
FMC_D3/FMC_AD3,
EVENTOUT
-
B7 83 116 E9 E9 B10 145 PD2 I/O FT
_h -
TRACED2,
FMC_D7/FMC_AD7,
TIM3_ETR, TIM15_BKIN,
UART5_RX, LCD_B7,
SDMMC1_CMD,
DCMI_D11/PSSI_D11,
LCD_B2, EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
82/259 DS13315 Rev 1
C7 84 117 D9 D9 A9 146 PD3 I/O FT
_h -
DFSDM1_CKOUT,
SPI2_SCK/I2S2_CK,
USART2_CTS/USART2_NSS,
FMC_CLK,
DCMI_D5/PSSI_D5, LCD_G7,
EVENTOUT
-
D7 85 118 C9 C9 C9 147 PD4 I/O FT
_h -
USART2_RTS/USART2_DE,
OCTOSPIM_P1_IO4,
FMC_NOE, EVENTOUT
-
B6 86 119 B9 A9 B9 148 PD5 I/O FT
_h -
USART2_TX,
OCTOSPIM_P1_IO5,
FMC_NWE, EVENTOUT
-
- - 120 - - - - VSS S - - - -
- - 121 - - - - VDD S - - - -
C6 87 122 A8 B9 D9 149 PD6 I/O FT
_h -
SAI4_D1, SAI1_D1,
DFSDM1_CKIN4,
DFSDM1_DATIN1,
SPI3_MOSI/I2S3_SDO,
SAI1_SD_A, USART2_RX,
SAI4_SD_A,
OCTOSPIM_P1_IO6,
SDMMC2_CK, FMC_NWAIT,
DCMI_D10/PSSI_D10,
LCD_B2, EVENTOUT
-
D6 88 123 A9 D8 B8 150 PD7 I/O FT
_h -
DFSDM1_DATIN4,
SPI1_MOSI/I2S1_SDO,
DFSDM1_CKIN1,
USART2_CK, SPDIFRX1_IN1,
OCTOSPIM_P1_IO7,
SDMMC2_CMD, FMC_NE1,
EVENTOUT
-
- - - - - - 151 VSS S - - - -
- - - - - - 152 VDD S - - - -
- - 124 E8 C8 A8 153 PG9 I/O FT
_h -
FDCAN3_TX,
SPI1_MISO/I2S1_SDI,
USART6_RX, SPDIFRX1_IN4,
OCTOSPIM_P1_IO6,
SAI4_FS_B, SDMMC2_D0,
FMC_NE2/FMC_NCE,
DCMI_VSYNC/PSSI_RDY,
EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 83/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
- - 125 D8 A8 C8 154 PG10 I/O FT
_h -
FDCAN3_RX,
OCTOSPIM_P2_IO6,
SPI1_NSS/I2S1_WS,
LCD_G3, SAI4_SD_B,
SDMMC2_D1, FMC_NE3,
DCMI_D2/PSSI_D2, LCD_B2,
EVENTOUT
-
- - 126 C8 B8 A7 155 PG11 I/O FT
_h -
LPTIM1_IN2, USART10_RX,
SPI1_SCK/I2S1_CK,
SPDIFRX1_IN1,
OCTOSPIM_P2_IO7,
SDMMC2_D2,
ETH_MII_TX_EN/ETH_RMII_T
X_EN, DCMI_D3/PSSI_D3,
LCD_B3, EVENTOUT
-
- - 127 B8 E8 D8 156 PG12 I/O FT
_h -
LPTIM1_IN1,
OCTOSPIM_P2_NCS,
USART10_TX,
SPI6_MISO/I2S6_SDI,
USART6_RTS/USART6_DE,
SPDIFRX1_IN2, LCD_B4,
SDMMC2_D3,
ETH_MII_TXD1/ETH_RMII_TX
D1, FMC_NE4, TIM23_CH1,
LCD_B1, EVENTOUT
-
- - 128 D7 D7 B7 157 PG13 I/O FT
_h -
TRACED0, LPTIM1_OUT,
USART10_CTS/USART10_NS
S, SPI6_SCK/I2S6_CK,
USART6_CTS/USART6_NSS,
SDMMC2_D6,
ETH_MII_TXD0/ETH_RMII_TX
D0, FMC_A24, TIM23_CH2,
LCD_R0, EVENTOUT
-
- - 129 C7 C7 C7 158 PG14 I/O FT
_h -
TRACED1, LPTIM1_ETR,
USART10_RTS/USART10_DE
, SPI6_MOSI/I2S6_SDO,
USART6_TX,
OCTOSPIM_P1_IO7,
SDMMC2_D7,
ETH_MII_TXD1/ETH_RMII_TX
D1, FMC_A25, TIM23_CH3,
LCD_B0, EVENTOUT
-
- - 130 - - - 159 VSS S - - - -
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
84/259 DS13315 Rev 1
- - 131 - - - 160 VDD S - - - -
- - 132 B7 E7 D7 161 PG15 I/O FT
_h -
USART6_CTS/USART6_NSS,
OCTOSPIM_P2_DQS,
USART10_CK, FMC_NCAS,
DCMI_D13/PSSI_D13,
EVENTOUT
-
A7 89 133 A7 F7 A6 162 PB3(JTDO/TRAC
ESWO) I/O FT
_h -
JTDO/TRACESWO,
TIM2_CH2,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
SPI6_SCK/I2S6_CK,
SDMMC2_D2, CRS_SYNC,
UART7_RX, TIM24_ETR,
EVENTOUT
-
A6 90 134 A6 B6 B6 163 PB4(NJTRST) I/O FT
_h -
NJTRST, TIM16_BKIN,
TIM3_CH1,
SPI1_MISO/I2S1_SDI,
SPI3_MISO/I2S3_SDI,
SPI2_NSS/I2S2_WS,
SPI6_MISO/I2S6_SDI,
SDMMC2_D3, UART7_TX,
EVENTOUT
-
C5 91 135 B6 C6 C6 164 PB5 I/O FT
_h -
TIM17_BKIN, TIM3_CH2,
LCD_B5, I2C1_SMBA,
SPI1_MOSI/I2S1_SDO,
I2C4_SMBA,
SPI3_MOSI/I2S3_SDO,
SPI6_MOSI/I2S6_SDO,
FDCAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10/PSSI_D10,
UART5_RX, EVENTOUT
-
B5 92 136 C6 A5 A5 165 PB6 I/O FT
_fh -
TIM16_CH1N, TIM4_CH1,
I2C1_SCL(boot), CEC,
I2C4_SCL, USART1_TX,
LPUART1_TX, FDCAN2_TX,
OCTOSPIM_P1_NCS,
DFSDM1_DATIN5,
FMC_SDNE1,
DCMI_D5/PSSI_D5,
UART5_TX, EVENTOUT
-
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 85/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
A5 93 137 D6 D6 B5 166 PB7 I/O FT
_fa -
TIM17_CH1N, TIM4_CH2,
I2C1_SDA, I2C4_SDA,
USART1_RX, LPUART1_RX,
DFSDM1_CKIN5, FMC_NL,
DCMI_VSYNC/PSSI_RDY,
EVENTOUT
PVD_IN
D5 94 138 D5 E6 C5 167 BOOT0 I B - - VPP
B4 95 139 C5 B5 A2 168 PB8 I/O FT
_fh -
TIM16_CH1, TIM4_CH3,
DFSDM1_CKIN7, I2C1_SCL,
I2C4_SCL, SDMMC1_CKIN,
UART4_RX, FDCAN1_RX,
SDMMC2_D4,
ETH_MII_TXD3,
SDMMC1_D4,
DCMI_D6/PSSI_D6, LCD_B6,
EVENTOUT
-
A4 96 140 B5 C5 B3 169 PB9 I/O FT
_fh -
TIM17_CH1, TIM4_CH4,
DFSDM1_DATIN7,
I2C1_SDA(boot),
SPI2_NSS/I2S2_WS,
I2C4_SDA, SDMMC1_CDIR,
UART4_TX, FDCAN1_TX,
SDMMC2_D5, I2C4_SMBA,
SDMMC1_D5,
DCMI_D7/PSSI_D7, LCD_B7,
EVENTOUT
-
D4 97 141 A5 D5 B4 170 PE0 I/O FT
_h -
LPTIM1_ETR, TIM4_ETR,
LPTIM2_ETR, UART8_RX,
SAI4_MCLK_A, FMC_NBL0,
DCMI_D2/PSSI_D2, LCD_R0,
EVENTOUT
-
C4 98 142 A4 D4 C4 171 PE1 I/O FT
_h -
LPTIM1_IN2, UART8_TX,
FMC_NBL1,
DCMI_D3/PSSI_D3, LCD_R6,
EVENTOUT
-
- - - - A4 A4 172 VCAP S - - - -
- 99 - - - - 173 VSS S - - - -
F7 - 143 E5 C4 D4 174 PDR_ON S - - - -
- - - - B4 A3 175 VDDLDO S - - - -
- 100 144 - - - - VDD S - - - -
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
86/259 DS13315 Rev 1
- - - - - - 176 VDD S - - - -
C2 - - D2 B3 A1 - VSS S - - - -
E6 - - E6 B7 A15 - VSS S - - - -
J1 - - E7 B10 C2 - VSS S - - - -
E4 - - G4 C12 D10 - VSS S - - - -
E5 - - G8 D2 D6 - VSS S - - - -
- - - G10 G2 E1 - VSS S - - - -
- - - H5 H12 F10 - VSS S - - - -
- - - H6 L12 F12 - VSS S - - - -
- - - - M2 F6 - VSS S - - - -
- - - - M4 F7 - VSS S - - - -
- - - - M7 F8 - VSS S - - - -
- - - - M11 F9 - VSS S - - - -
- - - - - G10 - VSS S - - - -
- - - - - G6 - VSS S - - - -
- - - - - G7 - VSS S - - - -
- - - - - G8 - VSS S - - - -
- - - - - G9 - VSS S - - - -
- - - - - H10 - VSS S - - - -
- - - - - H6 - VSS S - - - -
- - - - - H7 - VSS S - - - -
- - - - - H8 - VSS S - - - -
- - - - - H9 - VSS S - - - -
- - - - - J10 - VSS S - - - -
- - - - - J14 - VSS S - - - -
- - - - - J6 - VSS S - - - -
- - - - - J7 - VSS S - - - -
- - - - - J8 - VSS S - - - -
- - - - - J9 - VSS S - - - -
- - - - - K10 - VSS S - - - -
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
DS13315 Rev 1 87/259
STM32H730xB Pinouts, pin descriptions and alternate functions
102
- - - - - K12 - VSS S - - - -
- - - - - K2 - VSS S - - - -
- - - - - K6 - VSS S - - - -
- - - - - K7 - VSS S - - - -
- - - - - K8 - VSS S - - - -
- - - - - K9 - VSS S - - - -
- - - - - M10 - VSS S - - - -
- - - - - M6 - VSS S - - - -
- - - - - R1 - VSS S - - - -
- - - - - R15 - VSS S - - - -
D2 - - D3 A3 D5 - VDD S - - - -
F5 - - F4 A6 D11 - VDD S - - - -
K1 - - F5 A7 E4 - VDD S - - - -
F4 - - F6 A10 E12 - VDD S - - - -
---F7C13G4- VDD S-- - -
---F8D1H12- VDD S-- - -
---F9G1K4- VDD S-- - -
---F10H13L12- VDD S-- - -
- - - G5 L13 M5 - VDD S - - - -
---G6M1M9- VDD S-- - -
---G7N4-- VDD S-- - -
--- -N7-- VDD S-- - -
--- -N11-- VDD S-- - -
Table 7. STM32H730xB pin and ball descriptions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
TFBGA100
LQFP100
LQFP144
UFBGA144
UFBGA169
UFBGA176+25
LQFP176
Pinouts, pin descriptions and alternate functions STM32H730xB
88/259 DS13315 Rev 1
Table 8. STM32H730xB pin alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Port A
PA0 -
TIM2_
CH1/TIM
2_ETR
TIM5_
CH1
TIM8_
ETR
TIM15_
BKIN
SPI6_NSS
/I2S6_WS -
USART2_
CTS/
USART2_
NSS
UART4_
TX
SDMMC2_
CMD
SAI4_SD_
B
ETH_MII_
CRS FMC_A19 - - EVENT
OUT
PA1 - TIM2_CH
2
TIM5_
CH2
LPTIM3_
OUT
TIM15_CH1
N--
USART2_
RTS/
USART2_
DE
UART4_
RX
OCTOSPIM
_P1_IO3
SAI4_
MCLK_B
ETH_MII_
RX_CLK/
ETH_RMII_
REF_CLK
OCTOSPI
M_P1_
DQS
-LCD_R
2
EVENT
OUT
PA2 - TIM2_CH
3
TIM5_
CH3
LPTIM4_
OUT TIM15_CH1 - OCTOSPI
M_P1_IO0
USART2_
TX
SAI4_
SCK_B --ETH_MDIO
MDIOS_
MDIO -LCD_R
1
EVENT
OUT
PA3 - TIM2_CH
4
TIM5_
CH4
LPTIM5_
OUT TIM15_CH2 I2S6_MCK OCTOSPI
M_P1_IO2
USART2_
RX -LCD_B2
OTG_HS_
ULPI_D0
ETH_MII_
COL
OCTOSPI
M_P1_
CLK
-LCD_B
5
EVENT
OUT
PA4 D1PW
REN -TIM5_
ETR --
SPI1_NSS
/I2S1_WS
SPI3_NSS/
I2S3_WS
USART2_
CK
SPI6_NS
S/I2S6_
WS
-- -
FMC_D8/
FMC_AD
8
DCMI_
HSYNC
/PSSI_
DE
LCD_V
SYNC
EVENT
OUT
PA5 D2PW
REN
TIM2_CH
1/TIM2_
ETR
-TIM8_
CH1N -SPI1_SCK
/I2S1_CK --
SPI6_SC
K/I2S6_
CK
-OTG_HS_
ULPI_CK -
FMC_D9/
FMC_AD
9
PSSI_
D14
LCD_R
4
EVENT
OUT
PA6 - TIM1_
BKIN
TIM3_C
H1
TIM8_
BKIN -
SPI1_
MISO/I2S
1_SDI
OCTOSPI
M_P1_IO3 -
SPI6_MIS
O/I2S6_S
DI
TIM13_CH
1
TIM8_BKIN
_COMP12
MDIOS_
MDC
TIM1_
BKIN_
COMP12
DCMI_
PIXCL
K/PSSI
_PDCK
LCD_G
2
EVENT
OUT
PA7 - TIM1_CH
1N
TIM3_
CH2
TIM8_CH
1N -
SPI1_
MOSI/I2S
1_SDO
--
SPI6_
MOSI/I2S
6_SDO
TIM14_CH
1
OCTOSPI
M_P1_IO2
ETH_MII_
RX_DV/ETH
_RMII_CRS
_DV
FMC_SD
NWE -LCD_V
SYNC
EVENT
OUT
PA8 MCO1 TIM1_CH
1-TIM8_
BKIN2 I2C3_SCL - I2C5_SCL USART1_
CK --
OTG_HS_
SOF UART7_RX
TIM8_
BKIN2_
COMP12
LCD_B
3
LCD_R
6
EVENT
OUT
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 89/259
Port A
PA9 - TIM1_CH
2-LPUART1
_TX
I2C3_
SMBA
SPI2_SCK
/I2S2_CK
I2C5_
SMBA
USART1_
TX - - - ETH_TX_ER -
DCMI_
D0/
PSSI_
D0
LCD_R
5
EVENT
OUT
PA10 - TIM1_CH
3-LPUART1
_RX ---
USART1_
RX --
OTG_HS_
ID
MDIOS_
MDIO LCD_B4
DCMI_
D1/
PSSI_
D1
LCD_B
1
EVENT
OUT
PA11 - TIM1_CH
4-LPUART1
_CTS -SPI2_NSS
/I2S2_WS UART4_RX
USART1_
CTS/
USART1_
NSS
-FDCAN1_
RX ----
LCD_R
4
EVENT
OUT
PA12 - TIM1_
ETR -
LPUART1
_RTS/
LPUART1
_DE
-SPI2_SCK
/I2S2_CK UART4_TX
USART1_
RTS/
USART1_
DE
SAI4_FS_
B
FDCAN1_
TX --
TIM1_
BKIN2 -LCD_R
5
EVENT
OUT
PA13
JTMS/
SWDI
O
-- - - - - - - - - - ---
EVENT
OUT
PA14
JTCK/
SWCL
K
-- - - - - - - - - - ---
EVENT
OUT
PA15 JTDI
TIM2_CH
1/TIM2_
ETR
--CEC
SPI1_NSS
/I2S1_WS
SPI3_NSS/
I2S3_WS
SPI6_NS
S/I2S6_W
S
UART4_R
TS/UART
4_DE
LCD_R3 - UART7_TX - - LCD_B
6
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
90/259 DS13315 Rev 1
Port B
PB0 - TIM1_
CH2N
TIM3_
CH3
TIM8_
CH2N
OCTOSPIM
_P1_IO1 -DFSDM1_
CKOUT -UART4_
CTS LCD_R3 OTG_HS_
ULPI_D1
ETH_MII_
RXD2 --
LCD_G
1
EVENT
OUT
PB1 - TIM1_
CH3N
TIM3_
CH4
TIM8_CH
3N
OCTOSPIM
_P1_IO0 -DFSDM1_
DATIN1 - - LCD_R6 OTG_HS_
ULPI_D2
ETH_MII_
RXD3 --
LCD_G
0
EVENT
OUT
PB2 RTC_
OUT SAI4_D1 SAI1_D1 - DFSDM1_
CKIN1 -SAI1_SD_
A
SPI3_
MOSI/I2S
3_SDO
SAI4_SD_
A
OCTOSPIM
_P1_CLK
OCTOSPI
M_P1_
DQS
ETH_TX_ER - TIM23_
ETR -EVENT
OUT
PB3
JTDO/
TRAC
ESWO
TIM2_CH
2-- -
SPI1_SCK
/I2S1_CK
SPI3_SCK/
I2S3_CK -
SPI6_
SCK/I2S6
_CK
SDMMC2_
D2
CRS_
SYNC UART7_RX - - TIM24_
ETR
EVENT
OUT
PB4 NJT
RST
TIM16_
BKIN
TIM3_
CH1 --
SPI1_
MISO/I2S
1_SDI
SPI3_
MISO/I2S3
_SDI
SPI2_
NSS/I2S2
_WS
SPI6_
MISO/I2S
6_SDI
SDMMC2_
D3 -UART7_TX- - -
EVENT
OUT
PB5 - TIM17_
BKIN
TIM3_
CH2 LCD_B5 I2C1_
SMBA
SPI1_
MOSI/I2S
1_SDO
I2C4_SMB
A
SPI3_
MOSI/I2S
3_SDO
SPI6_
MOSI/I2S
6_SDO
FDCAN2_
RX
OTG_HS_
ULPI_D7
ETH_PPS_
OUT
FMC_SD
CKE1
DCMI_
D10/
PSSI_
D10
UART5
_RX
EVENT
OUT
PB6 - TIM16_
CH1N
TIM4_
CH1 - I2C1_SCL CEC I2C4_SCL USART1_
TX
LPUART1
_TX
FDCAN2_
TX
OCTOSPI
M_P1_
NCS
DFSDM1_
DATIN5
FMC_SD
NE1
DCMI_
D5/
PSSI_
D5
UART5
_TX
EVENT
OUT
PB7 - TIM17_
CH1N
TIM4_
CH2 - I2C1_SDA - I2C4_SDA USART1_
RX
LPUART1
_RX --
DFSDM1_
CKIN5 FMC_NL
DCMI_
VSYNC
/PSSI_
RDY
-EVENT
OUT
PB8 - TIM16_
CH1
TIM4_
CH3
DFSDM1_
CKIN7 I2C1_SCL - I2C4_SCL SDMMC1
_CKIN
UART4_
RX
FDCAN1_
RX
SDMMC2_
D4
ETH_MII_
TXD3
SDMMC1
_D4
DCMI_
D6/
PSSI_
D6
LCD_B
6
EVENT
OUT
PB9 - TIM17_
CH1
TIM4_
CH4
DFSDM1_
DATIN7 I2C1_SDA SPI2_NSS
/I2S2_WS I2C4_SDA SDMMC1
_CDIR
UART4_
TX
FDCAN1_
TX
SDMMC2_
D5 I2C4_SMBA SDMMC1
_D5
DCMI_
D7/
PSSI_
D7
LCD_B
7
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 91/259
P
r
o
t
B
PB10 - TIM2_
CH3 -LPTIM2_
IN1 I2C2_SCL SPI2_SCK
/I2S2_CK
DFSDM1_
DATIN7
USART3_
TX -OCTOSPIM
_P1_NCS
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER --
LCD_G
4
EVENT
OUT
PB11 - TIM2_
CH4 -LPTIM2_
ETR I2C2_SDA - DFSDM1_
CKIN7
USART3_
RX --
OTG_HS_
ULPI_D4
ETH_MII_TX
_EN/ETH_
RMII_TX_
EN
--
LCD_G
5
EVENT
OUT
PB12 - TIM1_
BKIN -
OCTOSPI
M_P1_
NCLK
I2C2_
SMBA
SPI2_NSS
/I2S2_WS
DFSDM1_
DATIN1
USART3_
CK -FDCAN2_
RX
OTG_HS_
ULPI_D5
ETH_MII_TX
D0/ETH_
RMII_TXD0
OCTOSPI
M_P1_IO
0
TIM1_
BKIN_
COMP
12
UART5
_RX
EVENT
OUT
PB13 - TIM1_
CH1N -LPTIM2_
OUT
OCTOSPIM
_P1_IO2
SPI2_SCK
/I2S2_CK
DFSDM1_
CKIN1
USART3_
CTS/
USART3_
NSS
-FDCAN2_
TX
OTG_HS_
ULPI_D6
ETH_MII_TX
D1/ETH_
RMII_TXD1
SDMMC1
_D0
DCMI_
D2/P
SSI_D2
UART5
_TX
EVENT
OUT
PB14 - TIM1_
CH2N
TIM12_
CH1
TIM8_
CH2N
USART1_
TX
SPI2_
MISO/
I2S2_SDI
DFSDM1_
DATIN2
USART3_
RTS/
USART3_
DE
UART4_
RTS
/UART4_
DE
SDMMC2_
D0 --
FMC_D1
0/FMC_
AD10
-LCD_
CLK
EVENT
OUT
PB15 RTC_
REFIN
TIM1_
CH3N
TIM12_
CH2
TIM8_
CH3N
USART1_
RX
SPI2_MO
SI/I2S2_
SDO
DFSDM1_
CKIN2 -UART4_
CTS
SDMMC2_
D1 --
FMC_D11
/FMC_AD
11
-LCD_G
7
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
92/259 DS13315 Rev 1
Prot C
PC0 -
FMC_D1
2/FMC_
AD12
-DFSDM1_
CKIN0 --
DFSDM1_
DATIN4 -SAI4_FS_
BFMC_A25 OTG_HS_
ULPI_STP LCD_G2 FMC_
SDNWE -LCD_R
5
EVENT
OUT
PC1 TRA
CED0 SAI4_D1 - DFSDM1_
DATIN0
DFSDM1_C
KIN4
SPI2_MO
SI/I2S2_S
DO
SAI1_SD_
A-SAI4_SD_
A
SDMMC2_
CK
OCTOSPI
M_P1_IO4 ETH_MDC MDIOS_
MDC -LCD_G
5
EVENT
OUT
PC2
PWR_
DEEP
SLEEP
--
DFSDM1_
CKIN1
OCTOSPIM
_P1_IO5
SPI2_MIS
O/I2S2_S
DI
DFSDM1_
CKOUT --
OCTOSPIM
_P1_IO2
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_SD
NE0 --
EVENT
OUT
PC3 PWR_
SLEEP --
DFSDM1_
DATIN1
OCTOSPIM
_P1_IO6
SPI2_MO
SI/I2S2_S
DO
---
OCTOSPIM
_P1_IO0
OTG_HS_
ULPI_NXT
ETH_MII_
TX_CLK
FMC_SD
CKE0 --
EVENT
OUT
PC4
PWR_
DEEP
SLEEP
FMC_A2
2-DFSDM1_
CKIN2 - I2S1_MCK - - - SPDIFRX1
_IN3
SDMMC2_
CKIN
ETH_MII_
RXD0/ETH_
RMII_RXD0
FMC_SD
NE0 -LCD_R
7
EVENT
OUT
PC5 PWR_
SLEEP SAI4_D3 SAI1_D3 DFSDM1_
DATIN2 PSSI_D15 - - - - SPDIFRX1
_IN4
OCTOSPI
M_P1_
DQS
ETH_MII_
RXD1/ETH_
RMII_RXD1
FMC_SD
CKE0
COMP
1_OUT
LCD_
DE
EVENT
OUT
PC6 - - TIM3_
CH1
TIM8_CH
1
DFSDM1_
CKIN3 I2S2_MCK - USART6_
TX
SDMMC1
_D0DIR
FMC_
NWAIT
SDMMC2_
D6 -SDMMC1
_D6
DCMI_
D0/
PSSI_
D0
LCD_
HSYNC
EVENT
OUT
PC7 DBTR
GIO -TIM3_
CH2
TIM8_CH
2
DFSDM1_
DATIN3 -I2S3_MCK
USART6_
RX
SDMMC1
_D123DIR FMC_NE1 SDMMC2_
D7 SWPMI_TX SDMMC1
_D7
DCMI_
D1/PS
SI_D1
LCD_G
6
EVENT
OUT
PC8 TRA
CED1 -TIM3_
CH3
TIM8_CH
3---
USART6_
CK
UART5_
RTS/
UART5_
DE
FMC_NE2/
FMC_NCE FMC_INT SWPMI_RX SDMMC1
_D0
DCMI_
D2/PS
SI_D2
-EVENT
OUT
PC9 MCO2 - TIM3_C
H4
TIM8_CH
4I2C3_SDA I2S_CKIN I2C5_SDA - UART5_
CTS
OCTOSPIM
_P1_IO0 LCD_G3 SWPMI_SU
SPEND
SDMMC1
_D1
DCMI_
D3/PS
SI_D3
LCD_B
2
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 93/259
Prot C
PC10 - - - DFSDM1_
CKIN5 I2C5_SDA - SPI3_SCK/
I2S3_CK
USART3_
TX
UART4_
TX
OCTOSPIM
_P1_IO1 LCD_B1 SWPMI_RX SDMMC1
_D2
DCMI_
D8/
PSSI_
D8
LCD_R
2
EVENT
OUT
PC11 - - - DFSDM1_
DATIN5 I2C5_SCL -
SPI3_
MISO/I2S3
_SDI
USART3_
RX
UART4_
RX
OCTOSPIM
_P1_NCS --
SDMMC1
_D3
DCMI_
D4/
PSSI_
D4
LCD_B
4
EVENT
OUT
PC12 TRAC
ED3
FMC_D6/
FMC_AD
6
TIM15_
CH1 -I2C5_SMB
A
SPI6_SCK
/I2S6_CK
SPI3_
MOSI/I2S3
_SDO
USART3_
CK
UART5_
TX -- -
SDMMC1
_CK
DCMI_
D9/
PSSI_
D9
LCD_R
6
EVENT
OUT
PC13 - - - - - - - - - - - - - - - EVENT
OUT
PC14 - - - - - - - - - - - - - - - EVENT
OUT
PC15 - - - - - - - - - - - - - - - EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
94/259 DS13315 Rev 1
Port D
PD0 - - - DFSDM1_
CKIN6 ----
UART4_
RX
FDCAN1_
RX -UART9_CTS
FMC_D2/
FMC_AD
2
-LCD_B
1
EVENT
OUT
PD1 - - - DFSDM1_
DATIN6 ----
UART4_
TX
FDCAN1_
TX --
FMC_D3/
FMC_AD
3
--
EVENT
OUT
PD2 TRAC
ED2
FMC_D7/
FMC_AD
7
TIM3_
ETR -TIM15_
BKIN ---
UART5_
RX LCD_B7 - - SDMMC1
_CMD
DCMI_
D11/
PSSI_
D11
LCD_B
2
EVENT
OUT
PD3 - - - DFSDM1_
CKOUT -SPI2_SCK
/I2S2_CK -
USART2_
CTS/
USART2_
NSS
-- - -
FMC_
CLK
DCMI_
D5/
PSSI_
D5
LCD_G
7
EVENT
OUT
PD4 - - - - - - -
USART2_
RTS/
USART2_
DE
--
OCTOSPI
M_P1_IO4 -FMC_
NOE --
EVENT
OUT
PD5 - - - - - - - USART2_
TX --
OCTOSPI
M_P1_IO5 -FMC_NW
E--
EVENT
OUT
PD6 - SAI4_D1 SAI1_D1 DFSDM1_
CKIN4
DFSDM1_
DATIN1
SPI3_
MOSI/I2S
3_SDO
SAI1_SD_
A
USART2_
RX
SAI4_SD_
A-OCTOSPI
M_P1_IO6
SDMMC2_
CK
FMC_
NWAIT
DCMI_
D10/
PSSI_
D10
LCD_B
2
EVENT
OUT
PD7 - - - DFSDM1_
DATIN4 -
SPI1_
MOSI/I2S
1_SDO
DFSDM1_
CKIN1
USART2_
CK -SPDIFRX1
_IN1
OCTOSPI
M_P1_IO7
SDMMC2_
CMD
FMC_NE
1--
EVENT
OUT
PD8 - - - DFSDM1_
CKIN3 ---
USART3_
TX -SPDIFRX1
_IN2 --
FMC_D1
3/FMC_A
D13
--
EVENT
OUT
PD9 - - - DFSDM1_
DATIN3 ---
USART3_
RX -- - -
FMC_D1
4/FMC_
AD14
--
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 95/259
Prot D
PD10 - - - DFSDM1_
CKOUT ---
USART3_
CK -- - -
FMC_D1
5/FMC_A
D15
-LCD_B
3
EVENT
OUT
PD11 - - - LPTIM2_I
N2
I2C4_SMB
A--
USART3_
CTS/USA
RT3_NSS
-OCTOSPIM
_P1_IO0
SAI4_SD_
A-
FMC_A16
/FMC_CL
E
--
EVENT
OUT
PD12 - LPTIM1_
IN1
TIM4_C
H1
LPTIM2_I
N1 I2C4_SCL FDCAN3_
RX -
USART3_
RTS/USA
RT3_DE
-OCTOSPIM
_P1_IO1
SAI4_FS_
A-
FMC_A17
/FMC_AL
E
DCMI_
D12/PS
SI_D12
-EVENT
OUT
PD13 - LPTIM1_
OUT
TIM4_C
H2 - I2C4_SDA FDCAN3_
TX ---
OCTOSPIM
_P1_IO3
SAI4_SCK
_A
UART9_RTS
/UART9_DE FMC_A18
DCMI_
D13/PS
SI_D13
-EVENT
OUT
PD14 - - TIM4_C
H3 -----
UART8_C
TS - - UART9_RX
FMC_D0/
FMC_AD
0
--
EVENT
OUT
PD15 - - TIM4_C
H4 -----
UART8_R
TS/UART
8_DE
--UART9_TX
FMC_D1/
FMC_AD
1
--
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
96/259 DS13315 Rev 1
Port E
PE0 - LPTIM1_
ETR
TIM4_E
TR -LPTIM2_ET
R---
UART8_R
X-SAI4_MCL
K_A -FMC_NB
L0
DCMI_
D2/PS
SI_D2
LCD_R
0
EVENT
OUT
PE1 - LPTIM1_I
N2 -- - - - -
UART8_T
X-- -
FMC_NB
L1
DCMI_
D3/PS
SI_D3
LCD_R
6
EVENT
OUT
PE2 TRAC
ECLK -SAI1_C
K1 -USART10_
RX SPI4_SCK SAI1_MCL
K_A -SAI4_MC
LK_A
OCTOSPIM
_P1_IO2 SAI4_CK1 ETH_MII_TX
D3 FMC_A23 - - EVENT
OUT
PE3 TRAC
ED0 -- -
TIM15_BKI
N-SAI1_SD_
B-SAI4_SD_
B--
USART10_T
XFMC_A19 - - EVENT
OUT
PE4 TRAC
ED1 -SAI1_D2
DFSDM1_
DATIN3
TIM15_CH1
NSPI4_NSS SAI1_FS_A - SAI4_FS_
A- SAI4_D2 - FMC_A20
DCMI_
D4/PS
SI_D4
LCD_B
0
EVENT
OUT
PE5 TRAC
ED2 -SAI1_C
K2
DFSDM1_
CKIN3 TIM15_CH1 SPI4_MIS
O
SAI1_SCK
_A -SAI4_SC
K_A - SAI4_CK2 - FMC_A21
DCMI_
D6/PS
SI_D6
LCD_G
0
EVENT
OUT
PE6 TRAC
ED3
TIM1_BKI
N2 SAI1_D1 - TIM15_CH2 SPI4_MO
SI
SAI1_SD_
A-SAI4_SD_
ASAI4_D1 SAI4_MCL
K_B
TIM1_BKIN2
_COMP12 FMC_A22
DCMI_
D7/PS
SI_D7
LCD_G
1
EVENT
OUT
PE7 - TIM1_ET
R-DFSDM1_
DATIN2 ---
UART7_R
X--
OCTOSPI
M_P1_IO4 -
FMC_D4/
FMC_AD
4
--
EVENT
OUT
PE8 - TIM1_CH
1N -DFSDM1_
CKIN2 ---
UART7_T
X--
OCTOSPI
M_P1_IO5 -
FMC_D5/
FMC_AD
5
COMP
2_OUT -EVENT
OUT
PE9 - TIM1_CH
1-DFSDM1_
CKOUT ---
UART7_R
TS/UART
7_DE
--
OCTOSPI
M_P1_IO6 -
FMC_D6/
FMC_AD
6
--
EVENT
OUT
PE10 - TIM1_CH
2N -DFSDM1_
DATIN4 ---
UART7_C
TS --
OCTOSPI
M_P1_IO7 -
FMC_D7/
FMC_AD
7
--
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 97/259
Prot E
PE11 - TIM1_CH
2-DFSDM1_
CKIN4 - SPI4_NSS - - - - SAI4_SD_
B
OCTOSPIM
_P1_NCS
FMC_D8/
FMC_AD
8
-LCD_G
3
EVENT
OUT
PE12 - TIM1_CH
3N -DFSDM1_
DATIN5 - SPI4_SCK - - - - SAI4_SCK
_B -
FMC_D9/
FMC_AD
9
COMP
1_OUT
LCD_B
4
EVENT
OUT
PE13 - TIM1_CH
3-DFSDM1_
CKIN5 -SPI4_MIS
O----
SAI4_FS_
B-
FMC_D1
0/FMC_A
D10
COMP
2_OUT
LCD_D
E
EVENT
OUT
PE14 - TIM1_CH
4-- -
SPI4_MO
SI ----
SAI4_MCL
K_B -
FMC_D11
/FMC_AD
11
-LCD_C
LK
EVENT
OUT
PE15 - TIM1_BKI
N-- - - - - - - -
USART10_C
K
FMC_D1
2/FMC_A
D12
TIM1_B
KIN_C
OMP12
LCD_R
7
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
98/259 DS13315 Rev 1
Port F
PF0 - - - - I2C2_SDA - I2C5_SDA - - OCTOSPIM
_P2_IO0 --FMC_A0
TIM23_
CH1 -EVENT
OUT
PF1 - - - - I2C2_SCL - I2C5_SCL - - OCTOSPIM
_P2_IO1 --FMC_A1
TIM23_
CH2 -EVENT
OUT
PF2 - - - - I2C2_SMB
A-I2C5_SMB
A--
OCTOSPIM
_P2_IO2 --FMC_A2
TIM23_
CH3 -EVENT
OUT
PF3 - - - - - - - - - OCTOSPIM
_P2_IO3 --FMC_A3
TIM23_
CH4 -EVENT
OUT
PF4 - - - - - - - - - OCTOSPIM
_P2_CLK --FMC_A4--
EVENT
OUT
PF5 - - - - - - - - - OCTOSPIM
_P2_NCLK --FMC_A5--
EVENT
OUT
PF6 - TIM16_C
H1
FDCAN3
_RX - - SPI5_NSS SAI1_SD_
B
UART7_R
X
SAI4_SD_
B-OCTOSPI
M_P1_IO3 --
TIM23_
CH1 -EVENT
OUT
PF7 - TIM17_C
H1
FDCAN3
_TX - - SPI5_SCK SAI1_MCL
K_B
UART7_T
X
SAI4_MC
LK_B -OCTOSPI
M_P1_IO2 --
TIM23_
CH2 -EVENT
OUT
PF8 - TIM16_C
H1N -- -
SPI5_MIS
O
SAI1_SCK
_B
UART7_R
TS/UART
7_DE
SAI4_SC
K_B
TIM13_CH
1
OCTOSPI
M_P1_IO0 --
TIM23_
CH3 -EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 99/259
Prot F
PF9 - TIM17_C
H1N -- -
SPI5_MO
SI SAI1_FS_B UART7_C
TS
SAI4_FS_
B
TIM14_CH
1
OCTOSPI
M_P1_IO1 --
TIM23_
CH4 -EVENT
OUT
PF10 - TIM16_B
KIN SAI1_D3 - PSSI_D15 - - - - OCTOSPIM
_P1_CLK SAI4_D3 - -
DCMI_
D11/PS
SI_D11
LCD_D
E
EVENT
OUT
PF11 - - - - - SPI5_MO
SI ---
OCTOSPIM
_P1_NCLK
SAI4_SD_
B-FMC_NR
AS
DCMI_
D12/PS
SI_D12
TIM24_
CH1
EVENT
OUT
PF12 - - - - - - - - - OCTOSPIM
_P2_DQS --FMC_A6-
TIM24_
CH2
EVENT
OUT
PF13 - - - DFSDM1_
DATIN6
I2C4_SMB
A----- - -FMC_A7-
TIM24_
CH3
EVENT
OUT
PF14 - - - DFSDM1_
CKIN6 I2C4_SCL - - - - - - - FMC_A8 - TIM24_
CH4
EVENT
OUT
PF15 - - - I2C4_SDA - - - - - - - FMC_A9 - - EVENT
OUT
Port G-
PG0 - - - - - - - - - OCTOSPIM
_P2_IO4 - UART9_RX FMC_A10 - - EVENT
OUT
PG1 - - - - - - - - - OCTOSPIM
_P2_IO5 - UART9_TX FMC_A11 - - EVENT
OUT
PG2 - - - TIM8_BKI
N------ -
TIM8_BKIN_
COMP12 FMC_A12 - TIM24_
ETR
EVENT
OUT
PG3 - - - TIM8_BKI
N2 ------ -
TIM8_BKIN2
_COMP12 FMC_A13 TIM23_
ETR -EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
100/259 DS13315 Rev 1
Prot G
PG4 - TIM1_BKI
N2 -- - - - - - - -
TIM1_BKIN2
_COMP12
FMC_A14
/FMC_BA
0
--
EVENT
OUT
PG5 - TIM1_ET
R-- - - - - - - - -
FMC_A15
/FMC_BA
1
--
EVENT
OUT
PG6 - TIM17_B
KIN -- - - - - - -
OCTOSPI
M_P1_NC
S
-FMC_NE
3
DCMI_
D12/PS
SI_D12
LCD_R
7
EVENT
OUT
PG7 - - - - - - SAI1_MCL
K_A
USART6_
CK -OCTOSPIM
_P2_DQS --FMC_INT
DCMI_
D13/PS
SI_D13
LCD_C
LK
EVENT
OUT
PG8 - - - TIM8_ET
R-SPI6_NSS
/I2S6_WS -
USART6_
RTS/USA
RT6_DE
SPDIFRX
1_IN3 --
ETH_PPS_
OUT
FMC_SD
CLK -LCD_G
7
EVENT
OUT
PG9 - - FDCAN3
_TX --
SPI1_MIS
O/I2S1_S
DI
-USART6_
RX
SPDIFRX
1_IN4
OCTOSPIM
_P1_IO6
SAI4_FS_
B
SDMMC2_D
0
FMC_NE
2/FMC_N
CE
DCMI_
VSYNC
/PSSI_
RDY
-EVENT
OUT
PG10 - - FDCAN3
_RX
OCTOSPI
M_P2_IO
6
-SPI1_NSS
/I2S1_WS - - - LCD_G3 SAI4_SD_
B
SDMMC2_D
1
FMC_NE
3
DCMI_
D2/PS
SI_D2
LCD_B
2
EVENT
OUT
PG11 - LPTIM1_I
N2 --
USART10_
RX
SPI1_SCK
/I2S1_CK --
SPDIFRX
1_IN1
OCTOSPIM
_P2_IO7
SDMMC2_
D2
ETH_MII_TX
_EN/ETH_R
MII_TX_EN
-
DCMI_
D3/PS
SI_D3
LCD_B
3
EVENT
OUT
PG12 - LPTIM1_I
N1 -
OCTOSPI
M_P2_NC
S
USART10_
TX
SPI6_MIS
O/I2S6_S
DI
-
USART6_
RTS/USA
RT6_DE
SPDIFRX
1_IN2 LCD_B4 SDMMC2_
D3
ETH_MII_TX
D1/ETH_RM
II_TXD1
FMC_NE
4
TIM23_
CH1
LCD_B
1
EVENT
OUT
PG13 TRAC
ED0
LPTIM1_
OUT --
USART10_
CTS/USAR
T10_NSS
SPI6_SCK
/I2S6_CK -
USART6_
CTS/USA
RT6_NSS
--
SDMMC2_
D6
ETH_MII_TX
D0/ETH_RM
II_TXD0
FMC_A24 TIM23_
CH2
LCD_R
0
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
STM32H730xB Pinouts, pin descriptions and alternate functions
DS13315 Rev 1 101/259
Prot G
PG14 TRAC
ED1
LPTIM1_
ETR --
USART10_
RTS/USAR
T10_DE
SPI6_MO
SI/I2S6_S
DO
-USART6_
TX -OCTOSPIM
_P1_IO7
SDMMC2_
D7
ETH_MII_TX
D1/ETH_RM
II_TXD1
FMC_A25 TIM23_
CH3
LCD_B
0
EVENT
OUT
PG15 - - - - - - -
USART6_
CTS/USA
RT6_NSS
-OCTOSPIM
_P2_DQS -USART10_C
K
FMC_NC
AS
DCMI_
D13/PS
SI_D13
-EVENT
OUT
Port H
PH0 - - - - - - - - - - - - - - - EVENT
OUT
PH1 - - - - - - - - - - - - - - - EVENT
OUT
PH2 - LPTIM1_I
N2 -- - - - - -
OCTOSPIM
_P1_IO4
SAI4_SCK
_B
ETH_MII_C
RS
FMC_SD
CKE0 -LCD_R
0
EVENT
OUT
PH3 - - - - - - - - - OCTOSPIM
_P1_IO5
SAI4_MCL
K_B
ETH_MII_C
OL
FMC_SD
NE0 -LCD_R
1
EVENT
OUT
PH4 - - - - I2C2_SCL - - - - LCD_G5 OTG_HS_
ULPI_NXT --
PSSI_
D14
LCD_G
4
EVENT
OUT
PH5 - - - - I2C2_SDA SPI5_NSS - - - - - - FMC_SD
NWE --
EVENT
OUT
PH6 - - TIM12_
CH1 -I2C2_SMB
ASPI5_SCK - - - - - ETH_MII_R
XD2
FMC_SD
NE1
DCMI_
D8/PS
SI_D8
-EVENT
OUT
PH7 - - - - I2C3_SCL SPI5_MIS
O---- -
ETH_MII_R
XD3
FMC_SD
CKE1
DCMI_
D9/PS
SI_D9
-EVENT
OUT
PH8 - - TIM5_E
TR - I2C3_SDA - - - - - - - FMC_D1
6
DCMI_
HSYNC
/PSSI_
DE
LCD_R
2
EVENT
OUT
PH9 - - TIM12_
CH2 -I2C3_SMB
A----- - -
FMC_D1
7
DCMI_
D0/PS
SI_D0
LCD_R
3
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
Pinouts, pin descriptions and alternate functions STM32H730xB
102/259 DS13315 Rev 1
Prot H
PH10 - - TIM5_C
H1 -I2C4_SMB
A----- - -
FMC_D1
8
DCMI_
D1/PS
SI_D1
LCD_R
4
EVENT
OUT
PH11 - - TIM5_C
H2 - I2C4_SCL - - - - - - - FMC_D1
9
DCMI_
D2/PS
SI_D2
LCD_R
5
EVENT
OUT
PH12 - - TIM5_C
H3 - I2C4_SDA - - - - - - - FMC_D2
0
DCMI_
D3/PS
SI_D3
LCD_R
6
EVENT
OUT
PH13 - - - TIM8_CH
1N ----
UART4_T
X
FDCAN1_T
X--
FMC_D2
1-LCD_G
2
EVENT
OUT
PH14 - - - TIM8_CH
2N ----
UART4_R
X
FDCAN1_R
X--
FMC_D2
2
DCMI_
D4/PS
SI_D4
LCD_G
3
EVENT
OUT
PH15 - - - TIM8_CH
3N ------ - -
FMC_D2
3
DCMI_
D11/PS
SI_D11
LCD_G
4
EVENT
OUT
Port J
PJ8 - TIM1_CH
3N -TIM8_CH
1----
UART8_T
X-- ---
LCD_G
1
EVENT
OUT
PJ9 - TIM1_CH
3-TIM8_CH
1N ----
UART8_R
X-- ---
LCD_G
2
EVENT
OUT
PJ10 - TIM1_CH
2N -TIM8_CH
2-SPI5_MO
SI ---- - - --
LCD_G
3
EVENT
OUT
PJ11 - TIM1_CH
2-TIM8_CH
2N -SPI5_MIS
O---- - - --
LCD_G
4
EVENT
OUT
Table 8. STM32H730xB pin alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
FMC/
LPTIM1/
SAI4/
TIM16/17
/TIM1x/
TIM2x
FDCAN3
/PDM_
SAI1/
TIM3/4/5
/12/15
DFSDM1/
LCD/
LPTIM2/3/
4/5/
LPUART1
/OCTO
SPIM_P1/
2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/
I2C1/2/3/4/5
/LPTIM2/
OCTOSPIM
_P1/TIM15/
USART1/10
CEC/
FDCAN3/
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/5/6
DFSDM1/
I2C4/5/
OCTO
SPIM_P1/
SAI1/SPI3/
I2S3/
UART4
SDMMC1/
SPI2/I2S2
/SPI3/I2S
3/SPI6/
UART7
/USART1/
2/3/6
LPUART1
/SAI4/
SDMMC1/
SPDIFRX
1/SPI6/
UART4/5/
8
FDCAN1/2/
FMC/LCD/
OCTOSPIM
_P1/2/SAI4
/SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/
LCD/OCT
OSPIM_P1
/OTG1_FS/
OTG1_HS/
SAI4/
SDMMC2/
TIM8
DFSDM1/
ETH/I2C4/
LCD/MDIOS
/OCTOSPIM
_P1/SDMMC
2/SWPMI1/
TIM1x/TIM8/
UART7/9/
USART10
FMC/LCD
/MDIOS/
OCTOSPI
M_P1/
SDMMC1
/TIM1x/
TIM8
COMP/
DCMI/
PSSI/
LCD/
TIM1x/
TIM23
LCD/
TIM24/
UART5
SYS
DS13315 Rev 1 103/259
STM32H730xB Electrical characteristics
231
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of junction temperature, supply voltage and frequencies by tests in production on
100% of the devices with an junction temperature at TJ = 25 °C and TJ = TJmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
MS19011V2
C = 50 pF
MCU pin
MS19010V2
MCU pin
VIN
Electrical characteristics STM32H730xB
104/259 DS13315 Rev 1
6.1.6 Power supply scheme
Figure 13. Power supply scheme
1. Refer to application note AN5419 “Getting started with STM32H723/733, STM32H725/735 and
STM32H730 Value Line hardware development“ for the possible power scheme and connected capacitors.
MSv63814V4
BKUP
IOs
VDD domain
Analog domain
Core domain (VCORE)
Backup domain
D3 domain
(System
logic,
EXTI,
Peripherals,
RAM)
D1 domain
(CPU, peripherals,
RAM)
Level shifter
OPAMP,
Comparator
ADC, DAC
Flash
D2 domain
(peripherals,
RAM)
Power
switch
Power switch
Step
Down
Converter
VCAP
VSS
VDDLDO
VDDSMPS
VLXSMPS
VSSSMPS
VFBSMPS
VBAT
VDDA
VREF+
VREF-
VSSA
Backup
regulator
VDD
Backup
RAM
Power
switch
HSI, CSI,
HSI48,
HSE, PLLs
IOs
Power
switch
VSS
VSS
REF_BUF
VSS
IO
logic
VREF+
VSW
LSI, LSE, RTC,
Wakeup logic,
backup
registers, Reset
IO
logic
VBKP
VBAT
charging
VREF-
USB regulator
VDD50USB
VDD33USB
USB
FS IOs
LDO
voltage
regulator
VSS
DS13315 Rev 1 105/259
STM32H730xB Electrical characteristics
231
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 9: Voltage characteristics,
Table 10: Current characteristics, and Table 11: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and the functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are
available on demand.
IDD_VBAT
LDO ON
VBAT
IDD
VDD
VDDA
VDDLDO
IDD_VBAT
SMPS ON
VBAT
IDD
VDD
VDDA
VDDSMPS
Table 9. Voltage characteristics
Symbols Ratings Min Max Unit
VDDX - VSS(1)
1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
External main supply voltage (including VDD,
VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT)0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected.
Input voltage on FT_xxx pins VSS0.3
Min(VDD, VDDA,
VDD33USB, VBAT)
+4.0(3)(4)
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition
table.
V
Input voltage on TT_xx pins VSS0.3 4.0 V
Input voltage on BOOT0 pin VSS 9.0 V
Input voltage on any other pins VSS-0.3 4.0 V
|VDDX|Variations between different VDDX power
pins of the same domain -50mV
|VSSx-VSS|Variations between all the different ground
pins -50mV
Electrical characteristics STM32H730xB
106/259 DS13315 Rev 1
4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.
Table 10. Current characteristics
Symbols Ratings Max Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1)
1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the
external power supplies, in the permitted range.
620
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) 620
IVDD Maximum current into each VDD power pin (source)(1) 100
IVSS Maximum current out of each VSS ground pin (sink)(1) 100
IIO Output current sunk by any I/O and control pin 20
ΣI(PIN)
Total output current sunk by sum of all I/Os and control pins(2)
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
QFP packages.
140
Total output current sourced by sum of all I/Os and control pins(2) 140
IINJ(PIN)(3)(4)
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer also to Table 9: Voltage characteristics for the maximum allowed input voltage
values.
Injected current on FT_xxx, TT_xx, RST and B pins except PA4,
PA5 5/+0
Injected current on PA4, PA5 0/0
ΣIINJ(PIN) Total injected current (sum of all I/Os and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
±25
Table 11. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range 65 to +150 °C
TJ
Maximum junction
temperature Industrial temperature range 6 125
DS13315 Rev 1 107/259
STM32H730xB Electrical characteristics
231
6.3 Operating conditions
6.3.1 General operating conditions
Table 12. General operating conditions
Symbol Parameter Operating
conditions Min Typ Max Unit
VDD Standard operating voltage - 1.62(1) - 3.6
V
VDDLDO
Supply voltage for the internal
regulator VDDLDO VDD 1.62(1) -3.6
VDDSMPS
Supply voltage for the internal
SMPS Step-down converter VDDSMPS = VDD 1.62(1) -3.6
VDD50USB -
USB regulator ON 4 5 5.5
USB regulator OFF - VDD33USB -
VDD33USB
Standard operating voltage, USB
domain
USB used 3.0 - 3.6
USB not used 0 - 3.6
VDDA Analog operating voltage
ADC or COMP used 1.62 -
3.6
DAC used 1.8 -
OPAMP used 2.0 -
VREFBUF used 1.8 -
ADC, DAC, OPAMP,
COMP, VREFBUF not
used
0-
VIN I/O Input voltage
TT_xx I/O 0.3 - VDD+0.3
BOOT0 0 - 9
All I/O except BOOT0
and TT_xx 0.3 -
Min(VDD,
VDDA,
VDD33USB)
+3.6V <
5.5V(2)
VCORE
Internal regulator ON (LDO or
SMPS)(3)
VOS3 0.95 1.0 1.05
V
VOS2 1.05 1.10 1.15
VOS1 1.15 1.21 1.26
VOS0 1.30 1.36 1.40
Regulator OFF: external VCORE
voltage must be supplied from
external regulator on VCAP pins
VOS3 0.98 1.03 1.08
VOS2 1.08 1.13 1.18
VOS1 1.18 1.23 1.28
VOS0 1.33 1.38 1.40
Electrical characteristics STM32H730xB
108/259 DS13315 Rev 1
fCPU Arm® Cortex®-M7 clock frequency
VOS3 - - 170
MHz
VOS2 - - 300
VOS1 - - 400
VOS0 - - 520
VOS0 and
CPU_FREQ_BOOST --550
fACLK AXI clock frequency
VOS3 - - 85
VOS2 - - 150
VOS1 - - 200
VOS0 - - 275
fHCLK AHB clock frequency
VOS3 - - 85
VOS2 - - 150
VOS1 - - 200
VOS0 - - 275
fPCLK APB clock frequency
VOS3 - - 42.5(4)
VOS2 - - 75
VOS1 - - 100
VOS0 - - 137.5
TA(5)
Ambient temperature for
temperature range 3
Maximum power
dissipation 40 125
°C
Ambient temperature for
temperature range 6
Maximum power
dissipation 40 85
Low-power
dissipation(6) 40 105
1. When RESET is released, the functionality is guaranteed down to VPDRmax or down to the specified VDDmin when the PDR
is OFF. The PDR can only be switched OFF though the PDR_ON pin that not available in all packages.
2. This formula has to be applied on power supplies related to the I/O structure described by the pin definition table.
3. At startup, the external VCORE voltage must remain higher or equal to 1.10 V before disabling the internal regulator (LDO).
4. This value corresponds to the maximum APB clock frequency when at least one peripheral is enabled.
5. The device junction temperature must be kept below maximum TJ indicated in Table 13: Supply voltage and maximum
temperature configuration and the maximum temperature.
6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
Table 12. General operating conditions (continued)
Symbol Parameter Operating
conditions Min Typ Max Unit
DS13315 Rev 1 109/259
STM32H730xB Electrical characteristics
231
Table 13. Supply voltage and maximum temperature configuration
Power scale VCORE source Max. TJ (°C)(1)
1. 140 °C can be reached only for part numbers in temperature range 3. For part numbers in temperature
range 6, this value must be decreased to 125 °C.
Min. VDD(V) Min. VDDLDO (V)
VOS0
SMPS(2)
2. The SMPS must be configured to output 2,5 V.
105
2.2 -
LDO 1.7 1.7
SMPS supplies LDO 3(2) 1.7
External (Bypass) 1.62 1.62
VOS1
SMPS
140 2.2 -
125
1.62 -
LDO 1.62 1.62
SMPS supplies LDO 2.3 -
External (Bypass) 1.62 -
VOS2
SMPS(2) 140 1.62 -
LDO
125
1.62 1.62
SMPS supplies LDO 2.3 -
External (Bypass) 1.62 -
VOS3
SMPS 140 1.62 -
LDO
125
1.62 1.62
SMPS supplies LDO 2.3 -
external (Bypass)E 1.62 -
SVOS4/SVOS5
SMPS 140 1.62 -
LDO
125 2 2
105 1.62 1.62
SMPS supplies LDO
125 3(2) 2
105 2.3 -
External (Bypass) 125 1.62 -
Electrical characteristics STM32H730xB
110/259 DS13315 Rev 1
6.3.2 VCAP external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP pin. CEXT is specified in Table 14. Two external capacitors can be connected to
VCAP pins.
Figure 15. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6.3.3 SMPS step-down converter
The devices embed a high power efficiency SMPS step-down converter. SMPS
characteristics for external usage are given in Table 16. The SMPS step-down converter
requires external components that are specified in Figure 16 and Table 15.
Table 14. VCAP operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF(2)(3)
2. This value corresponds to CEXT typical value. A variation of +/-20% is tolerated.
3. If a third VCAP pin is available on the package, it must be connected to the other VCAP pins but no
additional capacitor is required.
ESR ESR of external capacitor < 100 mΩ
MS19044V2
ESR
R
Leak
C
DS13315 Rev 1 111/259
STM32H730xB Electrical characteristics
231
Figure 16. External components for SMPS step-down converter
MSv61398V3
V
CO
R
E
VCORE
Cin L
Cout1
Cout2
Cfilt
Direct SMPS supply External SMPS supply, LDO supplied
by SMPS
V
DD
_
Ext
e
rn
a
l
VDD_
External
SMPS
(ON)
VSS
VDDLDO
VCAP
VDDSMPS
VFBSMPS
VLXSMPS
VDDSMPS
VDD
Voltage
regulator
(OFF)
V
CO
R
E
VCORE
Cin L
2xCou1
Cout2
Cfilt
SMPS
(ON)
VSS
VDDLDO
VCAP
VDDSMPS
VFBSMPS
VLXSMPS
VDDSMPS
VDD
Voltage
regulator
(ON)
Table 15. Characteristics of SMPS step-down converter external components
Symbol Parameter Conditions
Cin
Capacitance of external capacitor on VDDSMPS 4.7 µF
ESR of external capacitor 100 m
Cfilt Capacitance of external capacitor on VLXSMPS pin 220 pF
COUT
Capacitance of external capacitor on VFBSMPS pin 10 µF
ESR of external capacitor 20 m
L Inductance of external Inductor on VLXSMPS pin 2.2 µH
- Serial DC resistor 150 m
ISAT
DC current at which the inductance drops 30% from
its value without current. 1.7 A
IRMS
Average current for a 40 °C rise: rated current for
which the temperature of the inductor is raised 40°C
by DC current
1.4 A
Table 16. SMPS step-down converter characteristics for external usage
Parameters Conditions Min Typ Max Unit
VDDSMPS(1) VOUT = 1.8 V 2.3 - 3.6
V
VOUT = 2.5 V 3 - 3.6
VOUT(2) Iout=600 mA
2.25 2.5 2.75
V
1.62 1.8 1.98
IOUT
internal and external usage - - 600
mA
External usage only(3) - - 600
RDSON - - 100 120 m
Electrical characteristics STM32H730xB
112/259 DS13315 Rev 1
IDDSMPS_Q Quiescent current - 220 - µA
TSMPS_START
VOUT = 1.8 V - 270 405
µs
VOUT = 2.5 V - 360 540
1. The switching frequency is 2.4 MHz±10%
2. Including line transient and load transient.
3. These characteristics are given for SDEXTHP bit is set in the PWR_CR3 register.
Table 17. Inrush current and inrush electric charge characteristics for LDO and
SMPS(1)(2)
Symbol Parameter Conditions -Min Typ Max Unit
IRUSH
Inrush current on voltage
regulator power-on
(POR or wakeup from
Standby)
on VDDLDO(3) - - 55 96(4)
mA
on VDDSMPS(5) SMPS supplies
the VDDCORE
- 100 420(6)
Inrush current on voltage
regulator power-on
(POR)
on VDDSMPS(5)
SMPS supplies
internal LDO,
VOUT = 1. 8 V(7)
- 130 400(6)
SMPS supplies
internal LDO,
VOUT = 2.5 V(7)
--300
(6)
SMPS supplies
external circuit,
VOUT = 1.8 V(7)
- 100 320(6)
SMPS supplies
external circuit,
VOUT = 2.5 V(7)
--240
(6)
Inrush current on voltage
regulator power-on
(wakeup from Standby)
on VDDSMPS(5)
SMPS supplies
internal LDO,
VOUT = 1.8 V
- 170 530(6)
SMPS supplies
internal LDO,
VOUT = 2.5 V
- 240 550(6)
Table 16. SMPS step-down converter characteristics for external usage (continued)
Parameters Conditions Min Typ Max Unit
DS13315 Rev 1 113/259
STM32H730xB Electrical characteristics
231
QRUSH
Inrush current on voltage
regulator power-on
(POR or wakeup from
Standby)
on VDDLDO(3) --4.45.3
(4)
C
on VDDSMPS(5) SMPS supplies
the VDDCORE
-7.318
(4)
Inrush current on voltage
regulator power-on
(POR)
on VDDSMPS(5)
SMPS supplies
internal LDO,
VOUT = 1. 8 V(7)
-
8.8
17(4)
SMPS supplies
internal LDO,
VOUT = 2.5 V(7)
-13
(4)
SMPS supplies
external circuit,
VOUT = 1.8 V(7)
-
7.3
13.7(4)
SMPS supplies
external circuit,
VOUT = 2.5 V(7)
-10.5
(4)
Inrush current on voltage
regulator power-on
(wakeup from Standby)
on VDDSMPS(5)
SMPS supplies
internal LDO,
VOUT = 1.8 V
- 15.0 28(4)
SMPS supplies
internal LDO,
VOUT = 2.5 V
- 28.0 39(4)
1. The typical values are given for VDDLDO = VDDSMPS = 3.3 V and for typical decoupling capacitor values of
CEXT and COUT.
2. The product consumption (on VDDCORE) is not taken into account in the inrush current and inrush electric
charges.
3. The inrush current and inrush electric charge on VDDLDO are not present in Bypass mode or when the
SMPS supplies the VDDCORE.
4. The maximum value is given for the maximum decoupling capacitor CEXT.
5. The inrush current and inrush electric charges on VDDSMPS are not present if the external component (L
or COUT) is not present that is if the SMPS is not used.
6. The maximum value is given for the maximum decoupling capacitor COUT and the minimum VDDSMPS
voltage.
7. The inrush current due to transition from 1.2 V to the final VOUT Value (1.8 V or 2.5 V) is not taken into
account.
Table 17. Inrush current and inrush electric charge characteristics for LDO and
SMPS(1)(2) (continued)
Symbol Parameter Conditions -Min Typ Max Unit
Electrical characteristics STM32H730xB
114/259 DS13315 Rev 1
6.3.4 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator ON)
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 0
µs/V
VDD fall time rate 10
tVDDA
VDDA rise time rate 0
VDDA fall time rate 10
tVDDUSB
VDDUSB rise time rate 0
VDDUSB fall time rate 10
DS13315 Rev 1 115/259
STM32H730xB Electrical characteristics
231
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 12: General operating
conditions.
Table 19. Reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tRSTTEMPO(1) Reset temporization
after BOR0 released - - 377 550 µs
VPOR/PDR
Power-on/power-down reset
threshold
Rising edge(1) 1.62 1.67 1.71
V
Falling edge 1.58 1.62 1.68
VBOR1 Brown-out reset threshold 1
Rising edge 2.04 2.10 2.15
Falling edge 1.95 2.00 2.06
VBOR2 Brown-out reset threshold 2
Rising edge 2.34 2.41 2.47
Falling edge 2.25 2.31 2.37
VBOR3 Brown-out reset threshold 3
Rising edge 2.63 2.70 2.78
Falling edge 2.54 2.61 2.68
VPVD0
Programmable Voltage
Detector threshold 0
Rising edge 1.90 1.96 2.01
Falling edge 1.81 1.86 1.91
VPVD1
Programmable Voltage
Detector threshold 1
Rising edge 2.05 2.10 2.16
Falling edge 1.96 2.01 2.06
VPVD2
Programmable Voltage
Detector threshold 2
Rising edge 2.19 2.26 2.32
Falling edge 2.10 2.15 2.21
VPVD3
Programmable Voltage
Detector threshold 3
Rising edge 2.35 2.41 2.47
Falling edge 2.25 2.31 2.37
VPVD4
Programmable Voltage
Detector threshold 4
Rising edge 2.49 2.56 2.62
Falling edge 2.39 2.45 2.51
VPVD5
Programmable Voltage
Detector threshold 5
Rising edge 2.64 2.71 2.78
Falling edge 2.55 2.61 2.68
VPVD6
Programmable Voltage
Detector threshold 6
Rising edge 2.78 2.86 2.94
Falling edge in Run mode 2.69 2.76 2.83
VPOR/PDR
Hysteresis voltage for
Power-on/power-down reset Hysteresis in Run mode - 43.00 -
mV
Vhyst_BOR_PVD Hysteresis voltage for BOR Hysteresis in Run mode - 100 -
IDD_BOR_PVD(1) BOR and PVD consumption
from VDD
---0.630
µA
IDD_POR_PVD
POR and PVD consumption
from VDD
- 0.8 - 1.200
Electrical characteristics STM32H730xB
116/259 DS13315 Rev 1
6.3.6 Embedded reference voltage characteristics
The parameters given in Table 20 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 12: General operating
conditions.
VAVM_0
Analog voltage detector for
VDDA threshold 0
Rising edge 1.66 1.71 1.76
V
Falling edge 1.56 1.61 1.66
VAVM_1
Analog voltage detector for
VDDA threshold 1
Rising edge 2.06 2.12 2.19
Falling edge 1.96 2.02 2.08
VAVM_2
Analog voltage detector for
VDDA threshold 2
Rising edge 2.42 2.50 2.58
Falling edge 2.35 2.42 2.49
VAVM_3
Analog voltage detector for
VDDA threshold 3
Rising edge 2.74 2.83 2.91
Falling edge 2.64 2.72 2.80
Vhyst_VDDA
Hysteresis of VDDA voltage
detector - - 100 - mV
IDD_PVM
PVM consumption from
VDD(1)
---0.25µA
IDD_VDDA
Voltage detector
consumption on VDDA(1) Resistor bridge - - 2.5 µA
1. Guaranteed by design.
Table 19. Reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 20. Embedded reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltages -40°C < TJ < TJmax 1.180 1.216 1.255 V
tS_vrefint(1)(2)
(3)
ADC sampling time when
reading the internal reference
voltage
-4.3--
µs
tS_vbat(2)
VBAT sampling time when
reading the internal VBAT
reference voltage
-9--
tstart_vrefint(2) Start time of reference voltage
buffer when ADC is enable ---4.4
Irefbuf(2) Reference Buffer
consumption for ADC VDD = 3.3 V 9 13.5 23 µA
ΔVREFINT(2)
Internal reference voltage
spread over the temperature
range
-40°C < TJ < TJmax -515mV
Tcoeff(2) Average temperature
coefficient
Average temperature
coefficient -2070ppm/°C
VDDcoeff(2) Average Voltage coefficient 3.0 V < VDD < 3.6 V - 10 1370 ppm/V
DS13315 Rev 1 117/259
STM32H730xB Electrical characteristics
231
6.3.7 Embedded USB regulator characteristics
The parameters given in Table 22 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 12: General operating
conditions.
6.3.8 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a CoreMark code.
VREFINT_DIV1 1/4 reference voltage - - 25 -
%
VREFINT
VREFINT_DIV2 1/2 reference voltage - - 50 -
VREFINT_DIV3 3/4 reference voltage - - 75 -
1. The shortest sampling time for the application can be determined by multiple iterations.
2. Guaranteed by design.
3. Guaranteed by design. and tested in production at 3.3 V.
Table 20. Embedded reference voltage (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 21. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA = 3.3 V 1FF1 E860 - 1FF1 E861
Table 22. USB regulator characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDD50USB Supply voltage - 4 5 5.5 V
IDD50USB Current consumption - - 14 - µA
VREGOUTV33V Regulated output voltage - 3 - 3.6 V
IOUT
Output current load sinked by
USB block ---20mA
TWKUP Wakeup time - - 120 170 us
Electrical characteristics STM32H730xB
118/259 DS13315 Rev 1
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode.
All peripherals are disabled except when explicitly mentioned.
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fACLK frequency (refer to the table “Number of wait states according to
CPU clock (frcc_c_ck) frequency and VCORE range” available in the reference manual).
When the peripherals are enabled, the AHB clock frequency is the CPU frequency
divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.
The parameters given in the below tables are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 12: General operating
conditions.
DS13315 Rev 1 119/259
STM32H730xB Electrical characteristics
231
Table 23. Typical and maximum current consumption in Run mode,
code with data processing running from ITCM(1)
Symbol Parameter Conditions frcc_c_ck
(MHz)
Typ
LDO
regulator
ON
Typ
SMPS
ON
Max LDO regulator ON(2)
Max
SMPS
ON(3)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
125 °C
TJ =
140 °C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
(4)
550 145 81 170 260 330 - -
mA
520 135 76 160 260 320 - -
VOS0
520 135 76 160 260 320 - -
480 125 72.5 150 250 310 - -
450 115 67.5 150 240 300 - -
400 105 60 130 230 290 - -
VOS1
400 90.5 47 110 170 220 280 160
300 69.5 36.5 84 150 200 260 150
VOS2
300 63 31.5 74 130 170 220 110
280 58 29 69 120 160 210 110
216 45.5 22.5 56 110 150 200 110
200 42 21 53 110 140 200 110
VOS3
170 32.5 15 40 80 110 160 74
168 32 15 40 79 110 160 74
144 28 13.5 36 75 110 150 74
60 13.5 6.7 21 61 90 140 67
25 6.9 3.6 14 54 83 130 67
All
peripherals
enabled
VOS0
(4)
550 215 125 250 360 430 - -
520 205 120 240 350 420 - -
VOS0
520 205 120 240 350 420 - -
400 160 92.5 190 300 370 - -
VOS1
400 135 72 160 230 290 360 200
300 105 54.5 130 200 250 330 180
VOS2
300 95 46.5 110 170 210 280 140
280 88 43 100 160 210 270 140
VOS3 170 49 22.5 58 110 140 190 93
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.
2. Guaranteed by characterization results, unless otherwise specified. Refer to Section 6.3.3: SMPS step-down converter for the SMPS
maximum consumption.
3. The parameter values given in the above table for the SMPS regulator are extrapolated from the LDO consumption and typical SMPS
efficiency factors.
4. CPU_FREQ_BOOST is enabled.
Electrical characteristics STM32H730xB
120/259 DS13315 Rev 1
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache ON(1)
Symbol Parameter Conditions frcc_c_ck
(MHz)
Typ
LDO
regulator
ON
Typ
SMPS
ON
Max LDO regulator ON(2)
Max
SMPS
ON(3)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
125 °C
TJ =
140 °C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
(4)
550 145 83.5 170 270 330 - -
mA
520 140 78.5 170 260 320 - -
VOS0
520 140 78.5 170 260 320 - -
400 110 62 140 230 290 - -
VOS1
400 92 48.5 110 180 220 290 160
300 71 37.5 86 150 200 260 150
VOS2
300 64 32 75 130 170 220 110
280 59 29.5 70 120 160 210 110
216 46.5 23 - - - - -
200 42.5 21.5 53 110 140 200 110
180 36 17 43 83 120 160 85
VOS3
170 33.5 15.5 41 81 110 160 74
168 33 15.5 - - - - -
144 29 13.5 - - - - -
60 14 6.85 - - - - -
25 6.85 3.7 - - - - -
All
peripherals
enabled
VOS0
(4)
550 220 130 250 360 430 - -
520 210 120 240 350 420 - -
VOS0
520 210 120 240 350 420 - -
400 160 94.5 190 300 370 - -
VOS1
400 140 73 160 240 290 360 200
300 105 55.5 130 200 250 330 180
VOS2
300 96 47 110 170 210 280 140
280 89 43.5 110 160 210 270 140
VOS3 170 50 23 59 110 140 190 93
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.
2. Guaranteed by characterization results, unless otherwise specified. Refer to Section 6.3.3: SMPS step-down converter for
the SMPS maximum consumption.
3. The parameter values given in the above table for the SMPS regulator are extrapolated from the LDO consumption and
typical SMPS efficiency factors.
4. CPU_FREQ_BOOST is enabled.
DS13315 Rev 1 121/259
STM32H730xB Electrical characteristics
231
Table 25. Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory, cache OFF(1)
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this
case.
Symbol Parameter Conditions frcc_c_ck
(MHz)
Typ
LDO
regulator
ON
Typ
SMPS
ON
Unit
IDD
Supply current
in Run mode
All peripherals
disabled
VOS0(2)
2. CPU_FREQ_BOOST is enabled.
550 99 59.5
mA
520 95 56
VOS0
520 95 56
400 76.5 47
VOS1
400 66.5 38
300 51.5 30
VOS2
300 47.5 26
280 43.5 24
VOS3 170 24.5 13
All peripherals
enabled
VOS0(2) 550 170 100
520 165 95.5
VOS0
520 165 95.5
400 130 77.5
VOS1
400 115 62
300 87 47.5
VOS2
300 79 41.5
280 73.5 38
VOS3 170 41 20.5
Electrical characteristics STM32H730xB
122/259 DS13315 Rev 1
Table 26. Typical consumption in Run mode and corresponding performance
versus code position
Symbol Parameter
Conditions
frcc_c_c k
(MHz) Coremark
Typ
LDO
regulator
ON
Typ
SMPS
ON
Unit LDO IDD/
Coremark
SMPS
IDD/
Coremark
Unit
Peripheral Code
IDD
Supply
current in
Run mode
All
peripherals
disabled,
cache ON
ITCM 550 2777 145 81
mA
52.2 29.2
µA/
Core-
mark
FLASH 550 2777 145 83.5 52.2 30.1
AXI
SRAM 550 2777 145 83.5 52.2 30.1
SRAM 1 550 2777 150 86 54.0 31.0
SRAM 4 550 2777 145 83.5 52.2 30.1
All
peripherals
disabled
cache OFF
FLASH 550 923 99 59.5 107.3 64.5
AXI
SRAM 550 1271 105 60.5 82.6 47.6
SRAM 1 550 790 96.5 54.5 122.2 69.0
SRAM 4 550 723 89.5 50.5 123.8 69.8
Table 27. Typical current consumption in Autonomous mode
Symbol Parameter Conditions(1) frcc_c_c k
(MHz)
Typ
LDO
regulator ON
Typ
SMPS ON Unit
IDD
Supply current in
Autonous mode
Run, DStop VOS3 64 3.6 2.2
mA
Run,
DStandby VOS3 64 2.6 1.6
1. System is in Run mode, D1 and D2 domains are in DStop.
Table 28. Typical current consumption in Sleep mode
Symbol Parameter Conditions frcc_c_ck
(MHz)
Typ
LDO
regulator
ON
Typ
SMPS
ON
Max LDO regulator ON(1)(2)
Max
SMPS
ON(3)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
125 °C
TJ =
140 °C
IDD(Sleep)
Supply
current in
Sleep mode
All
peripherals
disabled
VOS0
(4)
550 36 20.5 - - - - -
mA
520 33.5 19.5 60 170 240 - -
VOS0
520 33.5 19.5 60 170 240 - -
400 27 16 52 160 230 - -
VOS1
400 22.5 12.5 39 110 170 240 140
300 18.5 10.5 34 110 160 240 140
VOS2
300 16.5 8.75 28 85 130 190 110
170 9.7 5.2 21 78 120 190 110
VOS3 170 8.5 4.35 17 61 96 150 74
DS13315 Rev 1 123/259
STM32H730xB Electrical characteristics
231
1. Guaranteed by characterization results.
2. Refer to Section 6.3.3: SMPS step-down converter for the SMPS maximum consumption.
3. The parameter values given in the above table for the SMPS regulator are extrapolated from the LDO consumption and
typical SMPS efficiency factors.
4. CPU_FREQ_BOOST is enabled.
Table 29. Typical current consumption in System Stop mode
Symbol Parameter Conditions
Typ
LDO
regulator
ON
Typ
SMPS
ON
Max LDO regulator ON(1)(2)
Max
SMPS
ON(3)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
125 °C
TJ =
140 °C
IDD(Stop)
Supply
current in
Stop and
DStop
modes
Flash memory in low
power mode
SVOS5 0.52 0.2 3.7 26 44 72 50
mA
SVOS4 0.81 0.35 6.1 39 64 110 70
SVOS3 1.15 0.515 8.6 51 82 130 100
Flash memory in
normal mode
SVOS5 0.535 0.205 3.7 26 44 72 50
SVOS4 0.96 0.475 6.2 39 64 110 75
SVOS3 1.45 0.645 8.8 51 83 130 100
1. Guaranteed by characterization results.
2. Refer to Section 6.3.3: SMPS step-down converter for the SMPS maximum consumption.
3. The parameter values given in the above table for the SMPS regulator are extrapolated from the LDO consumption and
typical SMPS efficiency factors.
Table 30. Typical current consumption in Standby mode(1)
Symbol Parameter
Conditions Typ(2) Max at 3.6 V with LDO
regulator ON(3)
Max at
3.6 V with
SMPS
ON(4)
Unit
Backup
SRAM
RTC
and
LSE(5)
1.65
V2.4 V 3 V 3.3 V
TJ =
25 °
C
TJ =
85 °
C
TJ =
105 °
C
TJ =
125 °
C
TJ = 140 °C
IDD
(Standby)
Supply
current in
Standby
mode,
IWDG OFF
OFF OFF TBD TBD TBD TBD - - - - -
µA
ON OFF 3.5 3.7 4 4.3 - - - - -
OFF ON TBD TBD TBD TBD TBD TBD TBD TBD TBD
ON ON TBD TBD TBD TBD TBD TBD TBD TBD TBD
1. TBD stands for “to be defined”.
2. PDR is OFF for VDD=1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by
additional 1.2 A.
3. Guaranteed by characterization results.
4. The parameter values given in the above table for the SMPS regulator are extrapolated from the LDO consumption and
typical SMPS efficiency factors.
5. The LSE is in Low-drive mode.
Electrical characteristics STM32H730xB
124/259 DS13315 Rev 1
Typical SMPS efficiency versus load current and temperature
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C
Table 31. Typical and maximum current consumption in VBAT mode(1)
Sym-
bol
Para-
meter
Conditions Typ Max at 3.6 V with LDO
regulator ON(2)
Max at
3.6 V
with
SMPS
ON(3) Unit
Back-
up
SRAM
RTC
and
LSE(4)
1.2 V 2 V 3 V 3.3 V TJ =
25 °C
TJ =
85 °
C
TJ =
105
°C
TJ =
125
°C
TJ =
140 °C
IDD
(VBAT)
Supply
current
in VBAT
mode
OFF OFF TBD TBD TBD TBD TBD TBD TBD TBD TBD
µA
ON OFF 1.45 1.6 1.75 1.85 4 28 53 91 110
OFF ON TBD TBD TBD TBD - - - - -
ON ON - - - - - - - - -
1. TBD stands for “to be defined”.
2. Guaranteed by characterization results.
3. The parameter values given in the above table for the SMPS regulator are extrapolated from the LDO consumption and
typical SMPS efficiency factors.
4. The LSE is in Low-drive mode.
MSv65350V1
0
10
20
30
40
50
60
70
80
90
100
0.001 0.01 0.1 1
VDDSMPS = 1.8V,
VOS1
VDDSMPS =
3.3V,VOS1
VDDSMPS = 1.8V,
VOS2
VDDSMPS = 3.3V,
VOS2
VDDSMPS = 1.8V,
VOS3
DS13315 Rev 1 125/259
STM32H730xB Electrical characteristics
231
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax
Figure 19. Typical SMPS efficiency (%) vs load current (A) in Stop and
DStop modes at TJ = 30 °C
MSv65350V1
0
10
20
30
40
50
60
70
80
90
100
0.001 0.01 0.1 1
VDDSMPS = 1.8V,
VOS1
VDDSMPS =
3.3V,VOS1
VDDSMPS = 1.8V,
VOS2
VDDSMPS = 3.3V,
VOS2
VDDSMPS = 1.8V,
VOS3
MSv65352V1
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.0001 0.001 0.01 0.1
VDDSMPS =
1.8V, SVOS5
VDDSMPS =
3.3V, SVOS5
VDDSMPS =
1.8V, SVOS4
VDDSMPS =
3.3V, SVOS4
VDDSMPS =
1.8V, SVOS3
VDDSMPS =
3.3V, SVOS3
current (A)
Electrical characteristics STM32H730xB
126/259 DS13315 Rev 1
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at
TJ = TJmax
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate a current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 52: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid a current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
MSv65353V1
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.0001 0.001 0.01 0.1
VDDSMPS =
1.8V, SVOS5
VDDSMPS =
3.3V, SVOS5
VDDSMPS =
1.8V, SVOS4
VDDSMPS =
3.3V, SVOS4
VDDSMPS =
1.8V, SVOS3
VDDSMPS =
3.3V, SVOS3
DS13315 Rev 1 127/259
STM32H730xB Electrical characteristics
231
I/O dynamic current consumption
In addition to the internal peripheral current consumption, the I/Os used by an application
also contribute to the current consumption. When an I/O pin switches, it uses the current
from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the
capacitive load (internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDx is the MCU supply voltage
fSW is the I/O switching frequency
CL is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDDx fSW CL
××=
Electrical characteristics STM32H730xB
128/259 DS13315 Rev 1
6.3.9 Wakeup time from low-power modes
The wakeup times given in Table 32 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 32. Low-power mode wakeup timings
Symbol Parameter Conditions Typ(1) Max(1)
(2) Unit
tWUSLEEP(3) Wakeup from Sleep - 14.00 15.00
CPU
clock
cycles
tWUSTOP(3) Wakeup from Stop
mode
SVOS3, HSI, Flash memory in Normal mode 4.6 6.2
µs
SVOS3, HSI, Flash memory in low-power mode 12.4 17.4
SVOS4, HSI, Flash memory in Normal mode 15.5 21.1
SVOS4, HSI, Flash memory in low-power mode 23.3 31.8
SVOS5, HSI, Flash memory in Normal mode 39.1 52.6
SVOS5, HSI, Flash memory in low-power mode 39.1 52.7
SVOS3, CSI, Flash memory in Normal mode 30.0 41.6
SVOS3, CSI, Flash memory in low power mode 40.6 55.0
SVOS4, CSI, Flash memory in Normal mode 41.0 55.4
SVOS4, CSI, Flash memory in low-power mode 51.5 68.8
SVOS5, CSI, Flash memory in Normal mode 67.3 89.5
SVOS5, CSI, Flash memory in low-power mode 67.2 89.5
tWUSTDBY(3) Wakeup from
Standby mode - 400.0 504.3
1. Guaranteed by characterization results.
2. The maximum values have been measured at -40 °C, in worst conditions.
3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
DS13315 Rev 1 129/259
STM32H730xB Electrical characteristics
231
6.3.10 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.
The external clock signal has to respect the Table 52: I/O static characteristics. However,
the recommended clock input waveform is shown in Figure 21.
Figure 21. High-speed external clock source AC timing diagram
Table 33. High-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
fHSE_ext User external clock source frequency 4 25 50 MHz
VSW
(VHSEH VHSEL)
OSC_IN amplitude 0.7VDD -V
DD V
VDC OSC_IN input voltage VSS -0.3V
SS
tW(HSE) OSC_IN high or low time 7 - - ns
ai17528b
OSC _I N
External
STM32
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90 %
10 %
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
Electrical characteristics STM32H730xB
130/259 DS13315 Rev 1
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 52: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 22.
Figure 22. Low-speed external clock source AC timing diagram
Table 34. Low-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User external clock source
frequency - - 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage -0.7 V
DD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage -V
SS -0.3 V
DD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time - 250 - - ns
ai17529b
OSC32_IN
External
STM32
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
DS13315 Rev 1 131/259
STM32H730xB Electrical characteristics
231
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 35. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to
match the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually
the same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. The PCB and MCU pin capacitance must be included
(10 pF can be used as a rough estimate of the combined pin and board capacitance) when
sizing CL1 and CL2.
Note: For information on selecting the crystal, refer to application note AN2867 “Oscillator design
guide for ST microcontrollers” available from the ST website www.st.com.
Table 35. 4-50 MHz HSE oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Operating
conditions(2)
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min Typ Max Unit
F Oscillator frequency - 4 - 50 MHz
RFFeedback resistor - - 200 - k
IDD(HSE)
HSE current
consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
-- 4
mA
VDD=3 V, Rm=30
CL=10 pF at 4 MHz -0.35 -
VDD=3 V, Rm=30
CL=10 pF at 8 MHz -0.40 -
VDD=3 V, Rm=30
CL=10 pF at 16 MHz -0.45 -
VDD=3 V, Rm=30
CL=10 pF at 32 MHz -0.65 -
VDD=3 V, Rm=30
CL=10 pF at 48 MHz -0.95 -
Gmcritmax
Maximum critical crystal
gm Startup - - 1.5 mA/V
tSU(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Start-up time VDD is stabilized - 2 - ms
Electrical characteristics STM32H730xB
132/259 DS13315 Rev 1
Figure 23. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 36. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
ai17530b
OSC_OU T
OSC_IN fHSE
CL1
RF
STM32
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT(1)
CL2
Table 36. Low-speed external user clock characteristics(1)
Symbol Parameter Operating conditions(2) Min Typ Max Unit
F Oscillator frequency - - 32.768 - kHz
IDD
LSE current
consumption
LSEDRV[1:0] = 00,
Low drive capability -290 -
nA
LSEDRV[1:0] = 01,
Medium Low drive capability -390 -
LSEDRV[1:0] = 10,
Medium high drive capability -550 -
LSEDRV[1:0] = 11,
High drive capability -900 -
Gmcritmax
Maximum critical crystal
gm
LSEDRV[1:0] = 00,
Low drive capability --0.5
µA/V
LSEDRV[1:0] = 01,
Medium Low drive capability - - 0.75
LSEDRV[1:0] = 10,
Medium high drive capability --1.7
LSEDRV[1:0] = 11,
High drive capability --2.7
tSU(3) Startup time VDD is stabilized - 2 - s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. tSU is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
DS13315 Rev 1 133/259
STM32H730xB Electrical characteristics
231
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with a 32.768 kHz crystal
1. An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.
6.3.11 Internal clock source characteristics
The parameters given in Table 37 to Table 39 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 12: General
operating conditions.
48 MHz high-speed internal RC oscillator (HSI48)
ai17531c
STM32
OSC32_OUT
fHSE
CL1
RF
32.768 kHz
resonator
Bias
controlled
gain
OSC32_IN
CL2
Resonator with
integrated capacitors
Table 37. HSI48 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI48 HSI48 frequency VDD=3.3 V,
TJ=30 °C 47.5(1) 48 48.5(1) MHz
TRIM(2) USER trimming step - - 0.175 0.250 %
USER TRIM
COVERAGE(3) USER TRIMMING coverage ± 32 steps ±4.70 ±5.6 - %
DuCy(HSI48)(2) Duty Cycle - 45 - 55 %
ACCHSI48_REL(3)(4) Accuracy of the HSI48 oscillator over
temperature (factory calibrated) TJ=-40 to 125 °C –4.5 - 3.5 %
VDD(HSI48)(2)(4) HSI48 oscillator frequency drift with
VDD(5) (the reference is 3.3 V)
VDD=3 to 3.6 V - 0.025 0.05
%
VDD=1.62 V to 3.6 V - 0.05 0.1
tsu(HSI48)(2) HSI48 oscillator start-up time - - 2.1 4.0 µs
IDD(HSI48)(2) HSI48 oscillator power consumption - - 350 400 µA
NT jitter(2) Next transition jitter
Accumulated jitter on 28 cycles(6) - - ± 0.15 - ns
PT jitter(2) Paired transition jitter
Accumulated jitter on 56 cycles(6) - - ± 0.25 - ns
1. Guaranteed by test in production.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. fHSI = ACCHSI48_REL + VDD.
Electrical characteristics STM32H730xB
134/259 DS13315 Rev 1
64 MHz high-speed internal RC oscillator (HSI)
5. These values are obtained by using the formula: (Freq(3.6 V) - Freq(3.0 V)) / Freq(3.0 V) or (Freq(3.6 V) - Freq(1.62 V)) /
Freq(1.62 V).
6. Jitter measurements are performed without clock source activated in parallel.
Table 38. HSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI HSI frequency VDD=3.3 V, TJ=30 °C 63.7(2) 64 64.3(2) MHz
TRIM HSI user trimming step
Trimming is not a multiple
of 32 - 0.24 0.32
%
Trimming is 128, 256 and
384 5.2 1.8 -
Trimming is 64, 192, 320
and 448 1.4 0.8 -
Other trimming are a
multiple of 32 (not
including multiple of 64
and 128)
0.6 0.25 -
DuCy(HSI) Duty cycle - 45 - 55 %
ΔVDD (HSI)
HSI oscillator frequency drift over
VDD (the reference is 3.3 V) VDD=1.62 to 3.6 V 0.12 - 0.03 %
ΔTEMP(HSI)
HSI oscillator frequency drift over
temperature (the reference is
64 MHz)
TJ=-20 to 105 °C 1(3) -1
(3)
%
TJ=40 to TJmax °C 2(3) -1
(3)
tsu(HSI) HSI oscillator start-up time - - 1.4 2
µs
tstab(HSI) HSI oscillator stabilization time
at 1% of target frequency - 4 8
at 5% of target frequency - - 4
IDD(HSI) HSI oscillator power consumption - - 300 400 µA
1. Guaranteed by design unless otherwise specified.
2. Guaranteed by test in production.
3. Guaranteed by characterization results.
DS13315 Rev 1 135/259
STM32H730xB Electrical characteristics
231
4 MHz low-power internal RC oscillator (CSI)
Low-speed internal (LSI) RC oscillator
Table 39. CSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fCSI CSI frequency VDD=3.3 V, TJ=30 °C 3.96(2) 44.04
(2) MHz
TRIM CSI trimming step
Trimming is not a
multiple of 16 - 0.40 0.75
%
Trimming is a multiple
of 32 4.75 2.75 0.75
Other trimming values
not multiple of 16
(excluding multiple of
32)
0.43 0.00 0.75
DuCy(CSI) Duty cycle - 45 - 55 %
TEMP (CSI) CSI oscillator frequency drift over
temperature
TJ = 0 to 85 °C 3.7(3) -4.5
(3)
%
TJ = 40 to 125 °C 11(3) -7.5
(3)
VDD (CSI) CSI oscillator frequency drift over
VDD
VDD = 1.62 to 3.6 V 0.06 -0.06%
tsu(CSI) CSI oscillator startup time - - 1 2 µs
tstab(CSI)
CSI oscillator stabilization time
(to reach ± 3% of fCSI)- - - 4 cycle
IDD(CSI) CSI oscillator power consumption - - 23 30 µA
1. Guaranteed by design, unless otherwise specified.
2. Guaranteed by test in production.
3. Guaranteed by characterization results.
Table 40. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI LSI frequency
VDD = 3.3 V, TJ = 25 °C 31.4(1) 32 32.6(1)
kHz
TJ = –40 to 110 °C,
VDD = 1.62 to 3.6 V 29.76(2) - 33.6(2)
TJ = –40 to 125 °C,
VDD = 1.62 to 3.6 V 29.4(2) - 33.6(2)
tsu(LSI)(3) LSI oscillator startup time - - 80 130
µs
tstab(LSI)(3) LSI oscillator stabilization time
(5% of final value) - - 120 170
IDD(LSI)(3) LSI oscillator power consumption - - 130 280 nA
1. Guaranteed by test in production.
2. Guaranteed by characterization results.
3. Guaranteed by design.
Electrical characteristics STM32H730xB
136/259 DS13315 Rev 1
6.3.12 PLL characteristics
The parameters given in Table 41, Table 44 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 12: General operating
conditions.
Table 41. PLL1 characteristics (wide VCO frequency range)(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock - 2 - 16 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_P_OUT PLL multiplier output clock P
VOS0 1.5 - 550(2)
MHz
VOS1 1.5 - 400(2)
VOS2 1.5 - 300(2)
VOS3 1.5 - 170(2)
fVCO_OUT PLL VCO output - 192 - 836(3)
tLOCK PLL lock time
Normal mode 15 50 150(3)
µs
Sigma-delta mode (CKIN
8 MHz) 25 65 170
Jitter
Cycle-to-cycle jitter(4)
fPLL_OUT =
fVCO_OUT/100
fVCO_OUT
= 192 MHz -51 -
ps
fVCO_OUT
= 400 MHz -19 -
fVCO_OUT
= 560 MHz -10 -
fVCO_OUT
= 800 MHz -9 -
Period jitter
fVCO_OUT
= 192 MHz -38 -
fVCO_OUT
= 560 MHz -8 -
fVCO_OUT
= 800 MHz -7 -
Long term jitter
Normal mode
(CKIN = 2 MHz)
fVCO_OUT
= 192 MHz -0.15 -
fVCO_OUT
= 400 MHz -0.14 -
fVCO_OUT
= 832 MHz -0.16 -
Sigma-delta
mode (CKIN =
16 MHz)
fVCO_OUT
= 192 MHz -0.17 -
fVCO_OUT
= 500 MHz -0.08 -
fVCO_OUT
= 836 MHz -0.06 -
DS13315 Rev 1 137/259
STM32H730xB Electrical characteristics
231
IDD(PLL) PLL power consumption
fVCO_OUT =
560 MHz
VDDA 530 557 670
µA
VCORE 1190 1285 6300
fVCO_OUT =
192 MHz
VDDA 260 286 513
VCORE 309 377 5700
1. Guaranteed by design unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation.
3. Guaranteed by characterization results.
4. Integer mode only.
Table 41. PLL1 characteristics (wide VCO frequency range)(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 42. PLL1 characteristics (medium VCO frequency range)(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock - 1 - 2 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_OUT PLL multiplier output clock P, Q, R
VOS0 1.17 - 210
MHz
VOS1 1.17 - 210
VOS2 1.17 - 210
VOS3 1.17 - 200
fVCO_OUT PLL VCO output - 150 - 420
tLOCK PLL lock time
Normal mode - 60(2) 100(2)
µs
Sigma-delta mode forbidden
Jitter
Cycle-to-cycle jitter(3) -
fVCO_OUT =
150 MHz -145-
±ps
fVCO_OUT =
300 MHz -91-
fVCO_OUT =
400 MHz -64-
fVCO_OUT =
420 MHz -63-
Period jitter fPLL_OUT =
50 MHz
fVCO_OUT =
150 MHz -55-
±-ps
fVCO_OUT =
400 MHz -30-
Long term jitter Normal mode fVCO_OUT =
400 MHz 0.3-%
I(PLL) PLL power consumption on VDD
fVCO_OUT =
420 MHz
VDD - 440 1150
µA
VCORE - 530 -
fVCO_OUT =
150 MHz
VDD - 180 500
VCORE - 200 -
Electrical characteristics STM32H730xB
138/259 DS13315 Rev 1
1. Guaranteed by design unless otherwise specified.
2. Guaranteed by characterization results.
3. Integer mode only.
Table 43. PLL2 and PLL3 characteristics (wide VCO frequency range)(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock - 2 - 16 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_OUT
PLL multiplier output clock P,
Q, R
VOS0 1.5 - 550(2)
MHz
VOS1 1.5 - 400(2)
VOS2 1.5 - 300(2)
VOS3 1.5 - 170(2)
fVCO_OUT PLL VCO output - 192 - 960(3)
tLOCK PLL lock time
Normal mode - 50 150(3)
µs
Sigma-delta mode (fPLL_IN
8 MHz) -58166
(3)
Jitter
Cycle-to-cycle jitter(4)
fVCO_OUT = 192 MHz - 134 -
±ps
fVCO_OUT = 200 MHz - 134 -
fVCO_OUT = 400 MHz - 76 -
fVCO_OUT = 800 MHz - 39 -
Long term jitter
Normal
mode
(fPLL_IN =
2 MHz)
fVCO_OUT =
560 MHz 0.2-
%
Normal
mode
(fPLL_IN =
16 MHz)
fVCO_OUT =
560 MHz 0.8-
Sigma-delta
mode
(fPLL_IN =
2 MHz)
fVCO_OUT =
560 MHz 0.2-
Sigma-delta
mode
(fPLL_IN =
16 MHz)
fVCO_OUT =
560 MHz 0.8-
IDD(PLL)(3) PLL power consumption
fVCO_OUT =
836 MHz
VDD - 590 1500
µA
VCORE -720-
fVCO_OUT =
192 MHz
VDD -180600
VCORE -280-
1. Guaranteed by design unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation.
DS13315 Rev 1 139/259
STM32H730xB Electrical characteristics
231
3. Guaranteed by characterization results.
4. Integer mode only.
Table 44. PLL2 and PLL3 characteristics (medium VCO frequency range)(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock - 1 - 2 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_OUT
PLL multiplier output clock
P, Q, R
VOS0 1.17 - 210 MHz
VOS1 1.17 - 210 -
VOS2 1.17 - 210 -
VOS3 1.17 - 200 -
fVCO_OUT PLL VCO output - 150 - 420 -
tLOCK PLL lock time
Normal mode - 60 100(2)
µs
Sigma-delta mode forbidden
Jitter
Cycle-to-cycle jitter(3)
fVCO_OUT = 150 MHz - 145 -
±ps
fVCO_OUT = 200 MHz - 91 -
fVCO_OUT = 400 MHz - 64 -
fVCO_OUT = 420 MHz - 63 -
Period jitter
fPLL_OUT =
50 MHz
fVCO_OUT =
150 MHz -55-
±ps
fVCO_OUT = 400 MHz - 30 -
Long term jitter Normal mode fVCO_OUT =
400 MHz 0.3- %
IDD(PLL)
PLL power consumption on
VDD
fVCO_OUT =
420 MHz
VDD - 440 1150
µA
VCORE -530-
fVCO_OUT =
150 MHz
VDD - 180 500
VCORE -200-
1. Guaranteed by design unless otherwise specified.
2. Guaranteed by characterization results.
3. Integer mode only.
Electrical characteristics STM32H730xB
140/259 DS13315 Rev 1
6.3.13 Memory characteristics
Flash memory
The characteristics are given at TJ = –40 to 125 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 45. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode - 6.5 -
mA
Write / Erase 16-bit mode - 11.5 -
Write / Erase 32-bit mode - 20 -
Write / Erase 64-bit mode - 35 -
Table 46. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog
Word (266 bits) programming
time
Program/erase parallelism x 8 - 290 580(2)
µs
Program/erase parallelism x 16 - 180 360
Program/erase parallelism x 32 - 130 260
Program/erase parallelism x 64 - 100 200
tERASE Sector (128 Kbytes) erase time
Program/erase parallelism x 8 - 2 4
s
Program/erase parallelism x 16 - 1.8 3.6
Program/erase parallelism x 32 -
tME Mass erase time (1 Mbyte)
Program/erase parallelism x 8 - 3 26
Program/erase parallelism x 16 - 8 16
Program/erase parallelism x 32 - 6 12
Program/erase parallelism x 64 - 5 10
Vprog Programming voltage
Program parallelism x 8
1.62 - 3.6
V
Program parallelism x 16
Program parallelism x 32
Program parallelism x 64 1.8 - 3.6
1. Guaranteed by characterization results.
2. The maximum programming time is measured after 10K erase operations.
Table 47. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1) Unit
NEND Endurance TJ = –40 to +125 °C 10 kcycles
tRET
Data retention 1 kcycle at TA = 85 °C 30
Years
10 kcycles at TA = 55 °C 20
DS13315 Rev 1 141/259
STM32H730xB Electrical characteristics
231
6.3.14 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709 “EMC design guide for STM8, STM32 and Legacy
MCUs ”.
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
1. Guaranteed by characterization results.
Table 48. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to induce
a functional disturbance
VDD = 3.3 V, TA = 25 °C,
LQFP176, conforming to
IEC 61000-4-2
3B
VFTB
Fast transient voltage burst limits to be applied
through 100 pF on VDD and VSS pins to induce a
functional disturbance
VDD = 3.3 V, TA = 25 °C,
LQFP176, conforming to
IEC 61000-4-4
5A
Electrical characteristics STM32H730xB
142/259 DS13315 Rev 1
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015 “Software
techniques for improving microcontrollers EMC performance”).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 49. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/550 MHz
SEMI Peak level VDD = 3.6 V, TA = 25 °C, LQFP176 package,
conforming to IEC61967-2
0.1 to 30 MHz 14
dBµV
30 to 130 MHz 20
130 MHz to 1 GHz 27
1 GHz to 2 GHz 17
EMI Level 4 -
DS13315 Rev 1 143/259
STM32H730xB Electrical characteristics
231
6.3.15 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each
sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC
JS-001 and ANSI/ESDA/JEDEC JS-002 standards.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with JESD78 IC latchup standard.
Table 50. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = 25 °C conforming to
ANSI/ESDA/JEDEC JS-001
Packages with
SMPS 1C 1000(2)
V
Packages without
SMPS 22000
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESDA/JEDEC JS-002
All LQFP
packages C1 250
All BGA and
WLCSP packages C2a 500
1. Guaranteed by characterization results.
2. Excluding VFBSMPS,the maximum value is 2000 V.
Table 51. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latchup class Conforming to JESD78,
TJ = TJMax II level A
Electrical characteristics STM32H730xB
144/259 DS13315 Rev 1
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 52: I/O static characteristics are
derived from tests performed under the conditions summarized in Table 12: General
operating conditions. All I/Os are CMOS and TTL compliant (except for BOOT0).
Note: For information on GPIO configuration, refer to application note AN4899 “STM32 GPIO
configuration for hardware settings and low-power consumption” available from the ST
website www.st.com.
Table 52. I/O static characteristics
Symbol Parameter Condition Min Typ Max Unit
VIL
I/O input low level voltage
except BOOT0
1.62 V<VDDIOx<3.6 V
--0.3V
DD(1)
V
I/O input low level voltage
except BOOT0 --
0.4VDD0.1
(2)
BOOT0 I/O input low level
voltage --
0.19VDD+0.1
(2)
VIH
I/O input high level voltage
except BOOT0
1.62 V<VDDIOx<3.6 V
0.7VDD(1) --
V
I/O input high level voltage
except BOOT0
0.47VDD+
0.25(2) --
BOOT0 I/O input high level
voltage
0.17VDD+
0.6(2) --
VHYS(2)
TT_xx, FT_xxx and NRST I/O
input hysteresis 1.62 V< VDDIOx <3.6 V
-250 -
mV
BOOT0 I/O input hysteresis - 200 -
Ileak(3)
FT_xx Input leakage current(2)
0< VIN Max(VDDXXX)(8) - - +/-250
nA
Max(VDDXXX) < VIN 5.5 V
(4)(5)(8) - - 1500
FT_u IO
0< VIN Max(VDDXXX)(8) - - +/- 350
Max(VDDXXX) < VIN 5.5 V
(4)(5)(8) - - 5000(6)
TT_xx Input leakage current 0< VIN Max(VDDXXX) (8) - - +/-250
VPP (BOOT0 alternate
function)
0< VIN VDDIOX --15
VDDIOX < VIN 9 V 35
RPU
Weak pull-up equivalent
resistor(7) VIN=VSS 30 40 50
k
RPD
Weak pull-down equivalent
resistor(7) VIN=VDD(8) 30 40 50
CIO I/O pin capacitance - - 5 - pF
1. Compliant with CMOS requirements.
2. Guaranteed by design.
DS13315 Rev 1 145/259
STM32H730xB Electrical characteristics
231
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 25.
Figure 25. VIL/VIH for all I/Os except BOOT0
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 10).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 10).
3. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following
formula: ITotal_Ileak_max = 10 A + [number of I/Os where VIN is applied on the pad] Ilkg(Max).
4. All FT_xx IO except FT_lu, FT_u and PC3.
5. VIN must be less than Max(VDDXXX) + 3.6 V.
6. To sustain a voltage higher than MIN(VDD, VDDA, VDD33USB) +0.3 V, the internal pull-up and pull-down resistors must be
disabled.
7. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
8. Max(VDDXXX) is the maximum value of all the I/O supplies.
MSv46121V3
0
0.5
1
1.5
2
2.5
3
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
Voltage
TLL requirement: VIHmin = 2 V
TLL requirement: VILmin = 0.8 V
CMOS requirement: V
IHmin
=0.7V
DD
CMOS requirement: V
ILmax
=0.3V
DD
Based on simulation V
IHmin
=0.47V
DD
+0.25
Based on simulation V
ILmax
=0.4V
DD
-0.1
Electrical characteristics STM32H730xB
146/259 DS13315 Rev 1
Output voltage levels
Unless otherwise specified, the parameters given in Table 53: Output voltage characteristics
for all I/Os except PC13, PC14, PC15 and PI8 and Table 54: Output voltage characteristics
for PC13, PC14, PC15 and PI8 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 12: General operating
conditions. All I/Os are CMOS and TTL compliant.
Table 53. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8(1)
Symbol Parameter Conditions(3) Min Max Unit
VOL Output low level voltage
CMOS port(2)
IIO = 8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH Output high level voltage
CMOS port(2)
IIO = 8 mA
2.7 V VDD 3.6 V
VDD0.4 -
VOL(3) Output low level voltage
TTL port(2)
IIO = 8 mA
2.7 V VDD 3.6 V
-0.4
VOH(3) Output high level voltage
TTL port(2)
IIO = 8 mA
2.7 V VDD 3.6 V
2.4 -
VOL(3) Output low level voltage IIO = 20 mA
2.7 V VDD 3.6 V -1.3
VOH(3) Output high level voltage IIO = 20 mA
2.7 V VDD 3.6 V VDD1.3 -
VOL(3) Output low level voltage IIO = 4 mA
1.62 V VDD 3.6 V -0.4
VOH (3) Output high level voltage IIO = 4 mA
1.62 VVDD<3.6 V VDD-0.4 -
VOLFM+(3) Output low level voltage for an FTf
I/O pin in FM+ mode
IIO = 20 mA
2.3 V VDD3.6 V -0.4
IIO = 10 mA
1.62 V VDD 3.6 V -0.4
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 9:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
DS13315 Rev 1 147/259
STM32H730xB Electrical characteristics
231
Table 54. Output voltage characteristics for PC13, PC14, PC15 and PI8(1)
Symbol Parameter Conditions(3) Min Max Unit
VOL Output low level voltage
CMOS port(2)
IIO = 3 mA
2.7 V VDD 3.6 V
-0.4
V
VOH Output high level voltage
CMOS port(2)
IIO = 3 mA
2.7 V VDD 3.6 V
VDD0.4 -
VOL(3) Output low level voltage
TTL port(2)
IIO = 3 mA
2.7 V VDD 3.6 V
-0.4
VOH(2) Output high level voltage
TTL port(2)
IIO = 3 mA
2.7 V VDD 3.6 V
2.4 -
VOL(2) Output low level voltage IIO = 1.5 mA
1.62 V VDD 3.6 V -0.4
VOH(2) Output high level voltage IIO = 1.5 mA
1.62 V VDD 3.6 V VDD0.4 -
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 9:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
Electrical characteristics STM32H730xB
148/259 DS13315 Rev 1
Output buffer timing characteristics (HSLV option disabled)
The HSLV bit of SYSCFG_CCCSR register can be used to optimize the I/O speed when the
product voltage is below 2.7 V.
Table 55. Output timing characteristics (HSLV OFF)(1)
Speed Symbol Parameter conditions Min Max Unit
00
Fmax(2) Maximum frequency
C=50 pF, 2.7 V VDD3.6 V - 12
MHz
C=50 pF, 1.62 VVDD2.7 V - 3
C=30 pF, 2.7 VVDD3.6 V - 12
C=30 pF, 1.62 VVDD2.7 V - 3
C=10 pF, 2.7 VVDD3.6 V - 16
C=10 pF, 1.62 VVDD2.7 V - 4
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 V VDD3.6 V - 16.6
ns
C=50 pF, 1.62 VVDD2.7 V - 33.3
C=30 pF, 2.7 VVDD3.6 V - 13.3
C=30 pF, 1.62 VVDD2.7 V - 25
C=10 pF, 2.7 VVDD3.6 V - 10
C=10 pF, 1.62 VVDD2.7 V - 20
01
Fmax(2) Maximum frequency
C=50 pF, 2.7 V VDD3.6 V - 60
MHz
C=50 pF, 1.62 VVDD2.7 V - 15
C=30 pF, 2.7 VVDD3.6 V - 80
C=30 pF, 1.62 VVDD2.7 V - 15
C=10 pF, 2.7 VVDD3.6 V - 110
C=10 pF, 1.62 VVDD2.7 V - 20
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 V VDD3.6 V - 5.2
ns
C=50 pF, 1.62 VVDD2.7 V - 10
C=30 pF, 2.7 VVDD3.6 V - 4.2
C=30 pF, 1.62 VVDD2.7 V - 7.5
C=10 pF, 2.7 VVDD3.6 V - 2.8
C=10 pF, 1.62 VVDD2.7 V - 5.2
DS13315 Rev 1 149/259
STM32H730xB Electrical characteristics
231
10
Fmax(2) Maximum frequency
C=50 pF, 2.7 VVDD3.6 V(4) -85
MHz
C=50 pF, 1.62 VVDD2.7 V(4) -35
C=30 pF, 2.7 VVDD3.6 V(4) -110
C=30 pF, 1.62 VVDD2.7 V(4) -40
C=10 pF, 2.7 VVDD3.6 V(4) - 166
C=10 pF, 1.62 VVDD2.7 V(4) - 100
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 VVDD3.6 V(4) -3.8
ns
C=50 pF, 1.62 VVDD2.7 V(4) -6.9
C=30 pF, 2.7 VVDD3.6 V(4) -2.8
C=30 pF, 1.62 VVDD2.7 V(4) -5.2
C=10 pF, 2.7 VVDD3.6 V(4) -1.8
C=10 pF, 1.62 VVDD2.7 Vv-3.3
11
Fmax(2) Maximum frequency
C=50 pF, 2.7 VVDD3.6 Vv- 100
MHz
C=50 pF, 1.62 VVDD2.7 V(4) -50
C=30 pF, 2.7 VVDD3.6 Vv- 133
C=30 pF, 1.62 VVDD2.7 V(4) -66
C=10 pF, 2.7 VVDD3.6 V(4) - 220
C=10 pF, 1.62 VVDD2.7 V(4) -85
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 VVDD3.6 V(4) -3.3
ns
C=50 pF, 1.62 VVDD2.7 V(4) -6.6
C=30 pF, 2.7 VVDD3.6 V(4) -2.4
C=30 pF, 1.62 VVDD2.7 V(4) -4.5
C=10 pF, 2.7 VVDD3.6 V(4) -1.5
C=10 pF, 1.62 VVDD2.7 V(4) -2.7
1. Guaranteed by design.
2. The maximum frequency is defined with the following conditions:
(tr+tf) 2/3 T
Skew 1/20 T
45%<Duty cycle<55%
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
4. Compensation system enabled.
Table 55. Output timing characteristics (HSLV OFF)(1) (continued)
Speed Symbol Parameter conditions Min Max Unit
Electrical characteristics STM32H730xB
150/259 DS13315 Rev 1
Output buffer timing characteristics (HSLV option enabled)
Table 56. Output timing characteristics (HSLV ON)(1)
Speed Symbol Parameter conditions Min Max Unit
00
Fmax(2) Maximum frequency
C=50 pF, 1.62 VVDD2.7 V - 10
MHzC=30 pF, 1.62 VVDD2.7 V - 10
C=10 pF, 1.62 VVDD2.7 V - 10
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 1.62 VVDD2.7 V - 11
nsC=30 pF, 1.62 VVDD2.7 V - 9
C=10 pF, 1.62 VVDD2.7 V - 6.6
01
Fmax(2) Maximum frequency
C=50 pF, 1.62 VVDD2.7 V - 50
MHzC=30 pF, 1.62 VVDD2.7 V - 58
C=10 pF, 1.62 VVDD2.7 V - 66
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 1.62 VVDD2.7 V - 6.6
nsC=30 pF, 1.62 VVDD2.7 V - 4.8
C=10 pF, 1.62 VVDD2.7 V - 3
10
Fmax(2) Maximum frequency
C=50 pF, 1.62 VVDD2.7 V(4) -55
MHzC=30 pF, 1.62 VVDD2.7 V(4) -80
C=10 pF, 1.62 VVDD2.7 V(4) - 133
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=30 pF, 1.62 VVDD2.7 V(4) -5.8
nsC=30 pF, 1.62 VVDD2.7 V(4) -4
C=30 pF, 1.62 VVDD2.7 V(4) -2.4
11
Fmax(2) Maximum frequency
C=30 pF, 1.62 VVDD2.7 V(4) -60
MHzC=30 pF, 1.62 VVDD2.7 V(4) -90
C=30 pF, 1.62 VVDD2.7 V(4) - 175
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=30 pF, 1.62 VVDD2.7 V(4) -5.3
nsC=30 pF, 1.62 VVDD2.7 V(4) -3.6
C=30 pF, 1.62 VVDD2.7 V(4) -1.9
1. Guaranteed by design.
2. The maximum frequency is defined with the following conditions:
(tr+tf) 2/3 T
Skew 1/20 T
45%<Duty cycle<55%
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
4. Compensation system enabled.
DS13315 Rev 1 151/259
STM32H730xB Electrical characteristics
231
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 52: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 12: General operating conditions.
Figure 26. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 52. Otherwise the reset is not taken into account by the device.
6.3.18 FMC characteristics
Unless otherwise specified, the parameters given in Table 58 to Table 71 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 12: General operating conditions,
with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS0.
Table 57. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU(2) Weak pull-up equivalent
resistor(1)
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50
VF(NRST)(2)
2. Guaranteed by design.
NRST Input filtered pulse 1.71 V < VDD < 3.6 V - - 50
ns
VNF(NRST)(2) NRST Input not filtered pulse
1.71 V < VDD < 3.6 V 350 - -
1.62 V < VDD < 3.6 V 1000 - -
ai14132d
STM32
RPU
NRST
(2)
VDD
Filter
Internal Reset
0.1 μF
External
reset circuit (1)
Electrical characteristics STM32H730xB
152/259 DS13315 Rev 1
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics.
Asynchronous waveforms and timings
Figure 27 through Figure 29 represent asynchronous waveforms and Table 58 through
Table 65 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
Capacitive load CL = 30 pF
In all timing tables, the TKERCK is the fmc_ker_ck clock period.
Figure 27. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Data
FMC_NE
FMC_NBL[1:0]
FMC_D[15:0]
t
v(BL_NE)
th(Data_NE)
FMC_NOE
Address
FMC_A[25:0]
t
v(A_NE)
FMC_NWE
tsu(Data_NE)
tw(NE)
MS32753V1
w(NOE)
ttv(NOE_NE) th(NE_NOE)
th(Data_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE)
FMC_NADV (1)
tv(NADV_NE)
tw(NADV)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
DS13315 Rev 1 153/259
STM32H730xB Electrical characteristics
231
Table 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3Tfmc_ker_ck–1 3Tfmc_ker_ck+1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 0.5
tw(NOE) FMC_NOE low time 2Tfmc_ker_ck –1 2Tfmc_ker_ck+1
th(NE_NOE)
FMC_NOE high to FMC_NE high
hold time Tfmc_ker_ck -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
th(A_NOE)
Address hold time after
FMC_NOE high 2Tfmc_ker_ck -
tsu(Data_NE)
Data to FMC_NEx high setup
time Tfmc_ker_ck+14 -
tsu(Data_NOE)
Data to FMC_NOEx high setup
time 13 -
th(Data_NOE)
Data hold time after FMC_NOE
high 0-
th(Data_NE)
Data hold time after FMC_NEx
high 0-
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 4
tw(NADV) FMC_NADV low time - Tfmc_ker_ck+1
Table 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT
timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 fmc_ker_ck cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 7Tfmc_ker_ck–1 7Tfmc_ker_ck+1
ns
tw(NOE) FMC_NOE low time 5Tfmc_ker_ck–1 5Tfmc_ker_ck +1
tw(NWAIT) FMC_NWAIT low time Tfmc_ker_ck– 0.5 -
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx
high 4Tfmc_ker_ck +9 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 3Tfmc_ker_ck+12 -
Electrical characteristics STM32H730xB
154/259 DS13315 Rev 1
Figure 28. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
NBL
Data
FMC_NEx
FMC_NBL[1:0]
FMC_D[15:0]
t
v(BL_NE)
th(Data_NWE)
FMC_NOE
Address
FMC_A[25:0]
t
v(A_NE)
tw(NWE)
FMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
MS32754V1
FMC_NADV (1)
tv(NADV_NE)
tw(NADV)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
DS13315 Rev 1 155/259
STM32H730xB Electrical characteristics
231
Table 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3Tfmc_ker_ck –1 3Tfmc_ker_ck + 1
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low Tfmc_ker_ck–1 Tfmc_ker_ck
tw(NWE) FMC_NWE low time Tfmc_ker_ck –0.5 Tfmc_ker_ck+0.5
th(NE_NWE)
FMC_NWE high to FMC_NE high
hold time Tfmc_ker_ck -
tv(A_NE) FMC_NEx low to FMC_A valid - 1
th(A_NWE)
Address hold time after FMC_NWE
high Tfmc_ker_ck –0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
th(BL_NWE)
FMC_BL hold time after FMC_NWE
high Tfmc_ker_ck –0.5 -
tv(Data_NE) Data to FMC_NEx low to Data valid - Tfmc_ker_ck+ 2
th(Data_NWE) Data hold time after FMC_NWE high Tfmc_ker_ck -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 5
tw(NADV) FMC_NADV low time - Tfmc_ker_ck+ 1
Table 61. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT
timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 fmc_ker_ck cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8Tfmc_ker_ck –1 8Tfmc_ker_ck+1
ns
tw(NWE) FMC_NWE low time 6Tfmc_ker_ck –1 6Tfmc_ker_ck+1
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx
high 5Tfmc_ker_ck+13 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 4Tfmc_ker_ck+12 -
Electrical characteristics STM32H730xB
156/259 DS13315 Rev 1
Figure 29. Asynchronous multiplexed PSRAM/NOR read waveforms
NBL
Data
FMC_ NBL[1:0]
FMC_ AD[15:0]
t
v(BL_NE)
th(Data_NE)
Address
FMC_ A[25:16]
t
v(A_NE)
FMC_NWE
tv(A_NE)
MS32755V1
Address
FMC_NADV
tv(NADV_NE)
tw(NADV)
tsu(Data_NE)
t
h(AD_NADV)
FMC_ NE
FMC_NOE
tw(NE)
tw(NOE)
tv(NOE_NE) th(NE_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE) th(Data_NOE)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
DS13315 Rev 1 157/259
STM32H730xB Electrical characteristics
231
Table 62. Asynchronous multiplexed PSRAM/NOR read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4Tfmc_ker_ck –1 4Tfmc_ker_ck +1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2Tfmc_ker_ck
2Tfmc_ker_ck
+0.5
ttw(NOE) FMC_NOE low time Tfmc_ker_ck –1 Tfmc_ker_ck+1
th(NE_NOE)
FMC_NOE high to FMC_NE high hold
time Tfmc_ker_ck -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 4.0
tw(NADV) FMC_NADV low time Tfmc_ker_ck –0.5 Tfmc_ker_ck +1
th(AD_NADV)
FMC_AD(address) valid hold time
after FMC_NADV high) Tfmc_ker_ckk –4 -
th(A_NOE)
Address hold time after FMC_NOE
high Tfmc_ker_ck –0.5 -
tsu(Data_NE) Data to FMC_NEx high setup time Tfmc_ker_ck +14 -
tsu(Data_NOE) Data to FMC_NOE high setup time 13 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
Table 63. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8Tfmc_ker_ck –1 8Tfmc_ker_ck +1
ns
tw(NOE) FMC_NWE low time 5Tfmc_ker_ck –1 5Tfmc_ker_ck +1
tsu(NWAIT_NE)
FMC_NWAIT valid before
FMC_NEx high 4Tfmc_ker_ck +9 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 3Tfmc_ker_ck +12 -
Electrical characteristics STM32H730xB
158/259 DS13315 Rev 1
Table 64. Asynchronous multiplexed PSRAM/NOR write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4Tfmc_ker_ck –1 4Tfmc_ker_ck
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low Tfmc_ker_ck –1 Tfmc_ker_ck +0.5
tw(NWE) FMC_NWE low time 2Tfmc_ker_ck –0.5 2Tfmc_ker_ck +0.5
th(NE_NWE)
FMC_NWE high to FMC_NE high hold
time Tfmc_ker_ck –0.5 -
tv(A_NE) FMC_NEx low to FMC_A valid - 1
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 5.0
tw(NADV) FMC_NADV low time Tfmc_ker_ck –0.5 Tfmc_ker_ck + 1
th(AD_NADV)
FMC_AD(adress) valid hold time after
FMC_NADV high) Tfmc_ker_ck –4.5 -
th(A_NWE)
Address hold time after FMC_NWE
high Tfmc_ker_ck – 0.5 -
th(BL_NWE)
FMC_BL hold time after FMC_NWE
high Tfmc_ker_ck – 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
tv(Data_NADV) FMC_NADV high to Data valid - Tfmc_ker_ck +2
th(Data_NWE) Data hold time after FMC_NWE high Tfmc_ker_ck -
Table 65. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 fmc_ker_ck cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 9Tfmc_ker_ck –1 9Tfmc_ker_ck
ns
tw(NWE) FMC_NWE low time 7Tfmc_ker_ck –0.5 7Tfmc_ker_ck +0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx
high 5Tfmc_ker_ck +9 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 4Tfmc_ker_ck +12 -
DS13315 Rev 1 159/259
STM32H730xB Electrical characteristics
231
Synchronous waveforms and timings
Figure 30 through Figure 33 represent synchronous waveforms and Table 66 through
Table 69 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable
MemoryType = FMC_MemoryType_CRAM
WriteBurst = FMC_WriteBurst_Enable
CLKDivision = 1
DataLatency = 1 for NOR Flash, DataLatency = 0 for PSRAM, CL = 30 pF
In all the timing tables, the Tfmc_ker_ck is the fmc_ker_ck clock period, with the following
FMC_CLK maximum values:
For 2.7 V<VDD<3.6 V: maximum FMC_CLK = 137 MHz at CL = 20 pF
For 1.8 V<VDD<1.9 V: maximum FMC_CLK = 100 MHz at CL = 20 pF
For 1.62 V<VDD<1.8 V: maximumFMC_CLK = 88 MHz at CL = 15 pF
Figure 30. Synchronous multiplexed NOR/PSRAM read timings
FMC_CLK
FMC_NEx
FMC_NADV
FMC_A[25:16]
FMC_NOE
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKL-NOEL) td(CLKH-NOEH)
td(CLKL-ADV)
td(CLKL-ADIV)
tsu(ADV-CLKH)
th(CLKH-ADV)
tsu(ADV-CLKH) th(CLKH-ADV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32757V1
Electrical characteristics STM32H730xB
160/259 DS13315 Rev 1
Table 66. Synchronous multiplexed NOR/PSRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 3
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) Tfmc_ker_ck+1.5 -
td(CLKL-NADVL)
FMC_CLK low to
FMC_NADV low
1.62 V <VDD < 3.6 V
-
5.5
2.7 V <VDD < 3.6 V 2
td(CLKL-NADVH)
FMC_CLK low to
FMC_NADV high
1.62 V <VDD < 3.6 V
1
-
2.7 V <VDD < 3.6 V -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 3
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) Tfmc_ker_ck -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 2.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high Tfmc_ker_ck +1 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high 3 -
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 0 -
tsu(NWAIT-
CLKH)
FMC_NWAIT valid before FMC_CLK high 3 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2.5 -
DS13315 Rev 1 161/259
STM32H730xB Electrical characteristics
231
Figure 31. Synchronous multiplexed PSRAM write timings
FMC_CLK
FMC_NEx
FMC_NADV
FMC_A[25:16]
FMC_NWE
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKH-NWEH)
td(CLKL-NWEL)
td(CLKH-NBLH)
td(CLKL-ADV)
td(CLKL-ADIV) td(CLKL-Data)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32758V1
td(CLKL-Data)
FMC_NBL
Electrical characteristics STM32H730xB
162/259 DS13315 Rev 1
Table 67. Synchronous multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period, VDD = 2.7 to 3.6 V 2Tfmc_ker_ck –0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x =0..2) - 3
td(CLKH-NExH)
FMC_CLK high to FMC_NEx high
(x = 0…2) Tfmc_ker_ck +1.5 -
td(CLKL-NADVL)
FMC_CLK low to
FMC_NADV low
1.62 V <VDD < 3.6 V
-
5.5
2.7 V <VDD < 3.6 V 2.0
td(CLKL-NADVH)
FMC_CLK low to
FMC_NADV high
1.62 V <VDD < 3.6 V
1
-
2.7 V <VDD < 3.6 V -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x =16…25) - 3
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x =16…25) Tfmc_ker_ck -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 2.5
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high Tfmc_ker_ck +1 -
td(CLKL-ADV) FMC_CLK low to to FMC_AD[15:0] valid - 2.5
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high Tfmc_ker_ck +0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 3 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2.5 -
DS13315 Rev 1 163/259
STM32H730xB Electrical characteristics
231
Figure 32. Synchronous non-multiplexed NOR/PSRAM read timings
FMC_CLK
FMC_NEx
FMC_A[25:0]
FMC_NOE
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-AV) td(CLKH-AIV)
td(CLKL-NOEL) td(CLKH-NOEH)
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32759V1
FMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
Electrical characteristics STM32H730xB
164/259 DS13315 Rev 1
Table 68. Synchronous non-multiplexed NOR/PSRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –0.5 -
ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 3
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) Tfmc_ker_ck+1.5 -
td(CLKL-NADVL)
FMC_CLK low to
FMC_NADV low
1.62 V <VDD < 3.6 V
-
5.5
2.7 V <VDD < 3.6 V 2.0
td(CLKL-NADVH)
FMC_CLK low to
FMC_NADV high
1.62 V <VDD < 3.6 V
1
-
2.7 V <VDD < 3.6 V -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 3
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) Tfmc_ker_ck -
td(CLKL-NOEL) FMC_CLK ow to FMC_NOE low - 2.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high Tfmc_ker_ck+1 -
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 3 -
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 0 -
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 3 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2.5 -
DS13315 Rev 1 165/259
STM32H730xB Electrical characteristics
231
Figure 33. Synchronous non-multiplexed PSRAM write timings
MS32760V1
FMC_CLK
FMC_NEx
FMC_A[25:0]
FMC_NWE
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-AV) td(CLKH-AIV)
td(CLKH-NWEH)
td(CLKL-NWEL)
td(CLKL-Data)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
FMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
td(CLKL-Data)
FMC_NBL
td(CLKH-NBLH)
Electrical characteristics STM32H730xB
166/259 DS13315 Rev 1
Table 69. Synchronous non-multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
t(CLK) FMC_CLK period 2Tfmc_ker_ck –0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 3
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) Tfmc_ker_ck+1.5 -
td(CLKL-NADVL)
FMC_CLK low to
FMC_NADV low
1.62 V <VDD < 3.6 V
-
5.5
2.7 V <VDD < 3.6 V 2
td(CLKL-NADVH)
FMC_CLK low to
FMC_NADV high
1.62 V <VDD < 3.6 V
1
-
2.7 V <VDD < 3.6 V -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 3
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) Tfmc_ker_ck -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 2.5
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high Tfmc_ker_ck+1 -
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 3.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high Tfmc_ker_ck+0.5 -
tsu(NWAIT-
CLKH)
FMC_NWAIT valid before FMC_CLK high 3 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2.5 -
DS13315 Rev 1 167/259
STM32H730xB Electrical characteristics
231
NAND controller waveforms and timings
Figure 34 through Figure 37 represent synchronous waveforms, and Table 70 and Table 71
provide the corresponding timings. The results shown in this table are obtained with the
following FMC configuration and a capacitive load (CL) of 30 pF:
COM.FMC_SetupTime = 0x01
COM.FMC_WaitSetupTime = 0x03
COM.FMC_HoldSetupTime = 0x02
COM.FMC_HiZSetupTime = 0x01
ATT.FMC_SetupTime = 0x01
ATT.FMC_WaitSetupTime = 0x03
ATT.FMC_HoldSetupTime = 0x02
ATT.FMC_HiZSetupTime = 0x01
Bank = FMC_Bank_NAND
MemoryDataWidth = FMC_MemoryDataWidth_16b
ECC = FMC_ECC_Enable
ECCPageSize = FMC_ECCPageSize_512Bytes
TCLRSetupTime = 0
TARSetupTime = 0
In all timing tables, the Tfmc_ker_ck is the fmc_ker_ck clock period.
Figure 34. NAND controller waveforms for read access
FMC_NWE
FMC_NOE (NRE)
FMC_D[15:0]
tsu(D-NOE) th(NOE-D)
MS32767V1
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Electrical characteristics STM32H730xB
168/259 DS13315 Rev 1
Figure 35. NAND controller waveforms for write access
Figure 36. NAND controller waveforms for common memory read access
MS32768V1
th(NWE-D)
tv(NWE-D)
FMC_NWE
FMC_NOE (NRE)
FMC_D[15:0]
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NWE) th(NWE-ALE)
MS32769V1
FMC_NWE
FMC_NOE
FMC_D[15:0]
tw(NOE)
tsu(D-NOE) th(NOE-D)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
DS13315 Rev 1 169/259
STM32H730xB Electrical characteristics
231
Figure 37. NAND controller waveforms for common memory write access
Table 70. Switching characteristics for NAND Flash read cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(N0E) FMC_NOE low width 4Tfmc_ker_ck – 0.5 4Tfmc_ker_ck+0.5
ns
tsu(D-NOE)
FMC_D[15-0] valid data before
FMC_NOE high 11 -
th(NOE-D)
FMC_D[15-0] valid data after
FMC_NOE high 0-
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3Tfmc_ker_ck +0.5
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 4Tfmc_ker_ck –1 -
Table 71. Switching characteristics for NAND Flash write cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NWE) FMC_NWE low width 4Tfmc_ker_ck – 0.5 4Tfmc_ker_ck +0.5
ns
tv(NWE-D)
FMC_NWE low to FMC_D[15-0]
valid 0-
th(NWE-D)
FMC_NWE high to FMC_D[15-0]
invalid 2Tfmc_ker_ck +1.5 -
td(D-NWE)
FMC_D[15-0] valid before
FMC_NWE high 5Tfmc_ker_ck – 5 -
td(ALE-NWE)
FMC_ALE valid before FMC_NWE
low -3T
fmc_ker_ck +0.5
th(NWE-ALE)
FMC_NWE high to FMC_ALE
invalid 2Tfmc_ker_ck – 0.5 -
MS32770V1
tw(NWE)
th(NWE-D)
tv(NWE-D)
FMC_NWE
FMC_N
OE
FMC_D[15:0]
td(D-NWE)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Electrical characteristics STM32H730xB
170/259 DS13315 Rev 1
SDRAM waveforms and timings
In all timing tables, the TKERCK is the fmc_ker_ck clock period, with the following
FMC_SDCLK maximum values:
For 2.7 V<VDD<3.6 V: maximum FMC_CLK = 95 MHz at 20 pF
For 1.8 V<VDD<1.9 V: maximum FMC_CLK = 90 MHz at 20 pF
For 1.62 V<DD<1.8 V: maximum FMC_CLK = 85 MHz at 15 pF
Figure 38. SDRAM read access waveforms (CL = 1)
MS32751V2
Row n Col1
FMC_SDCLK
FMC_A[12:0]
FMC_SDNRAS
FMC_SDNCAS
FMC_SDNWE
FMC_D[31:0]
FMC_SDNE[1:0]
td(SDCLKL_AddR) td(SDCLKL_AddC)
th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE)
tsu(SDCLKH_Data) th(SDCLKH_Data)
Col2 Coli Coln
Data2 Datai DatanData1
th(SDCLKL_SNDE)
td(SDCLKL_NRAS)
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
th(SDCLKL_NRAS)
DS13315 Rev 1 171/259
STM32H730xB Electrical characteristics
231
Table 72. SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck
0.5
2Tfmc_ker_ck
+0.5
ns
tsu(SDCLKH _Data) Data input setup time 3 -
th(SDCLKH_Data) Data input hold time 1.5 -
td(SDCLKL_Add) Address valid time - 2.0
td(SDCLKL- SDNE) Chip select valid time - 1.5(2)
2. Using PC2_C I/O adds 4.5 ns to this timing.
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 2.0
th(SDCLKL_SDNCAS) SDNCAS hold time 0.5 -
Table 73. LPSDR SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tW(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck
0.5 2Tfmc_ker_ck+0.5
ns
tsu(SDCLKH_Data) Data input setup time 3 -
th(SDCLKH_Data) Data input hold time 2.5 -
td(SDCLKL_Add) Address valid time - 2
td(SDCLKL_SDNE) Chip select valid time - 1.5(2)(3)
2. Using PC2 I/O adds 4 ns to this timing.
3. Using PC2_C I/O adds 16.5 ns to this timing.
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 2
th(SDCLKL_SDNCAS) SDNCAS hold time 0.5 -
Electrical characteristics STM32H730xB
172/259 DS13315 Rev 1
Figure 39. SDRAM write access waveforms
Table 74. SDRAM Write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 0.5 2Tfmc_ker_ck+0.5
ns
td(SDCLKL _Data) Data output valid time - 2
th(SDCLKL _Data) Data output hold time 0.5 -
td(SDCLKL_Add) Address valid time - 2
td(SDCLKL_SDNWE) SDNWE valid time - 2
th(SDCLKL_SDNWE) SDNWE hold time 0 -
td(SDCLKL_ SDNE) Chip select valid time - 1.5(2)
2. Using PC2_C I/O adds 4.5 ns to this timing.
th(SDCLKL-_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 2
td(SDCLKL_SDNCAS) SDNCAS hold time 0.5 -
MS32752V2
Row n Col1
FMC_SDCLK
FMC_A[12:0]
FMC_SDNRAS
FMC_SDNCAS
FMC_SDNWE
FMC_D[31:0]
FMC_SDNE[1:0]
td(SDCLKL_AddR) td(SDCLKL_AddC)
th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE)
td(SDCLKL_Data)
th(SDCLKL_Data)
Col2 Coli Coln
Data2 Datai DatanData1
th(SDCLKL_SNDE)
td(SDCLKL_NRAS)
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
th(SDCLKL_NRAS)
td(SDCLKL_NWE) th(SDCLKL_NWE)
FMC_NBL[3:0]
td(SDCLKL_NBL)
DS13315 Rev 1 173/259
STM32H730xB Electrical characteristics
231
6.3.19 Octo-SPI interface characteristics
Unless otherwise specified, the parameters given in Table 76 and Table 78 for OCTOSPI
are derived from tests performed under the ambient temperature, fHCLK frequency and VDD
supply voltage conditions summarized in Table 12: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.5 V
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 75. LPSDR SDRAM Write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 0.5 2Tfmc_ker_ck+0.5
ns
td(SDCLKL _Data) Data output valid time - 2
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 2.5
td(SDCLKL-SDNWE) SDNWE valid time - 2
th(SDCLKL-SDNWE) SDNWE hold time 0 -
td(SDCLKL- SDNE) Chip select valid time - 1.5(2)(3)
2. Using PC2 I/O adds 4 ns to this timing.
3. Using PC2_C I/O adds 16.5 ns to this timing.
th(SDCLKL- SDNE) Chip select hold time 0 -
td(SDCLKL-SDNRAS) SDNRAS valid time - 1
th(SDCLKL-SDNRAS) SDNRAS hold time 0 -
td(SDCLKL-SDNCAS) SDNCAS valid time - 2
td(SDCLKL-SDNCAS) SDNCAS hold time 0.5 -
Table 76. OCTOSPI characteristics in SDR mode(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
F(CLK) OCTOSPI clock frequency
1.71 V < VDD < 3.6 V,
VOS0,
CLOAD = 15 pF
--92
MHz
1.71 V < VDD < 3.6 V,
VOS0, CLOAD =20 pF --90
2.7 V < VDD < 3.6 V,
VOS0,
CLOAD = 20 pF
- - 140
Electrical characteristics STM32H730xB
174/259 DS13315 Rev 1
Figure 40. OCTOSPI SDR read/write timing diagram
tw(CKH) OCTOSPI clock high and low
time, even division
PRESCALER[7:0] = n
= 0,1,3,5
t(CK)/2 - t(CK)/2+1
ns
tw(CKL) t(CK)/2–1 - t(CK)/2
tw(CKH) OCTOSPI clock high and low
time, odd division
PRESCALER[7:0] = n
= 2,4,6,8
(n/2)*t(CK)/
(n+1) -(n/2)*t(CK)/
(n+1)+1
tw(CKL)
(n/2+1)*t(CK)/
(n+1)–1 -(n/2+1)*t(CK)
/(n+1)
ts(IN)(3) Data input setup time - 3.0 - -
th(IN)(3) Data input hold time - 1.5 - -
tv(OUT) Data output valid time - - 0.5 1(4)
th(OUT) Data output hold time - 0 - -
1. All values apply to Octal and Quad-SPI mode.
2. Guaranteed by characterization results.
3. Delay block bypassed.
4. Using PC2 or PC3 I/O in the data bus adds 4 ns to this timing value.
Table 76. OCTOSPI characteristics in SDR mode(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
MSv36878V1
Data output D0 D1 D2
Clock
Data input D0 D1 D2
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
ts(IN) th(IN)
tv(OUT) th(OUT)
DS13315 Rev 1 175/259
STM32H730xB Electrical characteristics
231
Figure 41. OCTOSPI DTR mode timing diagram
Table 77. OCTOSPI characteristics in DTR mode (no DQS)(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
FCK(3) OCTOSPI clock frequency
1.71 V < VDD < 3.6 V,
VOS0, CLOAD = 15 pF --90
(4)
MHz
1.71 V < VDD < 3.6 V,
VOS0, CLOAD = 20 pF --87
(4)
2.7 V < VDD < 3.6 V,
VOS0, CLOAD = 20 pF --110
tw(CKH) OCTOSPI clock high and
low time, even division
PRESCALER[7:0] = n
= 0,1,3,5
t(CK)/2 - t(CK)/2+1
ns
tw(CKL) t(CK)/2–1 - t(CK)/2
tw(CKH) OCTOSPI clock high and
low time, odd division
PRESCALER[7:0] = n
= 2,4,6,8
(n/2)*t(CK)/
(n+1) -(n/2)*t(CK)/
(n+1)+1
tw(CKL)
(n/2+1)*t(CK)/(
n+1) – 1 -(n/2+1)*
t(CK)/(n+1)
tsr(IN)
tsf(IN)(5) Data input setup time - 3.0 - -
thr(IN)
thf(IN)(5) Data input hold time - 1.50 - -
tvr(OUT)
tvf(OUT)
Data output valid time
DHQC = 0 - 6 7(6)
DHQC = 1,
Prescaler = 1,2 ... -tpclk/4+
1
tpclk/4+1.25
(6)
thr(OUT)
thf(OUT) Data output hold time
DHQC = 0 4.5 - -
DHQC = 1,
Prescaler = 1,2 ... tpclk/4 - -
1. All values apply to Octal and Quad-SPI mode.
2. Guaranteed by characterization results.
3. DHQC must be set to reach the mentioned frequency.
4. Using PC2 or PC3 I/O in the data bus decreases the frequency to 47 MHz.
5. Delay block bypassed.
6. Using PC2 or PC3 I/O in the data bus adds 4 ns to this timing value.
MSv36879V1
Data output D0 D2 D4
Clock
Data input D0 D2 D4
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
D1 D3 D5
D1 D3 D5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
Electrical characteristics STM32H730xB
176/259 DS13315 Rev 1
Table 78. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus(1)
Symbol Parameter Conditions Min Typ Max Unit
FCK(2)(3) OCTOSPI clock frequency
2,7 V < VDD < 3.6 V,
VOS0, CLOAD = 20 pF - - 100
MHz
1.71 V < VDD < 3.6 V,
VOS0, CLOAD = 20 pF - - 100(4)
tw(CKH) OCTOSPI clock high and
low time, even division
PRESCALER[7:0] = n =
0,1,3,5
t(CK)/2 - t(CK)/2+1
ns
tw(CKL) t(CK)/2–1 - t(CK)/2
tw(CKH) OCTOSPI clock high and
low time, odd division
PRESCALER[7:0] = n =
2,4,6,8
(n/2)*t(CK)/
(n+1) -(n/2)*t(CK)/
(n+1)+1
ns
tw(CKL)
(n/2+1)*t(CK)/(
n+1)–1 -(n/2+1)*t(CK)/
(n+1)
tv(CK) Clock valid time - - - t(CK)+1
th(CK) Clock hold time - t(CK)/2 - -
VODr(CK)
CK,CK crossing level on CK
rising edge VDD = 1.8 V 922 - 1229
mV
VODf(CK)
CK,CK crossing level on CK
falling edge VDD = 1.8 V 1000 - 1277
tw(CS) Chip select high time - 3*t(CK) --
ns
tv(DQ) Data input vallid time - 0 - -
tv(DS) Data strobe input valid time - 0 - -
th(DS) Data strobe input hold time - 0 - -
tv(RWDS)
Data strobe output valid
time - - - 3 x t(CK)
tsr(DQ) Data input setup time
Rising edge 0 - -
tsf(DQ) Falling edge 0 - -
thr(DQ) Data input hold time
Rising edge 1 - -
thf(DQ) Falling edge 1 - -
tvr(OUT) Data output valid time rising
edge
DHQC = 0 - 6 7(5)
DHQC = 1,
Prescaler = 1,2... -tpclk/4+
1
tpclk/4+1.25
(5)
tvf(OUT)
Data output valid time
falling edge
DHQC = 0 - 5.5 6(5)
DHQC = 1,
Prescaler = 1,2... -tpclk/4+
0.5
tpclk/4+0.75
(5)
thr(OUT)
Data output hold time rising
edge
DHQC = 0 4.5 - -
DHQC = 1,
Prescaler = 1,2... tpclk/4 - -
thf(OUT)
Data output hold time falling
edge
DHQC = 0 4.5 - -
DHQC = 1,
Prescaler = 1,2... tpclk/4 - -
1. Guaranteed by characterization results.
DS13315 Rev 1 177/259
STM32H730xB Electrical characteristics
231
Figure 42. OCTOSPI Hyperbus clock timing diagram
Figure 43. OCTOSPI Hyperbus read timing diagram
2. Maximum frequency values are given for a RWDS to DQ skew of maximum +/-1.0 ns.
3. Activating DHQC is mandatory to reach this frequency
4. Using PC2 or PC3 I/O on data bus decreases the frequency to 47 MHz.
5. Using PC2 or PC3 I/O on the data bus adds 4 ns to this timing value.
MSv47732V2
CK
tr(CK) tw(CKH) tw(CKL)
t(CK) tf(CK)
VOD(CK)
MSv47733V2
CS#
t
ACC
= Initial Access
Latency Count
Command-Address
47:40 39:32 31:24 23:16 15:8 7:0 Dn
A
Dn
B
Dn+1
A
Dn+1
B
Host drives DQ[7:0] and Memory drives RWDS
CK
RWDS
DQ[7:0]
Memory drives DQ[7:0] and RWDS
tw(CS)
tv(RWDS)
tv(CK)
tv(DS)
tv(DQ)
th(CK)
th(DS)
tv(OUT) th(OUT) th(DQ)
ts(DQ)
Electrical characteristics STM32H730xB
178/259 DS13315 Rev 1
Figure 44. OCTOSPI Hyperbus write timing diagram
6.3.20 Delay block (DLYB) characteristics
Unless otherwise specified, the parameters given in Table 79 for Delay Block are derived
from tests performed under the ambient temperature, frcc_c_ck frequency and VDD supply
voltage summarized in Table 12: General operating conditions, with the following
configuration:
6.3.21 16-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 80, Table 81 and Table 82 are
derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA
supply voltage conditions summarized in Table 12: General operating conditions.
MSv47734V2
CS#
Access Latency
Latency Count
Command-Address
47:40 39:32 31:24 23:16 15:8 7:0 Dn
A
Dn
B
Dn+1
A
Dn+1
B
Host drives DQ[7:0] and Memory drives RWDS
Host drives DQ[7:0] and RWDS
CK
RWDS
DQ[7:0]
tw(CS)
tv(RWDS)
tv(CK) th(CK)
High = 2x Latency Count
Low = 1x Latency Count
Read Write Recovery
th(OUT)
tv(OUT) th(OUT)
tv(OUT)
th(OUT)
tv(OUT)
Table 79. Delay Block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tinit Initial delay - 900 1300 1900 ps
tUnit Delay - 28 33 41 -
Table 80. 16-bit ADC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply
voltage for ADC
ON
-1.62-3.6
VVREF+
Positive
reference
voltage
VDDA 2 V 1.62 - VDDA
VDDA < 2 V VDDA
VREF-
Negative
reference
voltage
-V
SSA
DS13315 Rev 1 179/259
STM32H730xB Electrical characteristics
231
fADC
ADC clock
frequency 1.62 V VDDA 3.6 V
BOOST = 11 0.12 - 50
MHz
BOOST = 10 0.12 - 25
BOOST = 01 0.12 - 12.5
BOOST = 00 - - 6.25
fs(3)
Sampling rate
for Direct
channels
Resolution = 16 bits,
VDDA >2.5 V TJ = 90 °C
fADC = 36 MHz SMP = 1.5 - - 3.60
MSps
Resolution = 16 bits fADC = 37 MHz SMP = 2.5 - - 3.35
Resolution = 14 bits
TJ = 125 °C
fADC = 50 MHz SMP = 2.5 - - 5.00
Resolution = 12 bits fADC = 50 MHz SMP = 2.5 - - 5.50
Resolution = 10 bits fADC = 50 MHz SMP = 1.5 - - 7.10
Resolution = 8 bits fADC = 50 MHz SMP = 1.5 - - 8.30
Resolution = 14 bits
TJ = 140 °C
fADC = 49 MHz SMP = 1.5 - - 4.90
Resolution = 12 bits fADC = 50 MHz SMP = 1.5 - - 5.50
Resolution = 10 bits fADC = 50 MHz SMP = 1.5 - - 6.70
Resolution = 8 bits fADC = 50 MHz SMP = 1.5 - - 8.30
Sampling rate
for Fast
channels
Resolution = 16 bits,
VDDA >2.5 V TJ = 90 °C
fADC = 32 MHz SMP = 2.5 - - 2.90
Resolution = 16 bits fADC = 31 MHz SMP = 2.5 - - 2.80
Resolution = 14 bits
TJ = 125 °C
fADC = 33 MHz SMP = 2.5 - - 3.30
Resolution = 12 bits fADC = 39 MHz SMP = 2.5 - - 4.30
Resolution = 10 bits fADC = 48 MHz SMP = 2.5 - - 6.00
Resolution = 8 bits fADC = 50 MHz SMP = 2.5 - - 7.10
Resolution = 12 bits
TJ = 140 °C
fADC = 37 MHz SMP = 2.5 - - 4.10
Resolution = 10 bits fADC = 46 MHz SMP = 2.5 - - 5.70
Resolution = 8 bits fADC = 50 MHz SMP = 2.5 - - 7.10
Sampling rate
for Slow
channels,
BOOST = 0,
fADC = 10 MHz
Resolution = 16 bits TJ = 90 °C
fADC = 10 MHz SMP = 1.5
--
1.00
resolution = 14 bits
TJ = 125 °C
--
resolution = 12 bits - -
resolution = 10 bits - -
resolution = 8 bits - -
resolution = 12 bits
TJ = 140 °C
--
resolution = 10 bits - -
resolution = 8 bits - -
tTRIG
External trigger
period Resolution = 16 bits - - 10 1/
fADC
VAIN(4) Conversion
voltage range -0-V
REF+ V
VCMIV
Common mode
input voltage -VREF/2
10%
VREF/
2
VREF/2
+ 10% V
Table 80. 16-bit ADC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H730xB
180/259 DS13315 Rev 1
RAIN(5) External input
impedance
Resolution = 16 bits, TJ = 125 °C - - - - 170
Resolution = 14 bits, TJ = 125 °C - - - - 435
Resolution = 12 bits, TJ =125 °C - - - - 1,150
Resolution = 10 bits, TJ = 125 °C - - - - 5,650
Resolution = 8 bits, TJ = 125 °C - - - - 26,500
CADC
Internal sample
and hold
capacitor
--4-pF
tADCVREG
_STUP
ADC LDO
startup time --510us
tSTAB
ADC Power-up
time LDO already started 1 - -
conver
sion
cycle
tCAL
Offset and
linearity
calibration time
- 16,5010 1/fADC
tOFF_
CAL
Offset calibration
time - 1,280 1/fADC
tLATR
Trigger
conversion
latency regular
and injected
channels without
conversion abort
CKMODE = 00 1.5 2 2.5
1/fADC
CKMODE = 01 - - 2.5
CKMODE = 10 - - 2.5
CKMODE = 11 - - 2.25
tLATRINJ
Trigger
conversion
latency regular
injected
channels
aborting a
regular
conversion
CKMODE = 00 2.5 3 3.5
1/fADC
CKMODE = 01 - - 3.5
CKMODE = 10 - - 3.5
CKMODE = 11 - - 3.25
tSSampling time - 1.5 - 810.5 1/fADC
tCONV
Total conversion
time (including
sampling time)
Resolution = N bits ts + 0.5
+ N/2 --1/f
ADC
Table 80. 16-bit ADC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS13315 Rev 1 181/259
STM32H730xB Electrical characteristics
231
IDDA_D
(ADC)
ADC
consumption on
VDDA,
BOOST=11,
Differential
mode
Resolution = 16 bits, fADC = 25 MHz - - - 1,440 -
µA
Resolution = 14 bits, fADC = 30 MHz - - - 1,350 -
Resolution = 12 bits, fADC = 40 MHz - - - 990 -
ADC
consumption on
VDDA,
BOOST=10,
Differential
mode,
fADC = 25 MHz
Resolution = 16 bits - - - 1,080 -
Resolution = 14 bits - - - 810 -
Resolution = 12 bits - - - 585 -
ADC
consumption on
VDDA,
BOOST=01,
Differential
mode,
fADC = 12.5 MHz
Resolution = 16 bits - - - 630 -
Resolution = 14 bits - - - 432 -
Resolution = 12 bits - - - 315 -
ADC
consumption on
VDDA,
BOOST=00,
Differential
mode,
fADC = 6.25 MHz
Resolution = 16 bits - - - 360 -
Resolution = 14 bits - - - 270 -
Resolution = 12 bits - - - 225 -
IDDA_SE
(ADC)
ADC
consumption on
VDDA,
BOOST=11,
Single-ended
mode
Resolution = 16 bits, fADC=25 MHz - - - 720 -
Resolution = 14 bits, fADC=30 MHz - - - 675 -
Resolution = 12 bits, fADC=40 MHz - - - 495 -
ADC
consumption on
VDDA,
BOOST=10,
Singl-ended
mode,
fADC = 25 MHz
Resolution = 16 bits - - - 540 -
Resolution = 14 bits - - - 405 -
Resolution = 12 bits - - - 292.5 -
ADC
consumption on
VDDA,
BOOST=01,
Single-ended
mode,
fADC = 12.5 MHz
Resolution = 16 bits - - - 315 -
Resolution = 14 bits - - - 216 -
Resolution = 12 bits - - - 157.5 -
ADC
consumption on
VDDA
BOOST=00,
Single-ended
mode
fADC=6.25 MHz
Resolution = 16 bits - - - 180 -
Resolution = 14 bits - - - 135 -
Resolution = 12 bits - - - 112.5 -
IDD
(ADC)
ADC
consumption on
VDD
fADC=50 MHz - - - 400 -
fADC=25 MHz - - - 220 -
fADC=12.5 MHz - - - 180 -
fADC=6.25 MHz - - - 120 -
fADC=3.125 MHz - - - 80 -
1. Guaranteed by design.
2. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).
Table 80. 16-bit ADC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H730xB
182/259 DS13315 Rev 1
3. These values are valid for TFBGA100, UFBGA169 and UFBGA176+25 packages and one ADC. The values for other
packages and multiple ADCs may be different.
4. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA.
5. The tolerance is 10 LSBs for 16-bit resolution, 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and 8-bit
resolutions.
Table 81. Minimum sampling time vs RAIN (16-bit ADC)(1)(2)
Resolution RAIN ()
Minimum sampling time (s)
Direct
channels(3) Fast channels(4) Slow channels(5)
16 bits 47 7.37E-08 1.14E-07 1.72E-07
14 bits
47 6.29E-08 9.74E-08 1.55E-07
68 6.84E-08 1.02E-07 1.58E-07
100 7.80E-08 1.12E-07 1.62E-07
150 9.86E-08 1.32E-07 1.80E-07
220 1.32E-07 1.61E-07 2.01E-07
12 bits
47 5.32E-08 8.00E-08 1.29E-07
68 5.74E-08 8.50E-08 1.32E-07
100 6.58E-08 9.31E-08 1.40E-07
150 8.37E-08 1.10E-07 1.51E-07
220 1.11E-07 1.34E-07 1.73E-07
330 1.56E-07 1.78E-07 2.14E-07
470 2.16E-07 2.39E-07 2.68E-07
680 3.01E-07 3.29E-07 3.54E-07
10 bits
47 4.34E-08 6.51E-08 1.08E-07
68 4.68E-08 6.89E-08 1.11E-07
100 5.35E-08 7.55E-08 1.16E-07
150 6.68E-08 8.77E-08 1.26E-07
220 8.80E-08 1.08E-07 1.40E-07
330 1.24E-07 1.43E-07 1.71E-07
470 1.69E-07 1.89E-07 2.13E-07
680 2.38E-07 2.60E-07 2.80E-07
1000 3.45E-07 3.66E-07 3.84E-07
1500 5.15E-07 5.35E-07 5.48E-07
2200 7.42E-07 7.75E-07 7.78E-07
3300 1.10E-06 1.14E-06 1.14E-06
DS13315 Rev 1 183/259
STM32H730xB Electrical characteristics
231
8 bits
47 3.32E-08 5.10E-08 8.61E-08
68 3.59E-08 5.35E-08 8.83E-08
100 4.10E-08 5.83E-08 9.22E-08
150 5.06E-08 6.76E-08 9.95E-08
220 6.61E-08 8.22E-08 1.11E-07
330 9.17E-08 1.08E-07 1.32E-07
470 1.24E-07 1.40E-07 1.63E-07
680 1.74E-07 1.91E-07 2.12E-07
1000 2.53E-07 2.70E-07 2.85E-07
1500 3.73E-07 3.93E-07 4.05E-07
2200 5.39E-07 5.67E-07 5.75E-07
3300 8.02E-07 8.36E-07 8.38E-07
4700 1.13E-06 1.18E-06 1.18E-06
6800 1.62E-06 1.69E-06 1.68E-06
10000 2.36E-06 2.47E-06 2.45E-06
15000 3.50E-06 3.69E-06 3.65E-06
1. Guaranteed by design.
2. Data valid at up to 130 °C, with a 47 pF PCB capacitor, and VDDA=1.6 V.
3. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.
4. Fast channels correspond to PA6, PB1, PC4, PF11, PF13 for ADCx_INPx, and to PA7, PB0, PC5, PF12, PF14 for
ADCx_INNx.
5. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.
Table 81. Minimum sampling time vs RAIN (16-bit ADC)(1)(2) (continued)
Resolution RAIN ()
Minimum sampling time (s)
Direct
channels(3) Fast channels(4) Slow channels(5)
Electrical characteristics STM32H730xB
184/259 DS13315 Rev 1
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) does not
affect the ADC accuracy.
Table 82. 16-bit ADC accuracy(1)(2)
Symbol Parameter Conditions(3) Min Typ Max Unit
ET Total undadjusted error
Direct
channel
Single ended - +10/–20 -
LSB
Differential - ±15 -
Fast channel
Single ended - +10/–20 -
Differential - ±15 -
Slow
channel
Single ended - ±10 -
Differential ±10 -
EO Offset error - - ±10 -
EG Gain error - - ±15 -
ED Differential linearity error
Single ended - +3/–1 -
Differential - +4.5/–1 -
EL Integral linearity error
Direct
channel
Single ended - ±11 -
Differential - ±7 -
Fast channel
Single ended - ±13 -
Differential - ±7 -
Slow
channel
Single ended - ±10 -
Differential - ±6 -
ENOB Effective number of bits
Single ended - 12.2 -
Bits
Differential - 13.2 -
SINAD Signal-to-noise and
distortion ratio
Single ended - 75.2 -
dB
Differential - 81.2 -
SNR Signal-to-noise ratio
Single ended - 77.0 -
Differential - 81.0 -
THD Total harmonic distortion
Single ended - 87 -
Differential - 90 -
1. Guaranteed by characterization results for BGA packages. The values for LQFP packages might differ.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC clock frequency = 25 MHz, ADC resolution = 16 bits, VDDA=VREF+=3.3 V, BOOST=11 and 16-bit mode.
DS13315 Rev 1 185/259
STM32H730xB Electrical characteristics
231
Figure 45. ADC accuracy characteristics (12-bit resolution)
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 46. Typical connection diagram using the ADC
1. Refer to Table 80 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
ai14395c
EO
EG
1L SBIDEAL
4095
4094
4093
5
4
3
2
1
0
7
6
1 2 3 456 7 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSB IDEAL
=
ai17534b
STM32
VDD
AINx
IL±1 μA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1)
CADC(1)
12-bit
converter
Sample and hold ADC
converter
Electrical characteristics STM32H730xB
186/259 DS13315 Rev 1
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 47 or Figure 48,
depending on whether VREF+ is connected to VDDA or not. The 100 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 47. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. When VREF+ and VREF- inputs are not available, they are internally connected to VDDA and VSSA,
respectively.
Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA)
1. When VREF+ and VREF- inputs are not available, they are internally connected to VDDA and VSSA,
respectively.
MSv50648V1
1 μF // 100 nF
1 μF // 100 nF
STM32
VREF+(1)
VSSA/VREF+(1)
VDDA
MSv50649V1
1 μF // 100 nF
STM32
VREF+/VDDA(1)
VREF-/VSSA(1)
DS13315 Rev 1 187/259
STM32H730xB Electrical characteristics
231
6.3.22 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 83, Table 84 and Table 85 are
derived from tests performed under the ambient temperature and VDDA supply voltage
conditions summarized in Table 12: General operating conditions. In Table 83, Table 84 and
Table 85, fADC refers to fadc_ker_ck.
Table 83. 12-bit ADC characteristics(1)(2)
Sym-
bol Parameter Conditions Min Typ Max Unit
VDDA
Analog
power
supply for
ADC ON
-1.62-3.6
VVREF+
(3)
Positive
reference
voltage
VDDA VREF+ 1.62 - VDDA
VREF-
Negative
reference
voltage
-V
SSA --
fADC
ADC clock
frequency 1,62 V VDDA 3.6 V 1.5 - 75 MHz
fS(4)
Sampling
rate for
Direct
channels
Resolution
= 12 bits
Continuous
and
Discontinuous
mode(5)
2.4 V VDDA 3.6 V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
-- 5
MSPS
1.6V VDDA 3.6 V fADC = 60
MHz -- 4
Single mode
2.4 V VDDA 3.6 V fADC = 50
MHz(6) --3.33
1.6 V VDDA 3.6 V fADC = 38
MHz(6) --2.53
Resolution
= 10 bits
Continuous
and
Discontinuous
mode(5)
1.6V VDDA 3.6V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
--5.77
Single mode
2.4 V VDDA 3.6 V fADC = 58
MHz(6) --4.46
1.6V VDDA 3.6V fADC = 42
MHz(6) --3.23
Resolution
= 8 bits
Continuous
and
Discontinuous
mode(5)
1.6V VDDA 3.6V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
--6.82
Single mode
2.4 V VDDA 3.6 V fADC = 67
MHz(6) --6.09
1.6V VDDA 3.6V fADC = 48
MHz(6) --4.36
Resolution
= 6 bits
Continuous
and
Discontinuous
mode(5)
1.6V VDDA 3.6V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
--8.33
Single mode
2.4 V VDDA 3.6 V fADC = 75
MHz(6) --8.33
1.6V VDDA 3.6V fADC = 55
MHz(6) --6.11
Electrical characteristics STM32H730xB
188/259 DS13315 Rev 1
fS(4)
(conti-
nued)
Sampling
rate for fast
channels
(VIN[0:5])
Resolution
= 12 bits
Continuous
and
Discontinuous
mode(5)
2.4 V VDDA 3.6 V
–40 °C TJ 130 °C
fADC = 65
MHz
SMP
= 2.5
--4.33
MSPS
1.6V VDDA 3.6V fADC = 58
MHz --3.87
Single mode
2.4 V VDDA 3.6 V fADC = 32
MHz(6) --2.13
1.6V VDDA 3.6V fADC =
26 MHz(6) --1.73
Resolution
= 10 bits
Continuous
and
Discontinuous
mode(5)
1.6V VDDA 3.6V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
--5.77
Single mode
2.4 V VDDA 3.6 V fADC = 36
MHz(6) --2.77
1.6V VDDA 3.6V fADC = 30
MHz(6) --2.31
Resolution
= 8 bits
Continuous
and
Discontinuous
mode(5)
1.6V VDDA 3.6V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
--6.82
Single mode
2.4 V VDDA 3.6 V fADC =44
MHz(6) --4.00
1.6V VDDA 3.6V fADC = 35
MHz(6) --3.18
Resolution
= 6 bits
Continuous
and
Discontinuous
mode(5)
1.6V VDDA 3.6V
–40 °C TJ 130 °C
fADC = 75
MHz
SMP
= 2.5
--8.33
Single mode
2.4 V VDDA 3.6 V fADC = 56
MHz(6) --6.22
1.6V VDDA 3.6V fADC = 42
MHz(6) --4.66
Sampling
rate for slow
channels
Resolution
= 12 bits
- - –40 °C TJ 130 °C fADC = 15
MHz(6) SMP
= 2.5
--1.00
Resolution
= 10 bits --1.28
Resolution
= 8 bits --1.63
Resolution
= 6 bits --2.08
tTRIG
External
trigger
period
Resolution = 12 bits - - 15 1/fADC
VAIN
Conversion
voltage
range
-0-V
REF+
V
VCMIV
Common
mode input
voltage
-
VREF
/2
10%
VREF
/2
VREF/2
+ 10%
RAIN
(7)
External
input
impedance
Resolution = 12 bits, TJ = 125 °C - - 220
Resolution = 10 bits, TJ = 125 °C - - 2100
Resolution = 8 bits, TJ = 125 °C - - 12000
Resolution = 6 bits, TJ = 125 °C - - 80000
Table 83. 12-bit ADC characteristics(1)(2) (continued)
Sym-
bol Parameter Conditions Min Typ Max Unit
DS13315 Rev 1 189/259
STM32H730xB Electrical characteristics
231
CADC
Internal
sample and
hold
capacitor
--5-pF
tADCV
REG_
STUP
ADC LDO
startup time --510µs
tSTAB
ADC power-
up time LDO already started 1 - -
con-
version
cycle
tOFF_
CAL
Offset
calibration
time
- 135 - -
1/fADC
tLATR
Trigger
conversion
latency for
regular and
injected
channels
without
aborting the
conversion
CKMODE = 00 1.5 2 2.5
CKMODE = 01 - - 2.5
CKMODE = 10 - - 2.5
CKMODE = 11 - - 2.25
tLATR
INJ
Trigger
conversion
latency for
regular and
injected
channels
when a
regular
conversion
is aborted
CKMODE = 00 2.5 3 3.5
CKMODE = 01 - - 3.5
CKMODE = 10 - - 3.5
CKMODE = 11 - - 3.25
tS
Sampling
time - 2.5 - 640.5
tCONV
Tota l
conversion
time
(including
sampling
time)
N-bits resolution
tS +
0.5 +
N
--
IDDA_
D(ADC)
ADC
consumption
on VDDA and
VREF,
Differential
mode
fS= 5 MSPS - 430 -
µA
fS = 1 MSPS - 133 -
fS = 0.1 MSPS - 51 -
IDDA_
SE
(ADC)
ADC
consumption
on VDDA and
VREF,
Single-
ended mode
fS= 5 MSPS - 350 -
fS = 1 MSPS - 122 -
fS = 0.1 MSPS - 47 -
IDD
(ADC)
ADC
consumption
on VDD per
fADC
--2.4-
µA/
MHz
1. Guaranteed by design.
2. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).
3. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA.
4. Guaranteed by characterization for BGA and CSP packages. The values for LQFP packages may be different.
Table 83. 12-bit ADC characteristics(1)(2) (continued)
Sym-
bol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H730xB
190/259 DS13315 Rev 1
5. The conversion of the first element in the group is excluded.
6. fADC value corresponds to the maximum frequency that can be reached considering a 2.5 sampling period. For other SMPy
sampling periods, the maximum frequency is fADC value * SMPy / 2.5 with a limitation to 75 MHz.
7. The tolerance is 2 LSBs for 12-bit, 10-bit and 8-bit resolutions. It is otherwise specified.
Table 84. Minimum sampling time vs RAIN (12-bit ADC)(1)(2)
Resolution RAIN (Ω)Minimum sampling time (s)
Direct channels(3) Fast channels(4) Slow channels(5)
12 bits
47 5.55E-08 7.04E-08 1.03E-07
68 5.76E-08 7.22E-08 1.05E-07
100 6.17E-08 7.65E-08 1.07E-07
150 7.02E-08 8.45E-08 1.13E-07
220 8.59E-08 1.00E-07 1.22E-07
330 1.11E-07 1.26E-07 1.41E-07
470 1.46E-07 1.61E-07 1.69E-07
680 1.98E-07 2.17E-07 2.25E-07
10 bits
47 4.90E-08 6.06E-08 8.77E-08
68 5.07E-08 6.27E-08 8.95E-08
100 5.41E-08 6.67E-08 9.22E-08
150 6.18E-08 7.50E-08 9.59E-08
220 7.51E-08 8.70E-08 1.04E-07
330 9.46E-08 1.07E-07 1.17E-07
470 1.22E-07 1.34E-07 1.42E-07
680 1.63E-07 1.77E-07 1.86E-07
1000 2.27E-07 2.42E-07 2.43E-07
1500 3.27E-07 3.40E-07 3.35E-07
2200 4.53E-07 4.86E-07 4.73E-07
3300 6.56E-07 6.93E-07 6.72E-07
DS13315 Rev 1 191/259
STM32H730xB Electrical characteristics
231
8 bits
47 4.35E-08 5.31E-08 7.36E-08
68 4.47E-08 5.48E-08 7.47E-08
100 4.72E-08 5.79E-08 7.63E-08
150 5.33E-08 6.35E-08 7.88E-08
220 6.26E-08 7.26E-08 8.47E-08
330 7.84E-08 8.80E-08 9.48E-08
470 9.80E-08 1.07E-07 1.14E-07
680 1.28E-07 1.39E-07 1.43E-07
1000 1.76E-07 1.88E-07 1.90E-07
1500 2.49E-07 2.66E-07 2.64E-07
2200 3.50E-07 3.63E-07 3.63E-07
3300 5.09E-07 5.27E-07 5.24E-07
4700 7.00E-07 7.28E-07 7.09E-07
6800 9.84E-07 1.03E-06 1.00E-06
10000 1.43E-06 1.48E-06 1.44E-06
15000 2.10E-06 2.18E-06 2.11E-06
6 bits
47 3.79E-08 4.58E-08 5.74E-08
68 3.88E-08 4.69E-08 5.81E-08
100 4.09E-08 4.89E-08 5.93E-08
150 4.48E-08 5.25E-08 6.14E-08
220 5.07E-08 5.81E-08 6.58E-08
330 6.04E-08 6.79E-08 7.46E-08
470 7.37E-08 8.10E-08 8.60E-08
680 9.31E-08 1.01E-07 1.04E-07
1000 1.23E-07 1.32E-07 1.34E-07
1500 1.71E-07 1.82E-07 1.82E-07
2200 2.39E-07 2.50E-07 2.49E-07
3300 3.43E-07 3.57E-07 3.49E-07
4700 4.72E-07 4.92E-07 4.81E-07
6800 6.65E-07 6.89E-07 6.68E-07
10000 9.54E-07 9.88E-07 9.54E-07
15000 1.40E-06 1.45E-06 1.39E-06
1. Guaranteed by design.
2. Data valid up to 130 °C, with a 22 pF PCB capacitor and VDDA = 1.62 V.
Table 84. Minimum sampling time vs RAIN (12-bit ADC)(1)(2) (continued)
Resolution RAIN (Ω)Minimum sampling time (s)
Direct channels(3) Fast channels(4) Slow channels(5)
Electrical characteristics STM32H730xB
192/259 DS13315 Rev 1
3. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.
4. Fast channels correspond to ADCx_INx[0:5].
5. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.
Table 85. 12-bit ADC accuracy(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
ET
Tot al
unadjusted
error
Direct channel
Single
ended -3.55
±LSB
Differential - 2.5 3
Fast channel
Single
ended -3.55
Differential - 2.5 3
Slow channel
Single
ended -3.55
Differential - 2.5 3
EO Offset error - - +/-2 +/-5
EG Gain error - - TBD
(3) -
ED
Differential
linearity
error
Single ended - +/-
0.75
+1.5/-
1
Differential - +/-0.5 +1.25
/-1
EL
Integral
linearity
error
Direct channel
Single
ended - +/-1 +/-2.5
Differential - +/-1 +/-2
Fast channel
Single
ended - +/-1 +/-2.5
Differential - +/-1 +/-2
Slow channel
Single
ended - +/-1 +/-2.5
Differential - +/-1 +/-2
ENOB
Effective
number of
bits
Single ended - 11.2 -
bits
Differential - 11.5 -
SINAD
Signal-to-
noise and
distortion
ratio
Single ended - 68.9 -
dB
Differential - 71.1 -
SNR Signal-to-
noise ratio
Single ended - 69.1 -
Differential - 71.4 -
THD
Tot al
harmonic
distortion
Single ended - -79.6 -
Differential - -81.8 -
DS13315 Rev 1 193/259
STM32H730xB Electrical characteristics
231
6.3.23 DAC characteristics
1. Guaranteed by characterization for BGA packages. The maximum values are preliminary data. The values for LQFP
packages may be different.
2. ADC DC accuracy values are measured after internal calibration in Continuous and Discontinuous mode.
3. TBD stands for “to be defined”.
Table 86. DAC characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 3.3 3.6
V
VREF+ Positive reference voltage - 1.80 - VDDA
VREF-
Negative reference
voltage --V
SSA -
RLResistive Load DAC output buffer
ON
connected
to VSSA
5--
kconnected
to VDDA
25 - -
ROOutput Impedance DAC output buffer OFF 10.3 13 16
RBON
Output impedance
sample and hold mode,
output buffer ON
DAC output buffer
ON
VDD = 2.7 V - - 1.6
k
VDD = 2.0 V - - 2.6
RBOFF
Output impedance
sample and hold mode,
output buffer OFF
DAC output buffer
OFF
VDD = 2.7 V - - 17.8
k
VDD = 2.0 V - - 18.7
CLCapacitive Load
DAC output buffer OFF - - 50 pF
CSH Sample and Hold mode - 0.1 1 µF
VDAC_OUT
Voltage on DAC_OUT
output
DAC output buffer ON 0.2 - VDDA
0.2 V
DAC output buffer OFF 0 - VREF+
tSETTLING
Settling time (full scale:
for a 12-bit code transition
between the lowest and
the highest input codes
when DAC_OUT reaches
the final value of ±0.5LSB,
±1LSB, ±2LSB, ±4LSB,
±8LSB)
Normal mode, DAC
output buffer ON,
CL 50 pF,
RL 5
±0.5 LSB - 2.05 3
µs
±1 LSB - 1.97 2.87
±2 LSB - 1.67 2.84
±4 LSB - 1.66 2.78
±8 LSB - 1.65 2.7
Normal mode, DAC output buffer
OFF, ±1LSB CL=10 pF -1.72
tWAKEUP(2)
Wakeup time from off
state (setting the ENx bit
in the DAC Control
register) until the final
value of ±1LSB is reached
Normal mode, DAC output buffer
ON, CL 50 pF, RL = 5 -57.5
µs
Normal mode, DAC output buffer
OFF, CL 10 pF 25
PSRR DC VDDA supply rejection
ratio
Normal mode, DAC output buffer
ON, CL 50 pF, RL = 5 -80 28 dB
Electrical characteristics STM32H730xB
194/259 DS13315 Rev 1
tSAMP
Sampling time in Sample
and Hold mode
CL=100 nF
(code transition between
the lowest input code and
the highest input code
when DAC_OUT reaches
the ±1LSB final value)
MODE<2:0>_V12=100/101
(BUFFER ON) -0.72.6
ms
MODE<2:0>_V12=110
(BUFFER OFF) - 11.5 18.7
MODE<2:0>_V12=111
(INTERNAL BUFFER OFF) -0.30.6µs
Ileak Output leakage current - (3) nA
CIint
Internal sample and hold
capacitor - 1.8 2.2 2.6 pF
tTRIM
Middle code offset trim
time
Minimum time to verify the each
code 50 - - µs
Voffset
Middle code offset for 1
trim code step
VREF+ = 3.6 V - 850 -
µV
VREF+ = 1.8 V - 425 -
IDDA(DAC)
DAC quiescent
consumption from VDDA
DAC output buffer
ON
No load,
middle code
(0x800)
-360-
µA
No load,
worst code
(0xF1C)
-490-
DAC output buffer
OFF
No load,
middle/
worst code
(0x800)
-20-
Sample and Hold mode,
CSH=100 nF -
360*TON/
(TON+TOFF)
(4)
-
IDDV(DAC) DAC consumption from
VREF+
DAC output buffer
ON
No load,
middle code
(0x800)
-170-
No load,
worst code
(0xF1C)
-170-
DAC output buffer
OFF
No load,
middle/
worst code
(0x800)
-160-
Sample and Hold mode, Buffer
ON, CSH=100 nF (worst code) -
170*TON/
(TON+TOFF)
(4)
-
Sample and Hold mode, Buffer
OFF, CSH=100 nF (worst code) -
160*TON/
(TON+TOFF)
(4)
-
1. Guaranteed by design unless otherwise specified.
Table 86. DAC characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS13315 Rev 1 195/259
STM32H730xB Electrical characteristics
231
2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).
3. Refer to Table 52: I/O static characteristics.
4. TON is the refresh phase duration, while TOFF is the hold phase duration. Refer to the product reference manual for more
details.
Table 87. DAC accuracy(1)
Symbol Parameter Conditions Min Typ Max Unit
DNL Differential non
linearity(2)
DAC output buffer ON 2- 2
LSB
DAC output buffer OFF 2- 2
- Monotonicity 10 bits - - - -
INL Integral non linearity(3)
DAC output buffer ON, CL50 pF,
RL5 4- 4
LSB
DAC output buffer OFF,
CL 50 pF, no RL
4- 4
Offset Offset error at code
0x800 (3)
DAC output
buffer ON,
CL50 pF,
RL 5
VREF+ = 3.6 V - - ±12
LSB
VREF+ = 1.8 V - - ±25
DAC output buffer OFF,
CL 50 pF, no RL
--±8
Offset1 Offset error at code
0x001(4)
DAC output buffer OFF,
CL 50 pF, no RL
--±5LSB
OffsetCal
Offset error at code
0x800 after factory
calibration
DAC output
buffer ON,
CL50 pF,
RL 5
VREF+ = 3.6 V - - ±5
LSB
VREF+ = 1.8 V - - ±7
Gain Gain error(5)
DAC output buffer ON,CL50 pF,
RL 5 --±1
%
DAC output buffer OFF,
CL 50 pF, no RL
--±1
TUE Total unadjusted error
DAC output buffer ON, CL50 pF,
RL 5 --±30
LSB
DAC output buffer OFF, CL
50 pF, no RL
±12
TUECal Total unadjusted error
after calibration
DAC output buffer ON, CL50 pF,
RL 5 --±23
SNR Signal-to-noise ratio(6)
DAC output buffer ON,CL50 pF,
RL 5 , 1 kHz, BW = 500 KHz - 67.8 -
dB
DAC output buffer OFF,
CL 50 pF, no RL,1 kHz, BW =
500 KHz
- 67.8 -
Electrical characteristics STM32H730xB
196/259 DS13315 Rev 1
Figure 49. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
THD Total harmonic
distortion(6)
DAC output buffer ON, CL50 pF,
RL 5 , 1 kHz -78.6 -
dB
DAC output buffer OFF,
CL 50 pF, no RL, 1 kHz -78.6 -
SINAD Signal-to-noise and
distortion ratio(6)
DAC output buffer ON, CL50 pF,
RL 5 , 1 kHz - 67.5 -
dB
DAC output buffer OFF,
CL 50 pF, no RL, 1 kHz - 67.5 -
ENOB Effective number of
bits
DAC output buffer ON,
CL50 pF, RL 5 , 1 kHz - 10.9 -
bits
DAC output buffer OFF,
CL 50 pF, no RL, 1 kHz - 10.9 -
1. Guaranteed by characterization results.
2. Difference between two consecutive codes minus 1 LSB.
3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and
last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF
when the buffer is OFF, and from code giving 0.2 V and (VREF+ - 0.2 V) when the buffer is ON.
6. Signal is 0.5dBFS with Fsampling=1 MHz.
Table 87. DAC accuracy(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
RL
CL
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
ai17157V3
DS13315 Rev 1 197/259
STM32H730xB Electrical characteristics
231
6.3.24 Voltage reference buffer characteristics
Table 88. VREFBUF characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage
Normal mode,
VDDA = 3.3 V
VSCALE = 000 2.8 3.3 3.6
V
VSCALE = 001 2.4 - 3.6
VSCALE = 010 2.1 - 3.6
VSCALE = 011 1.8 - 3.6
Degraded mode(2)
VSCALE = 000 1.62 - 2.80
VSCALE = 001 1.62 - 2.40
VSCALE = 010 1.62 - 2.10
VSCALE = 011 1.62 - 1.80
VREFBUF
_OUT
Voltage Reference
Buffer Output, at 30 °C,
Iload= 100 µA
Normal mode at 30 °C,
Iload = 100 µA
VSCALE = 000 2.4980 2.5000 2.5035
VSCALE = 001 2.0460 2.0490 2.0520
VSCALE = 010 1.8010 1.8040 1.8060
VSCALE = 011 1.4995 1.5015 1.5040
Degraded mode(2)
VSCALE = 000 VDDA
150 mV -V
DDA
VSCALE = 001 VDDA
150 mV -V
DDA
VSCALE = 010 VDDA
150 mV -V
DDA
VSCALE = 011 VDDA
150 mV -V
DDA
TRIM Trim step resolution - - - ±0.05 ±0.1 %
CLLoad capacitor - - 0.5 1 1.50 µF
esr Equivalent Serial
Resistor of CL
----2
ILOAD Static load current - - - - 4 mA
Iline_reg Line regulation 2.8 V VDDA 3.6 V
Iload = 500 µA - 200 -
ppm/V
Iload = 4 mA - 100 -
Iload_reg Load regulation 500 µA ILOAD 4 mA Normal mode - 50 - ppm/
mA
Tcoeff Temperature coefficient 40 °C < TJ < +130 °C - -
Tcoeff
VREFINT
+ 100
ppm/
°C
PSRR Power supply rejection
DC - - 60 -
dB
100KHz - - 40 -
Electrical characteristics STM32H730xB
198/259 DS13315 Rev 1
6.3.25 Analog temperature sensor characteristics
tSTART Start-up time
CL=0.5 µF - - 300 -
µsCL=1 µF - - 500 -
CL=1.5 µF - - 650 -
IINRUSH
Control of maximum
DC current drive on
VREFBUF_OUT during
startup phase(3)
--8-mA
IDDA
(VREFBUF)
VREFBUF
consumption from
VDDA
ILOAD = 0 µA - - 15 25
µAILOAD = 500 µA - - 16 30
ILOAD = 4 mA - - 32 50
1. Guaranteed by design, unless otherwise specified.
2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (VDDAdrop voltage).
3. To properly control VREFBUF IINRUSH current during the startup phase and the change of scaling, VDDA voltage should be in
the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.
Table 88. VREFBUF characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 89. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by design.
VSENSE linearity with temperature - - 3 °C
Avg_Slope(2)
2. Guaranteed by characterization results.
Average slope - 2 - mV/°C
V30(3)
3. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1
byte.
Voltage at 30°C ± 5 °C - 0.62 - V
tstart_run Startup time in Run mode (buffer startup) - - 25.2
µs
tS_temp(1) ADC sampling time when reading the temperature 9 - -
Isens(1) Sensor consumption - 0.18 0.31
µA
Isensbuf(1) Sensor buffer consumption - 3.8 6.5
Table 90. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 Temperature sensor raw data acquired value at
30 °C, VDDA=3.3 V 0x1FF1 E820 -0x1FF1 E821
TS_CAL2 Temperature sensor raw data acquired value at
110 °C, VDDA=3.3 V 0x1FF1 E840 - 0x1FF1 E841
DS13315 Rev 1 199/259
STM32H730xB Electrical characteristics
231
6.3.26 Digital temperature sensor characteristics
6.3.27 Temperature and VBAT monitoring
Table 91. Digital temperature sensor characteristics(1)
1. Guaranteed by design, unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fDTS(2)
2. Guaranteed by characterization results.
Output Clock frequency - 500 750 1150 kHz
TLC(2) Temperature linearity coefficient VOS2 1660 2100 2750 Hz/°
C
TTOTAL_ERROR
(2)
Temperature offset
measurement, all VOS
TJ = 40°C to
30°C 13 - 4
°C
TJ = 30°C to
Tjmax 7- 2
TVDD_CORE
Additional error due to supply
variation
VOS2 0 - 0
°C
VOS0, VOS1,
VOS3 1- 1
tTRIM Calibration time - - - 2 ms
tWAKE_UP
Wake-up time from off state until
DTS ready bit is set - - 67 116.00 s
IDDCORE_DTS
DTS consumption on
VDD_CORE - 8.5 30 70.0 A
Table 92. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -26-K
QRatio on VBAT measurement - 4 - -
Er(1)
1. Guaranteed by design.
Error on Q –10 - +10 %
tS_vbat(1) ADC sampling time when reading VBAT input 9 - - µs
VBAThigh High supply monitoring - 3.55 -
V
VBATlow Low supply monitoring - 1.36 -
Table 93. VBAT charging characteristics
Symbol Parameter Condition Min Typ Max Unit
RBC Battery charging resistor
VBRS in PWR_CR3= 0 - 5 -
K
VBRS in PWR_CR3= 1 1.5 -
Electrical characteristics STM32H730xB
200/259 DS13315 Rev 1
6.3.28 Voltage booster for analog switch
6.3.29 Comparator characteristics
Table 94. Temperature monitoring characteristics
Symbol Parameter Min Typ Max Unit
TEMPhigh High temperature monitoring - 117 -
°C
TEMPlow Low temperature monitoring - 25 -
Table 95. Voltage booster for analog switch characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Condition Min Typ Max Unit
VDD Supply voltage - 1.62 2.6 3.6 V
tSU(BOOST) Booster startup time - - - 50 µs
IDD(BOOST) Booster consumption
1.62 V VDD 2.7 V - - 125
µA
2.7 V < VDD < 3.6 V - - 250
Table 96. COMP characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.62 3.3 3.6
VVIN
Comparator input voltage
range -0-V
DDA
VBG Scaler input voltage - (2)
VSC Scaler offset voltage - - ±5 ±10 mV
IDDA(SCALER)
Scaler static consumption
from VDDA
BRG_EN=0 (bridge disable) - 0.2 0.3
µA
BRG_EN=1 (bridge enable) - 0.8 1
tSTART_SCALER Scaler startup time - - 140 250 µs
tSTART
Comparator startup time to
reach propagation delay
specification
High-speed mode - 2 5
µsMedium mode - 5 20
Ultra-low-power mode - 15 80
tD(3)
Propagation delay for
200 mV step with 100 mV
overdrive
High-speed mode - 50 80 ns
Medium mode - 0.5 0.9
µs
Ultra-low-power mode - 2.5 7
Propagation delay for step
> 200 mV with 100 mV
overdrive only on positive
inputs
High-speed mode - 50 120 ns
Medium mode - 0.5 1.2
µs
Ultra-low-power mode - 2.5 7
Voffset Comparator offset error Full common mode range - ±5 ±20 mV
DS13315 Rev 1 201/259
STM32H730xB Electrical characteristics
231
6.3.30 Operational amplifier characteristics
Vhys Comparator hysteresis
No hysteresis - 0 -
mV
Low hysteresis 4 10 22
Medium hysteresis 8 20 37
High hysteresis 16 30 52
IDDA(COMP) Comparator consumption
from VDDA
Ultra-low-
power mode
Static - 400 600
nA
With 50 kHz
±100 mV overdrive
square signal
- 800 -
Medium mode
Static - 5 7
µA
With 50 kHz
±100 mV overdrive
square signal
-6-
High-speed
mode
Static - 70 100
With 50 kHz
±100 mV overdrive
square signal
-75-
1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 20: Embedded reference voltage.
3. Guaranteed by characterization results.
Table 96. COMP characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 97. Operational amplifier characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage
Range -23.33.6
V
CMIR Common Mode Input
Range -0-V
DDA
VIOFFSET Input offset voltage
25°C, no load on output - - ±1.5
mV
All voltages and
temperature, no load --±2.5
ΔVIOFFSET Input offset voltage drift - - ±3.0 - V/°C
TRIMOFFSETP
TRIMLPOFFSETP
Offset trim step at low
common input voltage
(0.1*VDDA)
--1.11.5
mV
TRIMOFFSETN
TRIMLPOFFSETN
Offset trim step at high
common input voltage
(0.9*VDDA)
--1.11.5
ILOAD Drive current - - - 500 A
ILOAD_PGA Drive current in PGA mode - - - 270
Electrical characteristics STM32H730xB
202/259 DS13315 Rev 1
CLOAD Capacitive load - - - 50 pF
CMRR Common mode rejection
ratio --80-dB
PSRR Power supply rejection
ratio
CLOAD 50pf /
RLOAD 4 k(2) at 1 kHz,
Vcom=VDDA/2
50 66 - dB
GBW Gain bandwidth for high
supply range
200 mV Output dynamic
range VDDA - 200 mV 47.312.3MHz
SR Slew rate (from 10% and
90% of output voltage)
Normal mode - 3 -
V/µs
High-speed mode - 24 -
AO Open loop gain 200 mV Output dynamic
range VDDA - 200 mV 59 90 129 dB
φm Phase margin - - 55 - °
GM Gain margin - - 12 - dB
VOHSAT High saturation voltage Iload=max or RLOAD=min,
Input at VDDA
VDDA
100 mV - -
mV
VOLSAT Low saturation voltage Iload=max or RLOAD=min,
Input at 0 V - - 100
tWAKEUP
Wake up time from OFF
state
Normal
mode
CLOAD 50pf,
RLOAD 4 k,
follower
configuration
-0.83.2
µs
High
speed
mode
CLOAD 50pf,
RLOAD 4 k,
follower
configuration
-0.92.8
PGA gain
Non inverting gain error
value
PGA gain = 2 1-1
%
PGA gain = 4 2-2
PGA gain = 8 2.5 - 2.5
PGA gain = 16 3-3
Inverting gain error value
PGA gain = 2 1-1
PGA gain = 4 1-1
PGA gain = 8 2-2
PGA gain = 16 3-3
External non-inverting gain
error value
PGA gain = 2 1-1
PGA gain = 4 3-3
PGA gain = 8 3.5 - 3.5
PGA gain = 16 4-4
Table 97. Operational amplifier characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS13315 Rev 1 203/259
STM32H730xB Electrical characteristics
231
Rnetwork
R2/R1 internal resistance
values in non-inverting
PGA mode(3)
PGA Gain=2 - 10/10 -
k/
k
PGA Gain=4 - 30/10 -
PGA Gain=8 - 70/10 -
PGA Gain=16 - 150/10 -
R2/R1 internal resistance
values in inverting PGA
mode(3)
PGA Gain = -1 - 10/10 -
PGA Gain = -3 - 30/10 -
PGA Gain = -7 - 70/10 -
PGA Gain = -15 - 150/10 -
Delta R Resistance variation (R1
or R2) -15 - 15 %
PGA BW
PGA bandwidth for
different non inverting gain
Gain=2 - GBW/2 -
MHz
Gain=4 - GBW/4 -
Gain=8 - GBW/8 -
Gain=16 - GBW/16 -
PGA bandwidth for
different inverting gain
Gain = -1 - 5.00 -
MHz
Gain = -3 - 3.00 -
Gain = -7 - 1.50 -
Gain = -15 - 0.80 -
en Voltage noise density
at
1 KHz output loaded
with 4 k
-140-
nV/
Hz
at
10 KHz -55-
IDDA(OPAMP)
OPAMP consumption from
VDDA
Normal
mode no Load,
quiescent mode,
follower
- 570 1000
µA
High-
speed
mode
- 610 1200
1. Guaranteed by design, unless otherwise specified.
2. RLOAD is the resistive load connected to VSSA or to VDDA.
3. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance
between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.
Table 97. Operational amplifier characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H730xB
204/259 DS13315 Rev 1
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics
Unless otherwise specified, the parameters given in Table 98 for DFSDM are derived from
tests performed under the ambient temperature, fPCLKx frequency and supply voltage
conditions summarized in Table 12: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (DìFSDM_CKINx, DFSDM_DATINx, DFSDM_CKOUT for DFSDM).
Table 98. DFSDM measured timing
Symbol Parameter Conditions Min Typ Max Unit
fDFSDMCLK
DFSDM
clock 1.62 < VDD < 3.6 V - - fSYSCLK
MHz
fCKIN
(1/TCKIN)
Input clock
frequency
SPI mode
(SITP[1:0] = 0,1),
External clock mode
(SPICKSEL[1:0] = 0)
--20
SPI mode
(SITP[1:0] = 0,1),
Internal clock mode
(SPICKSEL[1:0] # 0)
--20
fCKOUT
Output clock
frequency 1.62 < VDD < 3.6 V - - 20
DuCyCKOUT
Output clock
frequency
duty cycle
1.62 < VDD
< 3.6 V
Even
division,
CKOUTDIV
= n, 1, 3, 5..
45 50 55
%
Odd
division,
CKOUTDIV
= n, 2, 4, 6..
(((n/2+1)/(n+1))
*100)5
(((n/2+1)/(n+1))
*100)
(((n/2+1)/(n+1))
*100)+5
DS13315 Rev 1 205/259
STM32H730xB Electrical characteristics
231
twh(CKIN)
twl(CKIN)
Input clock
high and low
time
SPI mode
(SITP[1:0] = 0,1),
External clock mode
(SPICKSEL[1:0] = 0)
TCKIN/20.5 TCKIN/2 -
ns
tsu
Data input
setup time
SPI mode
(SITP[1:0] = 0,1),
External clock mode
(SPICKSEL[1:0] = 0)
2--
th
Data input
hold time
SPI mode
(SITP[1:0] = 0,1),
External clock mode
(SPICKSEL[1:0] = 0)
1--
TManchester
Manchester
data period
(recovered
clock period)
Manchester mode
(SITP[1:0] = 2,3),
Internal clock mode
(SPICKSEL[1:0] # 0)
(CKOUTDIV+1)
* TDFSDMCLK
-(2*CKOUTDIV)
* TDFSDMCLK
Table 98. DFSDM measured timing (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H730xB
206/259 DS13315 Rev 1
Figure 50. Channel transceiver timing diagrams
MS30766V2
SITP = 0
DFSDM_CKOUT
DFSDM_DATINy
SITP = 1
tsu th
tsu th
tftr
twl twh
SPI timing : SPICKSEL = 1, 2, 3
recovered clock
SITP = 2
DFSDM_DATINy
SITP = 3
Manchester timing
recovered data
11000
SITP = 00
DFSDM_CKINyDFSDM_DATINy
SITP = 01
tsu th
tsu th
tftr
twl twh
SPI timing : SPICKSEL = 0
SPICKSEL=2
SPICKSEL=1
(SPICKSEL=0)
SPICKSEL=3
DS13315 Rev 1 207/259
STM32H730xB Electrical characteristics
231
6.3.32 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 99 for DCMI are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 12: General operating conditions, with the following configuration:
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Figure 51. DCMI timing diagram
Table 99. DCMI characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
- Frequency ratio DCMI_PIXCLK/fHCLK -0.4 -
DCMI_PIXCLK Pixel Clock input - 110 MHz
Dpixel Pixel Clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 2 -
ns
th(DATA) Data hold time 1 -
tsu(HSYNC),
tsu(VSYNC) DCMI_HSYNC/ DCMI_VSYNC input setup time 2 -
th(HSYNC),
th(VSYNC) DCMI_HSYNC/ DCMI_VSYNC input hold time 1 -
MS32414V2
DCMI_PIXCLK
tsu(VSYNC)
tsu(HSYNC)
DCMI_HSYNC
DCMI_VSYNC
DATA[0:13]
1/DCMI_PIXCLK
th(HSYNC)
th(HSYNC)
tsu(DATA) th(DATA)
Electrical characteristics STM32H730xB
208/259 DS13315 Rev 1
6.3.33 Parallel synchronous slave interface (PSSI) characteristics
Unless otherwise specified, the parameters given in Table 100 and Table 101 for PSSI are
derived from tests performed under the ambient temperature, fHCLK frequency and VDD
supply voltage summarized in Table 12: General operating conditions.
Table 100. PSSI transmit characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
-Frequency ratio
PSSI_PDCK/fHCLK
-0.4-
PSSI_PDCK PSSI Clock input
-50
MHz
-35(2)
2. This value is obtained by using PA9, PA10 or PH4 I/O.
Dpixel PSSI Clock input duty cycle 30 70 %
tov(DATA) Data output valid time - 10
ns
---
14(2)
toh(DATA) Data output hold time 4.5 -
tov((DE) DE output valid time - 10
toh(DE) DE output hold time 4 -
tsu(RDY) RDY input setup time 0 -
th(RDY) RDY input hold time 0 -
Table 101. PSSI receive characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
-Frequency ratio
PSSI_PDCK/fHCLK
-0.4-
PSSI_PDCK PSSI Clock input - 110 MHz
Dpixel PSSI Clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 1.5 -
ns
th(DATA) Data input hold time 0.5 -
tsu((DE) DE input setup time 2 -
th(DE) DE input hold time 1 -
tov(RDY) RDY output valid time - 15
toh(RDY) RDY output hold time 5.5 -
DS13315 Rev 1 209/259
STM32H730xB Electrical characteristics
231
6.3.34 LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 102 for LCD-TFT are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 12: General operating conditions, with the following
configuration:
LCD_CLK polarity: high
LCD_DE polarity: low
LCD_VSYNC and LCD_HSYNC polarity: high
Pixel formats: 24 bits
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS0
Table 102. LTDC characteristics(1)
Symbol Parameter Min Max Unit
fCLK
LTDC clock
output
frequency
2.7<VDD<3.6 V, 20 pF
-
150
MHz2.7<VDD<3.6 V 133
1.62<VDD<3.6 V 90/76.5(2)
DCLK LTDC clock output duty cycle 45 55 %
tw(CLKH),
tw(CLKL)
Clock High time, low time tw(CLK)//20.5 tw(CLK)/2+0.5
ns
tv(DATA) Data output valid time
2.7<VDD<3.6 V
-
2.0
1.62<VDD<3.6 V 2.5/6.5(2)
th(DATA) Data output hold time 0 -
tv(HSYNC),
tv(VSYNC),
tv(DE)
HSYNC/VSYNC/DE output
valid time
2.7<VDD<3.6 V - 1.5
1.62<VDD<3.6 V - 2.0
th(HSYNC),
th(VSYNC),
th(DE)
HSYNC/VSYNC/DE output hold time 0 -
1. Guaranteed by characterization results.
2. This value is valid when PA[9], PA[10], PA[11], PA[12], PA[15], PB[11], PH[4], PJ[8], PJ[9], PJ[10], PJ[11], PK[0], PK[1] or
PK[2] is used.
Electrical characteristics STM32H730xB
210/259 DS13315 Rev 1
Figure 52. LCD-TFT horizontal timing diagram
Figure 53. LCD-TFT vertical timing diagram
MS32749V1
LCD_CLK
tv(HSYNC)
LCD_HSYNC
LCD_DE
LCD_R[0:7]
LCD_G[0:7]
LCD_B[0:7]
tCLK
LCD_VSYNC
tv(HSYNC)
tv(DE) th(DE)
Pixel
1
Pixel
2
tv(DATA)
th(DATA)
Pixel
N
HSYNC
width
Horizontal
back porch
Active width Horizontal
back porch
One line
MS32750V1
LCD_CLK
tv(VSYNC)
LCD_R[0:7]
LCD_G[0:7]
LCD_B[0:7]
tCLK
LCD_VSYNC
tv(VSYNC)
M lines data
VSYNC
width
Vertical
back porch
Active width Vertical
back porch
One frame
DS13315 Rev 1 211/259
STM32H730xB Electrical characteristics
231
6.3.35 Timer characteristics
The parameters given in Table 103 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
6.3.36 Low-power timer characteristics
The parameters given in Table 104 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 103. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.
2. Guaranteed by design.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 or APB2 is up to 275 MHz, by setting the TIMPRE bit in the
RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4x
Frcc_pclkx1 or TIMxCLK = 4x Frcc_pclkx2.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
275 MHz
1-
tTIMxCLK
AHB/APBx
prescaler>4, fTIMxCLK =
137.5 MHz
1-
tTIMxCLK
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 240 MHz
0fTIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT Maximum possible count
with 32-bit counter --
65536 ×
65536 tTIMxCLK
Table 104. LPTIMx characteristics(1)(2)
1. LPTIMx is used as a general term to refer to the LPTIM1 to LPTIM5 timers.
2. Guaranteed by design.
Symbol Parameter Min Max Unit
tres(TIM) Timer resolution time 1 - tTIMxCLK
fLPTIMxCLK Timer kernel clock 0 137.5
MHz
fEXT Timer external clock frequency on Input1 and
Input2 0fLPTIMxCLK/2
ResTIM Timer resolution - 16 bit
tMAX_COUNT Maximum possible count - 65536 tTIMxCLK
Electrical characteristics STM32H730xB
212/259 DS13315 Rev 1
6.3.37 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual revision 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0399 reference manual) and when the i2c_ker_ck frequency is
greater than the minimum shown in the table below:
The SDA and SCL I/O requirements are met with the following restrictions:
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,
the PMOS connected between the I/O pin and VDDIOx is disabled, but still present.
The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the
maximum load CLoad supported in Fm+, which is given by these formulas:
tr(SDA/SCL)=0.8473xRPxCLoad
RP(min)= (VDD-VOL(max))/IOL(max)
Where RP is the I2C lines pull-up. Refer to Section 6.3.16: I/O port characteristics
for
the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog fil-
ter characteristics:
Table 105. Minimum i2c_ker_ck frequency in all I2C modes
Symbol Parameter Condition Min Unit
f(I2CCLK) I2CCLK
frequency
Standard-mode - 2
MHz
Fast-mode
Analog Filtre ON
DNF=0 8
Analog Filtre OFF
DNF=1 9
Fast-mode Plus
Analog Filtre ON
DNF=0 17
Analog Filtre OFF
DNF=1 16 -
Table 106. I2C analog filter characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes
that are suppressed by analog
filter
50(2)
2. Spikes with widths below tAF(min) are filtered.
80(3) ns
DS13315 Rev 1 213/259
STM32H730xB Electrical characteristics
231
USART interface characteristics
Unless otherwise specified, the parameters given in Table 107 for USART are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 12: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, CK, TX, RX for USART).
3. Spikes with widths above tAF(max) are not filtered.
Table 107. USART characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fCK USART clock frequency
Master mode,
1.62 V < VDD < 3.6 V
--
17.0
MHz
Slave receiver mode,
1.62 V < VDD < 3.6 V 45.0
Slave transmitter mode,
1.62 V < VDD < 3.6 V
--
27.0
Slave transmitter mode,
2.5 V < VDD < 3.6 V 37.0
tsu(NSS) NSS setup time Slave mode tker+1 - -
ns
th(NSS) NSS hold time Slave mode 2 - -
tw(SCKH),
tw(SCKL)
CK high and low time Master mode 1/fCK/2-2 1/fCK/2 1/fCK/2+2
tsu(RX) Data input setup time
Master mode 16 - -
Slave mode 1.0 - -
th(RX) Data input hold time
Master mode 0 - -
Slave mode 2.0 - -
tv(TX) Data output valid time
Slave mode, ,
1.62 V < VDD < 3.6 V - 12.0 18
Slave mode, ,
2.5 V < VDD < 3.6 V - 12.0 13.5
Master mode - 0.5 1
th(TX) Data output hold time
Slave mode 9 - -
Master mode 0 - -
1. Guaranteed by characterization results.
Electrical characteristics STM32H730xB
214/259 DS13315 Rev 1
Figure 54. USART timing diagram in Master mode
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 55. USART timing diagram in Slave mode
MSv65386V1
SCK Output
CPHA=0
TX
OUTPUT
RX
INPUT
CPHA=0
LSB OUT
LSB IN
CPOL=0
CPOL=1
BIT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL) tr(SCK)/tf(SCK)
th(RX)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(RX)
tv(TX) th(TX)
MSB IN BIT6 IN
MSB OUT
MSv65387V1
NSS
input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
TX output
RX input
tsu(RX)
th(RX)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(TX)
tsu(NSS)
ta(TX) tv(TX)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(TX) tf(SCK)
Last bit IN
DS13315 Rev 1 215/259
STM32H730xB Electrical characteristics
231
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 108 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 12: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 108. SPI characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fSCK SPI clock frequency
Master mode,
2.7 V < VDD < 3.6 V, SPI1, 2, 3
--
125
MHz
Master mode,
1.62 V < VDD < 3.6 V, SPI1, 2,
3
80/66(3)
Master mode,
1.62 V < VDD < 3.6 V, SPI4, 5,
6
68.5
Slave receiver mode,
1.62 V < VDD < 3.6 V, SPI1, 2,
3
100
Slave receiver mode,
1.62 V < VDD < 3.6 V, SPI4, 5,
6
68.5
Slave mode transmitter/full
duplex, 2.7 V < VDD < 3.6 V 45
Slave mode transmitter/full
duplex, 1.62 V < VDD < 3.6 V 42.5/31(4)
tsu(NSS) NSS setup time Slave mode 2 - -
-
th(NSS) NSS hold time Slave mode 1 - -
tw(SCKH),
tw(SCKL)
SCK high and low time Master mode tSCK/2-1(5) tSCK/2(5) tSCK/2+1(5)
Electrical characteristics STM32H730xB
216/259 DS13315 Rev 1
Figure 56. SPI timing diagram - slave mode and CPHA = 0
tsu(MI) Data input setup time
Master mode 2.5 - -
ns
tsu(SI) Slave mode 1 - -
th(MI) Data input hold time
Master mode 3 - -
th(SI) Slave mode 1.5 - -
ta(SO) Data output access time Slave mode 9 13 27
tdis(SO) Data output disable time Slave mode 0 1 5
tv(SO)
Data output valid time
Slave mode,
2.7 V < VDD < 3.6 V -7.511
Slave mode,
1.62 V < VDD < 3.6 V - 7.5 12/16(4)
tv(MO)
Master mode,
1.62 V < VDD < 3.6 V - 1 1.5/5.5(6)
th(SO) Data output hold time
Slave mode 7 - -
th(MO) Master mode 0.5 - -
1. Guaranteed by characterization results.
2. The values given in the above table might be degraded when PC3_C/PC2_C I/Os are used (not available on all packages).
3. This value is obtained by using PA9 or PA12 I/O.
4. This value is obtained by using PC2 or PJ11 I/O.
5. tSCK = tker_ck * baud rate prescaler.
6. This value is obtained by using PC3 or PJ10 I/O.
Table 108. SPI characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
MSv41658V1
NSS input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
MISO output
MOSI input
tsu(SI)
th(SI)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(SO)
tsu(NSS)
ta(SO) tv(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(SO) tf(SCK)
Last bit IN
DS13315 Rev 1 217/259
STM32H730xB Electrical characteristics
231
Figure 57. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 58. SPI timing diagram - master mode(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
MSv41659V1
NSS input
CPHA=1
CPOL=0
SCK input
CPHA=1
CPOL=1
MISO output
MOSI input
tsu(SI) th(SI)
tw(SCKL)
tw(SCKH)
tsu(NSS)
tc(SCK)
ta(SO) tv(SO)
First bit OUT Next bits OUT
Next bits IN
Last bit OUT
th(SO) tr(SCK)
tf(SCK) th(NSS)
tdis(SO)
First bit IN Last bit IN
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Electrical characteristics STM32H730xB
218/259 DS13315 Rev 1
I2S Interface characteristics
Unless otherwise specified, the parameters given in Table 109 for I2S are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 12: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK,SD,WS).
Table 109. I2S dynamic characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Max Unit
fMCK I2S main clock output
--50
MHz
Master transmitter - 50/40(2)
2. This value is obtained when PA9 or PA12 are used.
Master receiver - 50/40(2)
Slave transmitter - 41.5/31(3)
3. This value is obtained when PC2 is used.
Slave receiver - 50
tv(WS) WS valid time
Master mode
-2/6
(4)
4. This value is obtained when PA11 or PA15 are used.
ns
th(WS) WS hold time 1 -
tsu(WS) WS setup time
Slave mode
3-
th(WS) WS hold time 1 -
tsu(SD_MR) Data input setup time
Master receiver 2.5 -
tsu(SD_SR) Slave receiver 1 -
th(SD_MR) Data input hold time
Master receiver 3 -
th(SD_SR) Slave receiver 1.5 -
tv(SD_ST)
Data output valid time
Slave transmitter (after enable
edge) - 12/16(3)
tv(SD_MT)
Master transmitter (after
enable edge) -2/6
(5)
th(SD_ST)
Data output hold time
Slave transmitter (after enable
edge) 6.5 -
th(SD_MT)
Master transmitter (after
enable edge) 0.5 -
DS13315 Rev 1 219/259
STM32H730xB Electrical characteristics
231
Figure 59. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 60. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
5. This value is obtained when PC3 is used.
Electrical characteristics STM32H730xB
220/259 DS13315 Rev 1
SAI characteristics
Unless otherwise specified, the parameters given in Table 110 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 12: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
IO Compensation cell activated.
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
alternate function characteristics (SCK,SD,WS).
Table 110. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK SAI Main clock output - - 50
MHz
fCK SAI clock frequency(2)
Master transmitter, 2.7 V VDD 3.6 V - 45
Master transmitter, 1.62 V VDD 3.6 V - 32
Master receiver, 1.62 V VDD 3.6 V - 32
Slave transmitter, 2.7 V VDD 3.6 V - 47.5
Slave transmitter, 1.62 V VDD 3.6 V - 41.5
Slave receiver, 1.62 V VDD 3.6 V - 50
DS13315 Rev 1 221/259
STM32H730xB Electrical characteristics
231
Figure 61. SAI master timing waveforms
tv(FS) FS valid time
Master mode, 2.7 V VDD 3.6 V - 11
ns
Master mode, 1.62 V VDD 3.6 V - 15.5
tsu(FS) FS setup time Slave mode 2.5 -
th(FS) FS hold time
Master mode 6 -
Slave mode 0.5 -
tsu(SD_A_MR) Data input setup time
Master receiver 3 -
tsu(SD_B_SR) Slave receiver 3.5 -
th(SD_A_MR) Data input hold time
Master receiver 3.5 -
th(SD_B_SR) Slave receiver 0 -
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable edge),
2.7 V VDD 3.6 V - 10.5
Slave transmitter (after enable edge),
1.62 V VDD 3.6 V -12
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge) 6.5 -
tv(SD_A_MT) Data output valid time
Master transmitter (after enable edge),
2.7 V VDD 3.6 V - 10.5
Master transmitter (after enable edge),
1.62 V VDD 3.6 V - 14.5
th(SD_A_MT) Data output hold time Master transmitter (after enable edge) 6 -
1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
Table 110. SAI characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
MS32771V1
SAI_SCK_X
SAI_FS_X
(output)
1/fSCK
SAI_SD_X
(transmit)
tv(FS)
Slot n
SAI_SD_X
(receive)
th(FS)
Slot n+2
tv(SD_MT) th(SD_MT)
Slot n
tsu(SD_MR) th(SD_MR)
Electrical characteristics STM32H730xB
222/259 DS13315 Rev 1
Figure 62. SAI slave timing waveforms
MDIO characteristics
Unless otherwise specified, the parameters given in Table 111 for the MDIO are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD supply
voltage conditions summarized in Table 12: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 10
I/O Compensation cell activated.
Measurement points are done at CMOS levels: 0.5VDD
HSLV activated when VDD 2.7 V
VOS level set to VOS0
Table 111. MDIO Slave timing parameters
Symbol Parameter Min Typ Max Unit
FMDC Management Data Clock - - 30 MHz
td(MDIO) Management Data Iput/output output valid time 8 10 18
nstsu(MDIO) Management Data Iput/output setup time 1 - -
th(MDIO) Management Data Iput/output hold time 1 - -
MS32772V1
SAI_SCK_X
SAI_FS_X
(input)
SAI_SD_X
(transmit)
tsu(FS)
Slot n
SAI_SD_X
(receive)
tw(CKH_X) th(FS)
Slot n+2
tv(SD_ST) th(SD_ST)
Slot n
tsu(SD_SR)
tw(CKL_X)
th(SD_SR)
1/fSCK
DS13315 Rev 1 223/259
STM32H730xB Electrical characteristics
231
Figure 63. MDIO Slave timing diagram
SD/SDIO MMC card host interface (SDMMC) characteristics
Unless otherwise specified, the parameters given in Table 112 and Table 113 for SDIO are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage summarized in Table 12: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 112. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP
Clock frequency in data transfer
mode - 0 - 120 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time
fPP =52MHz
8.5 9.5 -
ns
tW(CKH) Clock high time 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR mode
tISU Input setup time HS - 2.5 - -
nstIH Input hold time HS - 0.5 - -
tIDW(3) Input valid window (variable window) - 1.5 - -
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR mode
tOV Output valid time HS - - 5.5 6
ns
tOH Output hold time HS - 4.5 - -
MSv40460V1
tsu(MDIO)
tMDC)
th(MDIO)
td(MDIO)
Electrical characteristics STM32H730xB
224/259 DS13315 Rev 1
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD - 1.5 -
ns
tIHD Input hold time SD - 0.5 -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD - - 1 1
ns
tOHD Output hold default time SD - 0 - -
1. Guaranteed by characterization results.
2. Above 100 MHz, CL = 20 pF.
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
Table 113. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V(1)(2)
1. Guaranteed by characterization results.
2. CL = 20 pF.
Symbol Parameter Conditions Min Typ Max Unit
fPP
Clock frequency in data transfer
mode -0-85MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time
fPP =52 MHz
8.5 9.5 -
ns
tW(CKH) Clock high time 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS - 1.5 - -
ns
tIH Input hold time HS - 1.5 - -
tIDW(3)
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
Input valid window (variable
window) -3.5- -
CMD, D outputs (referenced to CK) in eMMC mode
tOVD Output valid time HS - - 6 6.5
ns
tOHD Output hold time HS - 5.5 - -
Table 112. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
DS13315 Rev 1 225/259
STM32H730xB Electrical characteristics
231
Figure 64. SDIO high-speed mode
Figure 65. SD default mode
Figure 66. DDR mode
ai14888
CK
D, CMD
(output)
tOVD tOHD
MSv36879V3
Data output IO0 IO2 IO4
Clock
Data input IO0 IO2 IO4
t(CLK) tw(CLKH) tw(CLKL)
tr(CLK) tf(CLK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
IO1 IO3 IO5
IO1 IO3 IO5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
Electrical characteristics STM32H730xB
226/259 DS13315 Rev 1
USB OTG_FS characteristics
Unless otherwise specified, the parameters given in Table 115 for ULPI are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
summarized in Table 12: General operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
USB OTG_HS characteristics
Unless otherwise specified, the parameters given in Table 115 for ULPI are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
summarized in Table 12: General operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 114. USB OTG_FS electrical characteristics
Symbol Parameter Condition Min Typ Max Unit
VDD33US
B
USB transceiver operating voltage - 3.0(1)
1. The USB functionality is ensured down to 2.7 V. However, not all USB electrical characteristics are
degraded in the 2.7 to 3.0 V voltage range.
-3.6V
RPUI
Embedded USB_DP pull-up value
during idle - 900 1250 1600
RPUR
Embedded USB_DP pull-up value
during reception - 1400 2300 3200
ZDRV Output driver impedance(2)
2. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.
Driver high
and low 28 36 44
DS13315 Rev 1 227/259
STM32H730xB Electrical characteristics
231
Figure 67. ULPI timing diagram
Table 115. Dynamics characteristics: USB ULPI(1)
1. Guaranteed by characterization results.
Symbol Parameter Condition Min Typ Max Unit
tSC
Control in (ULPI_DIR , ULPI_NXT)
setup time -5.5--
ns
tHC
Control in (ULPI_DIR, ULPI_NXT) hold
time -0--
tSD Data in setup time - 2.5 - -
tHD Data in hold time - 0 - -
tDC/tDD Control/Datal output delay
2.7 V < VDD < 3.6 V,
CL = 20 pF -6.08.0
1.71 V < VDD < 3.6 V
, CL = 15 pF -6.012
Clock
Control In
(ULPI_DIR,
ULPI_NXT)
data In
(8-bit)
Control out
(ULPI_STP)
data out
(8-bit)
tDD
tDC
tHD
tSD
tHC
tSC
ai17361c
tDC
Electrical characteristics STM32H730xB
228/259 DS13315 Rev 1
Ethernet interface characteristics
Unless otherwise specified, the parameters given in Table 116, Table 117 and Table 118 for
SMI, RMII and MII are derived from tests performed under the ambient temperature,
frcc_c_ck frequency and VDD supply voltage conditions summarized in Table 12: General
operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics:
Figure 68. Ethernet SMI timing diagram
Table 116. Dynamics characteristics: Ethernet MAC signals for SMI (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time( 2.5 MHz) 400 400 403
ns
Td(MDIO) Write data valid time 0.5 1.5 4
tsu(MDIO) Read data setup time 12.5 - -
th(MDIO) Read data hold time 0 - -
MS31384V1
ETH_MDC
ETH_MDIO(O)
ETH_MDIO(I)
tMDC
td(MDIO)
tsu(MDIO) th(MDIO)
DS13315 Rev 1 229/259
STM32H730xB Electrical characteristics
231
Figure 69. Ethernet RMII timing diagram
Table 117. Dynamics characteristics: Ethernet MAC signals for RMII (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 2 - -
ns
tih(RXD) Receive data hold time 2 - -
tsu(CRS) Carrier sense setup time 1.5 - -
tih(CRS) Carrier sense hold time 1.5 - -
td(TXEN) Transmit enable valid delay time 8 0 10.5
td(TXD) Transmit data valid delay time 7 8 9.5
Table 118. Dynamics characteristics: Ethernet MAC signals for MII (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 2.0 - -
ns
tih(RXD) Receive data hold time 2.0 - -
tsu(DV) Data valid setup time 1.5 - -
tih(DV) Data valid hold time 1.5 - -
tsu(ER) Error setup time 1.5 - -
tih(ER) Error hold time 0.5 - -
td(TXEN) Transmit enable valid delay time 9.0 11 19
td(TXD) Transmit data valid delay time 8.5 10 19
ai15667b
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
td(TXEN)
td(TXD)
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
Electrical characteristics STM32H730xB
230/259 DS13315 Rev 1
Figure 70. Ethernet MII timing diagram
JTAG/SWD interface characteristics
Unless otherwise specified, the parameters given in Table 119 and Table 120 for
JTAG/SWD are derived from tests performed under the ambient temperature, frcc_c_ck
frequency and VDD supply voltage summarized in Table 12: General operating conditions,
with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics:
Table 119. Dynamics JTAG characteristics
Symbol Parameter Conditions Min Typ Max Unit
Fpp TCK clock frequency
2.7V <VDD< 3.6 V - - 37
MHz
1/tc(TCK) 1.62 <VDD< 3.6 V - - 27.5
tisu(TMS) TMS input setup time - 2.5 - -
tih(TMS) TMS input hold time - 1 - -
tisu(TDI) TDI input setup time - 1.5 - - -
tih(TDI) TDI input hold time - 1 - - -
tov(TDO) TDO output valid time
2.7V <VDD< 3.6 V - 8 13.5 -
1.62 <VDD< 3.6 V - 8 18 -
toh(TDO) TDO output hold time - 7 - - -
ai15668b
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
td(TXEN)
td(TXD)
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
DS13315 Rev 1 231/259
STM32H730xB Electrical characteristics
231
Figure 71. JTAG timing diagram
Figure 72. SWD timing diagram
Table 120. Dynamics SWD characteristics
Symbol Parameter Conditions Min Typ Max Unit
Fpp SWCLK clock frequency
2.7V <VDD< 3.6 V - - 71
MHz
1/tc(SWCLK) 1.62 <VDD< 3.6 V - - 52.5
tisu(SWDIO) SWDIO input setup time - 2.5 - - -
tih(SWDIO) SWDIO input hold time - 1 - - -
tov(SWDIO) SWDIO output valid time
2.7V <VDD< 3.6 V - 8.5 14 -
1.62 <VDD< 3.6 V -8.519 -
toh(SWDIO) SWDIO output hold time - 8 - - -
MSv40458V1
TDI/TMS
TCK
TDO
t
c(TCK)
t
w(TCKL)
t
w(TCKH)
t
h(TMS/TDI)
t
su(TMS/TDI)
t
ov(TDO)
t
oh(TDO)
MSv40459V1
SWDIO
SWCLK
SWDIO
t
c(SWCLK)
t
wSWCLKL)
t
w(SWCLKH)
t
h(SWDIO)
t
su(SWDIO)
t
ov(SWDIO)
t
oh(SWDIO)
(receive)
(transmit)
Package information STM32H730xB
232/259 DS13315 Rev 1
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at www.st.com. ECOPACK
is an ST trademark.
7.1 LQFP100 package information
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.
Figure 73. LQFP100 package outline
1. Drawing is not to scale.
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
125
26
100
76
75 51
50
1L_ME_V5
A2
A
A1
L1
L
c
b
A1
DS13315 Rev 1 233/259
STM32H730xB Package information
257
Table 121. LQPF100 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
Package information STM32H730xB
234/259 DS13315 Rev 1
Figure 74. LQFP100 package recommended footprint
1. Dimensions are expressed in millimeters.
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906c
DS13315 Rev 1 235/259
STM32H730xB Package information
257
Device marking for LQFP100
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 75. LQFP100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv65317V1
STM32H730
VBT6
YWW
Revision code
Product identification(1)
Date code
Pin 1
indentifier
R
Package information STM32H730xB
236/259 DS13315 Rev 1
7.2 TFBGA100 package information
TFBGA100 is a 100-ball, 8 x 8 mm, 0.8 mm pitch, thin fine-pitch ball grid array package.
Figure 76. TFBGA100 package outline
1. Drawing is not to scale.
SEATING
PLANE
12345678910
K
J
H
G
F
E
D
C
B
A
A2
A1
A
C
ddd C
(100 BALLS)
b
eee
fff
CAB
C
D
E
F
e
B
Ge
A1 ball
identifier
A1 ball
index
area
A
A08Q_ME_V1
D1
E1
BOTTOM VIEW TOP VIEW
DS13315 Rev 1 237/259
STM32H730xB Package information
257
Figure 77. TFBGA100 package recommended footprint
1. Dimensions are expressed in millimeters.
Table 122. TFBGA100 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 7.850 8.000 8.150 0.3091 0.3150 0.3209
D1 - 7.200 - 0.2835 -
E 7.850 8.000 8.150 0.3091 0.3150 0.3209
E1 - 7.200 - - 0.2835 -
e - 0.800 - - 0.0315 -
F - 0.400 - - 0.0157 -
G - 0.400 - - 0.0157 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
A08Q_FP_V1
Dpad
Dsm
Package information STM32H730xB
238/259 DS13315 Rev 1
Device marking for TFBGA100
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 78. TFBGA100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
Table 123. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)
Dimension Recommended values
Pitch 0.8
Dpad 0.400 mm
Dsm 0.470 mm typ (depends on the soldermask
registration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
MSv65318V1
Revision code
Ball
A1identifier
STM32H730
VBH6
Y WW
Product
identification(1)
Date code
R
DS13315 Rev 1 239/259
STM32H730xB Package information
257
7.3 LQFP144 package information
LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.
Figure 79. LQFP144 package outline
1. Drawing is not to scale.
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING
PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
136
37
144
109
108 73
72
1A_ME_V4
A2
A
A1
L1
L
c
b
A1
Package information STM32H730xB
240/259 DS13315 Rev 1
Table 124. LQFP144 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DS13315 Rev 1 241/259
STM32H730xB Package information
257
Figure 80. LQFP144 package recommended footprint
1. Dimensions are expressed in millimeters.
0.5
0.35
19.9 17.85
22.6
1.35
22.6
19.9
ai14905e
136
37
72
73108
109
144
Package information STM32H730xB
242/259 DS13315 Rev 1
Device marking for LQFP144
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 81. LQFP144 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv65319V1
Date code
Pin 1 identifier
ES32H730
ZBT6
Y WW
Product
identification(1)
Revision code
R
DS13315 Rev 1 243/259
STM32H730xB Package information
257
7.4 UFBGA144 package information
UFBGA144 is a 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.
Figure 82. UFBGA144 package outline
1. Drawing is not to scale.
Table 125. UFBGA144 package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.320 0.0091 0.0110 0.0126
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.450 5.500 5.550 0.2146 0.2165 0.2185
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.450 5.500 5.550 0.2146 0.2165 0.2185
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
A0AS_ME_V2
Seating plane
A1
eF
F
D
M
Øb (144 balls)
A
E
TOP VIEWBOTTOM VIEW
112
e
A
A2
Y
X
Z
ddd Z
D1
E1
eee Z Y X
fff
Ø
Ø
M
MZ
A3
A4
A1 ball
identifier
A1 ball
index area
Package information STM32H730xB
244/259 DS13315 Rev 1
Figure 83. UFBGA144 package recommended footprint
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 126. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)
Dimension Recommended values
Pitch 0.50 mm
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
Table 125. UFBGA144 package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
BGA_WLCSP_FT_V1
Dsm
Dpad
DS13315 Rev 1 245/259
STM32H730xB Package information
257
Device marking for UFBGA144
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 84. UFBGA144 marking example (package top view
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv65320V1
Revision code
Ball A1
identifier
Product identification(1)
Date code
STM32H
730ZBI6
WWY R
Package information STM32H730xB
246/259 DS13315 Rev 1
7.5 UFBGA169 package information
UFBGA169 is a 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.
Figure 85. UFBGA169 package outline
1. Drawing is not in scale.
Table 127. UFBGA169 package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.950 6.000 6.050 0.2343 0.2362 0.2382
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.950 6.000 6.050 0.2343 0.2362 0.2382
e - 0.500 - - 0.0197 -
F 0.450 0.500 0.550 0.0177 0.0197 0.0217
A0YV_ME_V2
Seating plane
A2
A1
A
eF
F
e
N
A
BOTTOM VIEW
E
D
TOP VIEW
Øb (169 balls)
Y
X
YeeeØM
fffØM
Z
Z
X
A1 ball
identifier
A1 ball
index area
b
D1
E1
A4
A3
13 1
Z
Z
ddd
SIDE VIEW
DS13315 Rev 1 247/259
STM32H730xB Package information
257
Device marking for UFBGA169
The following figure gives an example of topside marking versus ball A1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 86. UFBGA169 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 127. UFBGA169 package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
MSv65321V1
Revision code
Ball A1
identifier
Product identification(1)
Date code
STM32H
730ABI6Q
WWY R
Package information STM32H730xB
248/259 DS13315 Rev 1
7.6 LQFP176 package information
LQFP176 is a 176-pin, 24 x 24 mm low profile quad flat package.
Figure 87. LQFP176 package outline
1. Drawing is not to scale.
1T_ME_V2
A2
A
e
EHE
D
HD
ZD
ZE
b
0.25 mm
gauge plane
A1 L
L1
k
c
IDENTIFICATION
PIN 1
Seating plane
C
A1
DS13315 Rev 1 249/259
STM32H730xB Package information
257
Table 128. LQFP176 package mechanical data
Ref.
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
HD 25.900 - 26.100 1.0197 - 1.0276
ZD - 1.250 - - 0.0492 -
E 23.900 - 24.100 0.9409 - 0.9488
HE 25.900 - 26.100 1.0197 - 1.0276
ZE - 1.250 - - 0.0492 -
e - 0.500 - - 0.0197 -
L(2) 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
k - -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Package information STM32H730xB
250/259 DS13315 Rev 1
Figure 88. LQFP176 package recommended footprint
1. Dimensions are expressed in millimeters.
1T_FP_V1
133
132
1.2
0.3
0.5
89
88 1.2
44
45
21.8
26.7
1176
26.7
21.8
DS13315 Rev 1 251/259
STM32H730xB Package information
257
Device marking for LQFP176
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 89. LQFP176 marking example (package top view
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv65323V1
Date code
Pin 1 identifier
STM32H730IBT6Q
Y WW
Product
identification(1)
Revision code
R
Package information STM32H730xB
252/259 DS13315 Rev 1
7.7 UFBGA176+25 package information
UFBGA176+25 is a 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array
package.
Figure 90. UFBGA176+25 package outline
1. Drawing is not to scale.
Table 129. UFBGA176+25 package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.130 - - 0.0051 -
A3 - 0.450 - - 0.0177 -
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 9.850 10.000 10.150 0.3878 0.3937 0.3996
D1 - 9.100 - - 0.3583 -
E 9.850 10.000 10.150 0.3878 0.3937 0.3996
E1 - 9.100 - - 0.3583 -
e - 0.650 - - 0.0256 -
Z - 0.450 - - 0.0177 -
ddd - - 0.080 - - 0.0031
A0E7_ME_V8
D1
Seating plane
A3
Cddd
A1 A
eZ
Z
e
R
A
15 1
BOTTOM VIEW
E
D
TOP VIEW
Øb (176 + 25 balls)
B
A
B
eeeØ M
fffØM
C
C
A
C
A1 ball
identifier
A1 ball
index
area
b
A4
E1
A2
DS13315 Rev 1 253/259
STM32H730xB Package information
257
Figure 91. UFBGA176+25 package recommended footprint
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 130. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)
Dimension Recommended values
Pitch 0.65 mm
Dpad 0.300 mm
Dsm 0.400 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.300 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Table 129. UFBGA176+25 package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A0E7_FP_V1
Dpad
Dsm
Package information STM32H730xB
254/259 DS13315 Rev 1
Device marking for UFBGA176+25
The following figure gives an example of topside marking versus ball A1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 92. UFBGA176+25 marking example (package top view
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv65322V1
Revision code
Ball
A1identifier
STM32H730
IBK6Q
Y WW
Product
identification(1)
Date code
R
DS13315 Rev 1 255/259
STM32H730xB Package information
257
7.8 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 131. Thermal characteristics
Symbol Definition Parameter Value Unit
ΘJA
Thermal resistance
junction-ambient
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm /0.5 mm pitch 43.8
°C/W
Thermal resistance junction-ambient
TFBGA100 - 8 x 8 mm /0.8 mm pitch 43.2
Thermal resistance junction-ambient
LQFP144 - 20 x 20 mm /0.5 mm pitch 44.8
Thermal resistance junction-ambient
UFBGA144 - 7 x 7 mm /0.5 mm pitch TBD
Thermal resistance junction-ambient
UFBGA169 - 7 x 7 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
LQFP176 - 24 x 24 mm / 0.5 mm pitch 48.3
Thermal resistance junction-ambient
UFBGA176+25 - 10 x 10 mm / 0.65 mm pitch 38
Package information STM32H730xB
256/259 DS13315 Rev 1
7.8.1 Reference documents
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
For information on thermal management, refer to application note “Thermal
management guidelines for STM32 applications” (AN5036) available from www.st.com.
ΘJB
Thermal resistance
junction-board
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm /0.5 mm pitch 19.8
°C/W
Thermal resistance junction-ambient
TFBGA100 - 8 x 8 mm /0.8 mm pitch 24.8
Thermal resistance junction-ambient
LQFP144 - 20 x 20 mm /0.5 mm pitch 24.4
Thermal resistance junction-ambient
UFBGA144 - 7 x 7 mm /0.5 mm pitch TBD
Thermal resistance junction-ambient
UFBGA169 - 7 x 7 mm / 0.5 mm pitch 18
Thermal resistance junction-ambient
LQFP176 - 24 x 24 mm / 0.5 mm pitch 29.1
Thermal resistance junction-ambient
UFBGA176+25 - 10 x 10 mm / 0.65 mm pitch 20
ΘJC
Thermal resistance
junction-case
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm /0.5 mm pitch 7.3
°C/W
Thermal resistance junction-ambient
TFBGA100 - 8 x 8 mm /0.8 mm pitch 13.2
Thermal resistance junction-ambient
LQFP144 - 20 x 20 mm /0.5 mm pitch 7.4
Thermal resistance junction-ambient
UFBGA144 - 7 x 7 mm /0.5 mm pitch TBD
Thermal resistance junction-ambient
UFBGA169 - 7 x 7 mm / 0.5 mm pitch 11
Thermal resistance junction-ambient
LQFP176 - 24 x 24 mm / 0.5 mm pitch 7.9
Thermal resistance junction-ambient
UFBGA176+25 - 10 x 10 mm / 0.65 mm pitch 24
Table 131. Thermal characteristics (continued)
Symbol Definition Parameter Value Unit
DS13315 Rev 1 257/259
STM32H730xB Ordering information
257
8 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Example: STM32 H 730 V B T 6 Q TR
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
H = High performance
Device subfamily
730 = STM32H730
Pin count
V = 100 pins
Z = 144 pins
A = 169 pins
I = 176 pins/balls
Flash memory size
B= 128 Kbytes
Package
T = LQFP ECOPACK2
K = UFBGA pitch 0.65 mm ECOPACK2
I = UFBGA pitch 0.5 mm ECOPACK2
H = TFBGA ECOPACK2
Temperature range
6 = –40 to 85 °C
Option
Q = with SMPS
Blank = without SMPS
Packing
TR = tape and reel
No character = tray or tube
Revision history STM32H730xB
258/259 DS13315 Rev 1
9 Revision history
Table 132. Document revision history
Date Revision Changes
10-Jul-2020 1 Initial release.
DS13315 Rev 1 259/259
STM32H730xB
259
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved