Key Parameters VRRM = 2300 IFAVM = 1140 IFSM = 13.5 VF0 = 0.83 rF = 0.30 Avalanche Rectifier Diode V A kA V m 5SDA 10D2303 Doc. No. 5SYA 1120 - 01 Apr-98 Features * * * * * Optimized for line frequency rectifiers Low on-state voltage, narrow VF-bands for parallel operation Self protected against transient overvoltages Guaranteed maximum avalanche power dissipation Industry standard housing Blocking Part number 5SDA 10D2303 5SDA 10D2003 5SDA 10D1703 Condition VRRM 2300 2000 1700 f = 50 Hz tP = 10 ms VRSM 2530 2200 1870 tP = 10 ms Tj = 160C IRRM 50 mA VRRM Tj = 160C PRSM 70 kW tP = 20 s Tj = 50 kW tP = 20 s Tj = 160C Mechanical data FM a Mounting force min. 10 kN max. 12 kN m Acceleration Device unclamped Device clamped Weight DS Surface creepage distance Da Air strike distance 2 50 m/s 2 200 m/s 0.25 kg 30 mm 20.5 mm ABB Semiconductors AG 45C ABB Semiconductors AG 5SDA 10D2303 On-state IFAVM Max. average on-state current 1140 A IFRMS Max. RMS on-state current 1790 A IFSM Max. peak non-repetitive 13.5 kA tp = 10 ms Tj = surge current 14.5 kA tp = 8.3 ms After surge: 2 tp = 10 ms VR 0V 2 87510 A s tp = 8.3 ms IF = 1000 - 3000 A Tj = 160C IF = Tj = 25C 2 It Half sine wave, TC = 85C 910103 A s Limiting load integral 3 VF0 Threshold voltage 0.83 V rF Slope resistance 0.30 m VF min On-state voltage 1.20 V VF max On-state voltage 1.35 V 1800 A 160C Thermal Tj Storage and operating -40...160C junction temperature range RthJC RthCH Thermal resistance 80 K/kW Anode side cooled junction to case 80 K/kW Cathode side cooled 40 K/kW Double side cooled 16 K/kW Single side cooled 8 K/kW Double side cooled Thermal resistance case to heat sink 45 Analytical function for transient thermal impedance: 4 ZthJC(t) = R (1- e i -t/ i ) 40 Fm =10...12 kN Zth 35 Double Side Cooling [K/kW] 30 25 i =1 20 15 i 1 2 3 4 10 R (K/kW) 20.95 10.57 7.15 1.33 5 i (s) 0.396 0.072 0.009 0.0044 0 10-3 2 3 4 5 67 10-2 2 3 4 5 67 10-1 t [s] 2 3 4 5 56 100 2 3 4 5 67 101 For a given case temperature Tc at ambient temperature Ta the maximum on-state current can be calculated as follows: IFAVM = where P= -VF0 + 2 (VF0)2 + 4 * f * rf * P 2 * f 2 * rf TJ max - TC Rthjc or P= TJ max - TA Rthja IFAVM (A) T max (C) Rthja (K/kW) 2 f = 1 2.5 3.1 6 P (W) Tc (C) RthJC (K/kW) VF0 (V) Ta (C) rF () for DC current for half-sine wave for 120el., sine for 60 el., sine Doc. No. 5SYA 1120 - 01 Apr-98 ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306