Features
USB power delivery (PD) controller
Type-C attach and cable orientation detection
Single role: provider
Full hardware solution - no software
I2C interface + interrupt (optional connection to MCU)
Supports up to 5 power data objects (PDO)
Configurable start-up profiles
Integrated VBUS voltage monitoring
Internal and/or external VBUS discharge path
Short-to-VBUS protections on CC pins (22 V)
High voltage protections on VBUS pins (28 V)
High and/or low voltage power supply:
VSYS = [3.0 V; 5.5 V]
VDD = [4.1 V; 22 V]
Automotive grade available
Fully compatible with:
USB Type-C™ rev 1.2
USB PD rev 2.0
Certification test ID 1030023
Applications
AC adapters and power supplies for: computer, consumer or portable consumer
applications
Smart plugs and wall adapters
Power hubs and docking stations
Displays
Any Type-C source device
Description
The STUSB4700 is a new family of USB power delivery controllers communicating
over Type-C™ configuration channel pin (CC) to negotiate a given amount of power
to be sourced to an inquiring consumer device.
The STUSB4700 addresses provider/DFP devices such as notebooks, tablets and
AC adapters. The device can handle any connections to a sink or DRP without any
MCU control, from the device attachment to power negotiation, including VBUS
discharge and protections.
Product status link
STUSB4700
Standalone autonomous USB PD controller with short-to-VBUS protections
STUSB4700
Datasheet
DS11977 - Rev 4 - June 2018
For further information contact your local STMicroelectronics sales office.
www.st.com
1Functional description
The STUSB4700 is an autonomous USB power delivery controller optimized as a provider. It offers an open drain
GPIO interface to make direct interconnection with a power regulation stage.
The STUSB4700 offers the benefits of a full hardware USB PD stack allowing robust and safe USB PD
negotiation in line with USB PD standard. The STUSB4700 is ideal for provider applications in which digital or
software intelligence is limited or missing.
The STUSB4700 main functions are:
Detect the connection between two USB ports (attach detection)
Establish a valid host to device connection
Discover and configure VBUS: Type-C low, medium or high current mode
Resolve cable orientation
Negotiate a USB power delivery contract with a PD capable device
Configure the power source accordingly
Monitor VBUS, manage transitions, handle protections and ensure user and device safety
Additionally, the STUSB4700 offers 5 customizable power data objects (PDOs), 5 general purpose I/Os, an
integrated discharge path, and is natively robust to high voltage peaks.
Figure 1. Functional block diagram
GND
SCL
SDA
Protocol
Layer
CC
line
access
BMC
driver
CC2
CC1
VDD
Physical
Layer
port status
VBUS status
Internal
supply
VREG_2V7
VREG_1V2
RESET
POR &
reset
generator
GPIO[4..0]
VBUS_SENSE
voltage
monitoring Discharge
path
VBUS_DISCH
ALERT#
I²C
slave
VSYS
VBUS_EN_SRC
A_B_SIDE
VCONN
VCONN SW
(OVP & OCP)
Device
Policy
Manager
VVAR_ADDR0
Control
Port C
controller
Policy
Engine
STUSB4700
Functional description
DS11977 - Rev 4 page 2/43
2Inputs/outputs
2.1 Pinout
Figure 2. Pin connections (top view)
7 8 9 10 11 12
124 23 22 21 20 19
18
NC
CC1
CC2
NC
VCONN
SCL
VBUS_SENSE
A_B_SIDE
GPIO3
GPIO2
VVAR_ADDR0
RESET
SDA
ALERT#
GND
GPIO0 VBUS_DISCH
VBUS_EN_SRC
VREG_1V2
VREG_2V7
VDD
VSYS
GPIO4
EP
GPIO1
2
3
4
5
6
17
16
15
14
13
STUSB4700
Inputs/outputs
DS11977 - Rev 4 page 3/43
2.2 Pin list
Table 1. Pin function list
Pin Name Type Description Connection
1 NC Ground reference channel 1 To ground
2 CC1 HV AIO Type-C configuration channel 1 Type-C receptacle A5
3 VCONN PWR Power input for active plug 5 V power source
4 CC2 HV AIO Type-C configuration channel 2 Type-C receptacle B5
5 NC - Ground reference channel 2 To ground
6 RESET DI Reset input (active high)
7 SCL DI I²C clock input To I²C master – ext. pull-up
8 SDA DI/OD I2C data input/output – active low open drain To I²C master – ext. pull-up
9 ALERT# OD I2C interrupt – active low open drain To I²C master – ext. pull-up
10 GND GND Ground To ground
11 GPIO1 OD General purpose I/O #1
12 GPIO0 OD General purpose I/O #0
13 VVAR_ADDR0 AIO Variable voltage output I2C device address 0
bit (at start-up)
14 GPIO2 OD General purpose I/O #2
15 GPIO3 OD General purpose I/O #3
16 GPIO4 OD General purpose I/O #4
17 A_B_SIDE OD Cable orientation - active low open drain USB SuperSpeed mux select –
ext. pull-up
18 VBUS_SENSE HV AI VBUS voltage monitoring and discharge path From VBUS
19 VBUS_DISCH HV OD External output discharge path enable,
active low open drain
20 VBUS_EN_SRC HV OD VBUS source power path enable – active low
open drain
To switch or power system – ext.
pull-up
21 VREG_1V2 PWR 1.2 V internal regulator output 1 µF typ. decoupling capacitor
22 VSYS PWR Power supply from system System low power (connect to
ground if not used)
23 VREG_2V7 PWR 2.7 V internal regulator output 1 µF typ. decoupling capacitor
24 VDD HV PWR Power supply from USB power line From VBUS (system side)
- EP Exposed pad Exposed pad is connected to ground To ground
STUSB4700
Pin list
DS11977 - Rev 4 page 4/43
Table 2. Legend
Type Description
D Digital
A Analog
O Output pad
I Input pad
IO Bidirectional pad
OD Open drain output
PD Pull-down
PU Pull-up
HV High voltage
PWR Power
GND Ground
STUSB4700
Pin list
DS11977 - Rev 4 page 5/43
2.3 Pin description
2.3.1 CC1 / CC2
CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation
determination and system configuration management across USB Type-C cable. CC1 and CC2 are high
impedance (HiZ) during reset.
2.3.2 RESET
Active high reset. This pin resets all analog signals, states machine and reloads configuration.
2.3.3 I2C interface pins
Table 3. I2C interface pin list
Name Description
SCL I²C clock – need external pull-up
SDA I²C data – need external pull-up
ALERT# I²C interrupt – need external pull-up
2.3.4 A_B_SIDE
This output pin provides cable orientation. It is used to establish USB SuperSpeed signals routing. The cable
orientation is also provided by an internal I2C register. This signal is not required in case of USB 2.0 support or in
case of supply only.
Table 4. USB data mux select
Value CC pin position
HiZ CC1 pin is attached to CC line
0 CC2 pin is attached to CC line
2.3.5 VBUS_SENSE
This input pin is used to sense VBUS presence, monitor VBUS voltage and discharge VBUS on USB Type-C
receptacle side.
2.3.6 VBUS_EN_SRC
In source power role, this pin allows enabling of the outgoing VBUS power when the connection to a sink is
established and VBUS is in the valid operating range. The open-drain output allows a PMOS transistor to be driven
directly. The logic value of the pin is also advertised in a dedicated I2C register bit.
2.3.7 VSYS
This is the low voltage power supply from the system (if any). VSYS connection is optional, and can be connected
directly to a single cell Lithium battery or a system power supply delivering 3.3 V or 5 V. If not used, it is
recommended to connect the pin to ground.
STUSB4700
Pin description
DS11977 - Rev 4 page 6/43
2.3.8 VDD
This is the main power supply from the USB power line for applications powered by VBUS.
This pin can be used to sense the voltage level of the main power supply providing VBUS. It allows UVLO and
OVLO voltage thresholds to be considered independently on VDD pin as additional conditions to enable the VBUS
power path through VBUS_EN_SRC pin.
2.3.9 GND
Ground.
2.3.10 VVAR_ADDR0
At start-up, this pin is latched to set I²C device address 0 bit. During operation, this output can be used as an
analog voltage output to control the power management unit. Analog value is one tenth of the requested VBUS
value. This function can be enabled through appropriate non-volatile-memory (NVM) configuration.
2.3.11 VREG2V7
This pin is used only for external decoupling of 2.7 V internal regulator.
Recommended decoupling capacitor: 1 µF typ. (0.5 µF min.; 10 µF max.).
This pin must not be used to supply any external component.
2.3.12 VREG1V2
This pin is used for external decoupling of 1.2 V internal regulator.
Recommended decoupling capacitor: 1 µF typ. (0.5 µF min.; 10 µF max.).
This pin must not be used to supply any external component.
2.3.13 VBUS_DISCH
This output pin allows an external VBUS discharge path to be controlled in addition to the internal discharge path
when required by the application. The output pin is active at the same time as the activation of the internal
discharge path.
2.3.14 VCONN
This power input is connected to a power source that can be a 5 V power supply, or a lithium battery. It is used to
supply e-marked cables. It is internally connected to power switches that are protected against short-circuit and
overvoltage. When a valid source-to-sink connection is determined and VCONN power switches enabled, VCONN is
provided by the source to the unused CC pin.
STUSB4700
Pin description
DS11977 - Rev 4 page 7/43
2.3.15 GPIO [4:0]
Table 5. GPIO0 (pin #12) configuration
Select NVM value Configuration Comments
GPIO0_sel
00b Attach Attached to sink (active low)
01b Reserved
Do not use
10b Reserved
11b Sel_PDO2 PDO2 contract (active low)
Table 6. GPIO1 (pin #11) configuration
Select NVM value Configuration Comments
GPIO1_sel
00b VBUS_VALID VBUS at expected voltage (active low)
01b Reserved
Do not use
10b Reserved
11b Sel_PDO3 PDO3 contract (active low)
Table 7. GPIO2 (pin #14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration
Select NVM value Configuration Comments
GPIO234_sel[1:0]
00b
GPIO2 = Sel_PDO2 PDO2 contract (active low)
GPIO3 = Sel_PDO3 PDO3 contract (active low)
GPIO4 = VBUS_EN_SRC_N Not VBUS_EN_SRC (active high)
01b
GPIO2 = ADDR1 I2C device address 1 bit (at start-up)
GPIO3 = ADDR2 I2C device address 2 bit (at start-up)
GPIO4 = DEBUG1 SNK_DEBUG_ACCESSORY from
Type-C
10b Reserved Do not use
11b
GPIO2 = Sel_PDO4 PDO4 contract (active low)
GPIO3 = Sel_PDO5 PDO5 contract (active low)
GPIO4 = V_TRANS_UP PDO transition up (active low for
280 ms)
Other configurations are available (please contact our customer support).
STUSB4700
Pin description
DS11977 - Rev 4 page 8/43
3Block descriptions
3.1 CC interface
The STUSB4700 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main
blocks, the CC lines interface block and the CC control logic block.
The CC lines interface block is used to:
Configure the pull-up termination mode on the CC pins
Monitor the CC pin voltage values relative to the attachment detection thresholds
Configure VCONN on the unconnected CC pin when required
Protect the CC pins against over voltage
The CC control logic block is used to:
Execute the Type-C FSM relative to the Type-C source power mode
Determine the electrical state for each CC pins relative to the detected thresholds
Evaluate the conditions relative to the CC pin states and VBUS voltage value to transition from one state to
another in the Type-C state machine
Detect and establish a valid source-to-sink connection
Determine the attached device type: sink or accessory
Determine cable orientation to allow external routing of the USB SuperSpeed data
Expose VBUS power capability: USB default, Type-C medium or Type-C high current mode
Handle hardware faults
The CC control logic block implements the Type-C state machines corresponding to source power role with
accessory support.
3.2 BMC
This block is the physical link between USB PD protocol layer and CC pin. In TX mode, it converts the data into
bi-phase mark coding (BMC), and drives the CC line to correct voltages. In RX mode, it recovers BMC data from
the CC line, and converts to baseband signaling for the protocol layer.
3.3 Protocol layer
The protocol layer has the responsibility to manage the messages from/to the physical layer. It automatically
manages the protocol receive timeouts, the message counter, the retry counter and the GoodCRC messages.
It communicates with the internal policy engine.
3.4 Policy engine
The policy engine implements the power negotiation with the connected device according to its source role, it
implements all states machine that controls protocol layer forming and scheduling the messages.
The policy engine uses the protocol layer to send/receive messages.
The policy engine interprets the device policy manager’s input in order to implement policy for port and directs the
protocol layer to send appropriate messages.
3.5 Device policy manager
The device policy manager is managing the power resources.
STUSB4700
Block descriptions
DS11977 - Rev 4 page 9/43
3.6 VBUS power path control
3.6.1 VBUS monitoring
The VBUS monitoring block supervises from the VBUS_SENSE input pin the VBUS voltage on the USB Type-C
receptacle side.
This block is used to check that VBUS is within a valid voltage range:
To establish a valid source-to-sink connection according to USB Type-C standard specification
To enable safely the VBUS power path through VBUS_EN_SRC pin
It allows detection of unexpected VBUS voltage conditions such as undervoltage or overvoltage relative to the
valid VBUS voltage range. When such conditions occur, the STUSB4700 reacts as follows:
At attachment, it prevents the source-to-sink connection and the VBUS power path assertion
After attachment, it deactivates the source-to-sink connection and disables the VBUS power path. The device
goes into error recovery state
The VBUS voltage value is automatically adjusted at attachment and at each PDO transition. The monitoring is
then disabled during T_Transition_To_PDO (default 288 ms changed through NVM programming). Additionally, if
a transition occurs to a lower voltage, the discharge path is activated during this time.
The valid VBUS voltage range is defined from the VBUS nominal voltage by a high threshold voltage and a low
threshold voltage whose minimal values are respectively VBUS+5% and VBUS-5%. The nominal threshold limits
can be shifted by a fraction of VBUS from +1% to +15% for the high threshold voltage and from -1% to -15% for
the low threshold voltage. It means the threshold limits can vary from VBUS+5% to VBUS+20% for the high limit
and from VBUS-5% to VBUS-20% for the low limit.
The threshold limits are preset by default in the NVM with different shift coefficients (see Section 8.3 Electrical and
timing characteristics). The threshold limits can be changed independently through NVM programming (see
Section 4 User-defined start-up configuration) and also by software during attachment through the I2C interface
(see Section 6 I²C register map).
3.6.2 VBUS discharge
The monitoring block handles also the internal VBUS discharge path connected to the VBUS_SENSE input pin.
The discharge path is activated at detachment, during transition to a lower PDO voltage, or when the device goes
into the error recovery state (see Section 3.8 Hardware fault management).
The automatic VBUS discharge path feature is enabled by default in the NVM and can be disabled through NVM
programming only (see Section 4 User-defined start-up configuration). Discharge time duration
(T_Transition_To_PDO and T_Transition_To_0V) are also preset by default in the NVM (see Section 8.3 Electrical
and timing characteristics). The discharge time duration can be changed through NVM programming (see Section
4 User-defined start-up configuration) and also by software through the I2C interface (see Section 6 I²C register
map).
3.6.3 VBUS power path assertion
The STUSB4700 can control the assertion of the VBUS power path on USB Type-C port, directly or indirectly,
through VBUS_EN_SRC pin.
The following table summarizes the configurations of the STUSB4700 and the operation conditions that determine
the electrical value of the VBUS_EN_SRC pin during system operations.
STUSB4700
VBUS power path control
DS11977 - Rev 4 page 10/43
Table 8. Conditions for VBUS power path assertion
Pin Electrical
value
Operating conditions
Comment
Type-C attached state VDD monitoring VBUS-SENSE pin
monitoring
VBUS_EN_SRC
0
Attached.SRC VDD > VDDUVLO if UVLO
threshold detection
enabled
and/or VDD < VDDOVLO if
OVLO threshold
detection enabled
VBUS < VMONUSBH and VBUS
> VMONUSBL if VBUS voltage
range detection enabled or
VBUS > VTHUSB if VBUS
voltage range detection
disabled
The signal is asserted
only if all the valid
operation conditions
are met
UnorientedDebug
Accessory.SRC
OrientedDebug
Accessory.SRC
HiZ Any other state
VDD < VDD if UVLO
threshold detection
enabled
or VDD > VDDOVLO if
OVLO threshold
detection enabled
VBUS > VMONUSBH or VBUS <
VMONUSBL if VBUS voltage
range detection enabled or
VBUS < VTHUSB if VBUS
voltage range detection
disabled
The signal is de-
asserted when at
least one non-valid
operation condition is
met
Note: Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see Section
4 User-defined start-up configuration) and also by software through the I2C interface (see Section 6 I²C register
map). When the UVLO and/or OVLO threshold detection is activated, the VBUS_EN_SRC pin is asserted only if
the device is attached and the valid threshold conditions on VDD are met. Once the VBUS_EN_SRC pin is
asserted, the VBUS monitoring is done on VBUS_SENSE pin instead of the VDD pin.
3.7 High voltage protection
The STUSB4700 can be safely used in systems or connected to systems that handle high voltage on the VBUS
power path. The device integrates an internal circuitry on the CC pins that tolerates high voltage and ensures a
protection up to 22 V in case of unexpected short circuit with VBUS or in case of connection to a device supplying
high voltage on VBUS.
3.8 Hardware fault management
The STUSB4700 handles hardware fault conditions related to the device itself and to the VBUS power path during
system operation.
When such conditions happen, the circuit goes into a transient error recovery state named ErrorRecovery in the
Type-C FSM. The error recovery state is equivalent to force a detach event. When entering this state, the device
de-asserts the VBUS power path by disabling the VBUS_EN_SRC pin, and it removes the terminations from the
CC pins during several tens of milliseconds. Then, it transitions to the unattached source state.
The STUSB4700 goes into error recovery state when at least one condition listed below is met:
If an overtemperature is detected, the “THERMAL_FAULT” bit is set to 1b
If an internal pull-up voltage on CC pins is below UVLO threshold, the “VPU_VALID” bit is set to 0b
If an overvoltage is detected on the CC pins, the “VPU_OVP_FAULT” bit is set to 1b
If the VBUS voltage is out of the valid voltage range during attachment, the “VBUS_VALID” bit is set to 0b
If an undervoltage is detected on the VDD pin during attachment when UVLO detection is enabled, the
“VDD_UVLO_DISABLE” bit is set to 0b
If an overvoltage is detected on the VDD pin during attachment when OVLO detection is enabled, the
“VDD_OVLO_DISABLE” bit is set to 0b
The I2C register bits mentioned above in quotes give either the state of the hardware fault when it occurs or the
setting condition to detect the hardware fault.
STUSB4700
High voltage protection
DS11977 - Rev 4 page 11/43
3.9 Accessory mode detection
The STUSB4700 supports the detection of audio accessory mode and debug accessory mode as defined in the
USB Type-C standard specification source power role with accessory support.
3.9.1 Audio accessory mode detection
The STUSB4700 detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground
by a Ra resistor from the connected device. The audio accessory detection is advertised through the
CC_ATTACHED_MODE bits of the I2C register CC_CONNECTION_STATUS.
3.9.2 Debug accessory mode detection
The STUSB4700 detects a connection to a debug and test system (DTS). The debug accessory detection is
advertised through the CC_ATTACHED_MODE bits of the I2C register CC_CONNECTION_STATUS.
The VBUS_EN_SRC pin is also asserted to allow the VBUS power path to be enabled as defined in the USB
Type-C standard specification.
A debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by a Rd
resistor from the connected device. The orientation detection is performed in two steps as described in the table
below. The A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised
through the TYPEC_FSM_STATE bits of the I2C register CC_OPERATION_STATUS.
Table 9. The orientation detection
#CC1 pin
(CC2 pin)
CC2 pin
(CC1 pin) Detection process
A_B_SIDE pin
CC1/CC2
(CC2/CC1)
Orientation detection state
TYPEC_FSM_STATE bit value
1 Rd Rd 1st step: debug accessory mode detected HiZ (HiZ) UnorientedDebugAccessory.SRC
2 Rd ≤ Ra
2nd step: orientation detected (DTS presents a
resistance to GND with a value ≤ Ra on its CC2
pin)
HiZ (0) OrientedDebugAccessory.SRC
STUSB4700
Accessory mode detection
DS11977 - Rev 4 page 12/43
4User-defined startup configuration
4.1 Parameter overview
The STUSB4700 has a set of user-defined parameters that can be customized by NVM re-programming and/or
by software through I2C interface. It allows changing the preset configuration of USB Type-C and PD interface
and to define a new configuration to meet specific customer requirements addressing various applications, use
cases or specific implementations.
The NVM re-programming overrides the initial default setting to define a new default setting that will be used at
power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into
dedicated I2C register bits. The NVM re-programming is possible few times with a customer password.
Table 10. PDO configurations in NVM
Feature Parameter Value
PDO1
Voltage 5 V
Current Configurable – defined by PDO1_I [3:0]
PDO2
Voltage Configurable – defined by PDO2_V [1:0]
Current Configurable – defined by PDO2_I [3:0]
PDO3
Voltage Configurable – defined by PDO3_V [1:0]
Current Configurable – defined by PDO3_I [3:0]
PDO4
Voltage Configurable – defined by PDO4_V [1:0]
Current Configurable – defined by PDO4_I [3:0]
PDO5
Voltage Configurable – defined by PDO5_V [1:0]
Current Configurable – defined by PDO5_I [3:0]
When a default value is changed during system boot by software, the new settings apply as long as the
STUSB4700 operates and until it is changed again. But after power-off and power-up, or after a hardware reset,
the STUSB4700 takes back default values defined in the NVM.
STUSB4700
User-defined start-up configuration
DS11977 - Rev 4 page 13/43
4.2 PDO – voltage configuration in NVM
PDO2_V [1:0], PDO3_V [1:0], PDO4_V [1:0] and PDO5_V [1:0] can be configured with the following values:
Table 11. PDO NVM voltage configuration
Value Configuration
2b00 9 V
2b01 15 V
2b10 PDO_FLEX_V1
2b11 PDO_FLEX_V2
PDO_FLEX_V1 and PDO_FLEX_V2 are defined in a specific 10-bit register, value is being expressed in 50 mV
units.
For instance:
PDO_FLEX_V1 = 10b0100100010 → 14.5 V
PDO_FLEX_V2 = 10b0110000110 → 19.5 V
4.3 PDO – current configuration in NVM
PDO1_I [3:0], PDO2_I [3:0], PDO3_I [3:0], PDO4_I [3:0] and PDO5_I [3:0] can be configured with the following
fixed values:
Table 12. PDO NVM current configuration
Value Configuration
4b0000 PDO_FLEX_I
4b0001 1.50 A
4b0010 1.75 A
4b0011 2.00 A
4b0100 2.25 A
4b0101 2.50 A
4b0110 2.75 A
4b0111 3.00 A
4b1000 3.25 A
4b1001 3.50 A
4b1010 3.75 A
4b1011 4.00 A
4b1100 4.25 A
4b1101 4.50 A
4b1110 4.75 A
4b1111 5.00 A
STUSB4700
PDO - voltage configuration in NVM
DS11977 - Rev 4 page 14/43
PDO_FLEX_I is defined in a specific 10-bit register, value is being expressed in 10 mA units. For instance:
PDO_FLEX_I = 10b0011100001 → 2.25 A
4.4 Monitoring configuration in NVM
T_Transition_To_PDO (TDISUSBPDO) can be configured from 20 to 300 ms by increments of 20 ms (0 is not
recommended)
T_Transition_To_0V (TDISUSB0V) can be configured from 84 to 1260 ms by increments of 84 ms (0 is not
recommended)
V_Shift_High (VSHUSBH) can be configured from 1% to 15% of VBUS by step of 1%
V_Shift_Low (VSHUSBL) can be configured from 1% to 15% of VBUS by step of 1%
4.5 Factory settings
Table 13. Factory NVM setting
Parameter STUSB4700QTR STUSB4700YQTR
Number of PDO 5 3
PDO1 (UVLO; OVLO) 5 V / 3 A (-10%; +12%) 5 V / 3 A (-10%; +12%)
PDO2 9 V / 3 A (-10%; +10%) 9 V / 3 A (-10%; +10%)
PDO3 12 V / 3 A (-10%; +10%) 12 V / 3 A (-10%; +10%)
PDO4 15 V / 3 A (-10%; +10%) -
PDO5 20 V / 2.25 A (-10%; +8%) -
GPIO0 Sel_PDO2 Sel_PDO2
GPIO1 Sel_PDO3 Sel_PDO3
GPIO2 Sel_PDO4 Sel_PDO2
GPIO3 Sel_PDO5 Sel_PDO3
GPIO4 V_TRANS_UP V_SRC_EN_N
Discharge time: transition to PDO 288 ms 288 ms
Discharge time: transition to 0 V 168 ms 168 ms
STUSB4700
Monitoring configuration in NVM
DS11977 - Rev 4 page 15/43
5I²C interface
5.1 Read and write operations
The I²C interface is used to configure, control and read the status of the device. It is compatible with the Philips
I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals:
SCL - serial clock line: input clock used to shift data
SDA - serial data line: input/output bidirectional data transfers
A filter rejects the potential spikes on the bus data line to preserve data integrity.
The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the
chip on the SDA line, MSB first.
The first bit must be high (START) followed by the 7-bit device address and the read/write control bit.
Eigth 7-bit device addresses are available for the STUSB4700 thanks to the external programming of DevADDR0,
DevADDR11 and/or DevADDR2 through VVAR_ADDR0, ADDR1 and ADDR2 pins respectively. It allows eight
STUSB4700 devices to be connected on the same I2C bus.
Two addresses are available by default, i.e. 0x28 or 0x29, depending on the setting of the VVAR_ADDR0 pin
(ADDR1 and ADDR2 set to 0 by default).
Table 14. Device address format
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DevADDR6 DevADDR5 DevADDR4 DevADDR3 DevADDR2 DevADDR1 DevADDR0 R/W
0 1 0 1 ADDR2 ADDR1 ADDR0 0/1
Table 15. Register address format
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RegADDR7 RegADDR6 RegADDR5 RegADDR4 RegADDR3 RegADDR2 RegADDR1 RegADDR0
Table 16. Register data format
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
Figure 3. Read operation
STUSB4700
I²C interface
DS11977 - Rev 4 page 16/43
Figure 4. Write operation
5.2 Timing specifications
The device uses a standard slave I²C channel at speed up to 400 kHz.
Table 17. I2C timing parameters - VDD = 5 V
Symbol Parameter Min. Typ. Max. Unit
Fscl SCL clock frequency 0 - 400 kHz
thd,sta Hold time (repeated) START condition 0.6 - - µs
tlow LOW period of the SCL clock 1.3 - - µs
thigh HIGH period of the SCL clock 0.6 - - µs
tsu,dat Setup time for repeated START condition 0.6 - - µs
thd,dat Data hold time 0.04 - 0.9 µs
tsu,dat Data setup time 100 - - µs
trRise time of both SDA and SCL signals 20 + 0.1 Cb- 300 ns
tfFall time of both SDA and SCL signals 20 + 0.1 Cb- 300 ns
tsu,sto Setup time for STOP condition 0.6 - - µs
tbuf Bus free time between a STOP and START condition 1.3 - - µs
CbCapacitive load for each bus line - - 400 pF
STUSB4700
Timing specifications
DS11977 - Rev 4 page 17/43
Figure 5. I²C timing diagram
STUSB4700
Timing specifications
DS11977 - Rev 4 page 18/43
6I²C register map
Table 18. Register access legend
Access code Expanded name Description
RO Read only Register can be read only
R/W Read/write Register can be read or written
RC Read and clear Register can be read and is cleared after it is read
Table 19. STUSB4700 register map overview
Address Register name Access Description
00h to 0Ah Reserved RO Do not use
0Bh ALERT_STATUS RC Alert register linked to transition registers
0Ch ALERT_STATUS_MASK_CTRL R/W Allows the interrupt mask on the ALERT_STATUS register to be changed
0Dh CC_CONNECTION_STATUS_TRANS RC Alerts about transition in CC_CONNECTION_STATUS register
0Eh CC_CONNECTION_STATUS RO Gives status on CC connection
0Fh MONITORING_STATUS_TRANS RC Alerts about transition in MONITORING_STATUS register
10h MONITORING_STATUS RO Gives status on VBUS voltage monitoring
11h CC_CONNECTION_STATUS RO Gives status on CC connection
12h HW_FAULT_STATUS_TRANS RC Alerts about transition in HW_FAULT_STATUS register
13h HW_FAULT_STATUS RO Gives status on hardware faults
14h to 17h Reserved RO Do not use
18h CC_CAPABILITY_CTRL R/W Allows CC capabilities to be changed
19h to 22h Reserved RO Do not use
23h RESET_CTRL R/W Controls the device reset by software
24h Reserved RO Do not use
25h VBUS_DISCHARGE_TIME_CTRL R/W Allows the VBUS discharge time parameters to be changed
26h VBUS_DISCHARGE_STATUS RO Gives status on VBUS discharge path activation
27h VBUS_ENABLE_STATUS RO Gives status on VBUS power path activation
28h to 2Dh Reserved RO Do not use
2Eh VBUS_MONITORING_CTRL R/W Allows the monitoring conditions of VBUS voltage to be changed
2Fh to 70h Reserved RO Do not use
71h to 74h SRC_PDO1 R/W PDO1 capabilities configuration
75h to 78h SRC_PDO2 R/W PDO2 capabilities configuration
79h to 7Ch SRC_PDO3 R/W PDO3 capabilities configuration
7Dh to 80h SRC_PDO4 R/W PDO4 capabilities configuration
81h to 84h SRC_PDO5 R/W PDO5 capabilities configuration
85h to 90h Reserved RO Do not use
91h to 94h SRC_RDO RO PDO request status
STUSB4700
I²C register map
DS11977 - Rev 4 page 19/43
Table 20. Register access legend
Access code Expanded name Description
RO Read only Register can be read only
R/W Read / Write Register can be read or written
RC Read and clear Register can be read and is cleared after read
STUSB4700
I²C register map
DS11977 - Rev 4 page 20/43
7Typical use cases
7.1 Power supply – buck topology
Figure 6. Power supply - buck topology
HC
FB
Small si gnal
Power plane
Vin SW
D21
STPS5L25B
C22 10µF
C32 10µF
C23
220nF
Vin
7
EN2
5
/EN1
3FB 4
PG 2
SW 8
U2
ST1S14PHR
C21 100nF
R1
200k
C24 100pF
C35 10µF
T1
STR2P3LLH6
R9
10k
R8
820
T2
STL6P3LLH6
R10
10k
R11
2k2
R2
13k
R3
4k7
R4
4k87
R5
8k66
R6
33k
C2 1µF
C3 1µF
C1 1µF
GND
GND
SCL
SDA
GND
A1
Tx+1
A2
Tx-1
A3
Vbus
A4
CC1
A5
D+1
A6
D-1
A7
Sbu1
A8
Vbus
A9
Rx-2
A10
Rx+2
A11
GND
A12
GND
B1
Tx+2
B2
Tx-2
B3
Vbus
B4
CC2
B5
D+2
B6
D-2
B7
Sbu2
B8
Vbus
B9
Rx-1
B10
Rx+1
B11
GND
B12
TYPE C
USB 3.1
J1
Vsrc
T3
STL6P3LLH6
TC-DP
TC-DM TC-DP
TC-DM
Vbus
CC1
CC2
GND
GND
GND
Power Control
GND
GND
GND
GND
C4
10µF
R12
100
TC-DM TC-DP
+
C25 220µF
L21
68µH
VSYS
22
VDD
24
VReg_2V7
23
VReg_1V2
21
VBus_DISCH 19
VBus_EN_SRC 20
A_B_Side 17
SCL
7
SDA
8
Addr 0
13
GPIO0
12
GPIO1
11
GPIO2
14
GPIO3
15
GPIO4
16
Reset
6
GND
10
CC2GND 5
CC2 4
CC1 2
CC1GND 1
VCONN
VBus_Sense 18
ALERT#
9
Autonomous USB PD controller
with integrated discharge path
ExpPAD
0
U1
STUSB4700
GND
R7
100k
FB
Vsrc
3
GND 6
1Boot
STUSB4700
Typical use cases
DS11977 - Rev 4 page 21/43
The STUSB4700 offers the possibility to have up to 5 PDOs.
Figure 7. Power supply - buck topology extract
R1
200k
R2
13k
R3
4k7
R4
4k87
R5
8k66
R6
33k
GND
GND
SCL
SDA
SCL
7
SDA
8
Ad dr0
13
GPIO0
12
GPIO1
11
GPIO2
14
GPIO3
15
GPIO4
16
Reset
6
ALERT#
9
R7
100k
FB
Vsrc
In the above example, the Vsafe5V is generated by R1 and the full ladder R2+R3+R4+R5+R6. When a power
delivery negotiation results in a PD contract that is not 5 V (PDO2, PDO3, PDO4 and PDO5), GPIO0, GPIO1,
GPIO2 and GPIO3 are asserted (active low), respectively. This shorts R6, R5, R4 and R3 according to the
following table.
Table 21. Resistor value
PDO VOUT Calculation Resistor value (ohm)
R1P 200 k
5 20 R2=R11.22
VOUT 1.22 13 k
4 15 R3=R11.22
VOUT 1.22 R24.7 k
3 12 R4=R11.22
VOUT 1.22 R2 R34.87 k
2 9 R5=R11.22
VOUT 1.22 R2 R3 R48.66 k
1 5 R6=R11.22
VOUT 1.22 R2 R3 R4 R533 k
To implement a different VBUS output voltage for every PDO, the Resistor matrix needs to be calculated using the
following formula:
VBUS = 1.22
R1
R2+ R3+ R4+ R5+ R6(1)
STUSB4700
Power supply – buck topology
DS11977 - Rev 4 page 22/43
7.2 Power supply – flyback topology
Figure 8. Flyback topology
4
5
A
B
3
1
2
Tr20
T20
D22
1N4148WS
D20
STTH1R06A
R24
0.15
R23
4.7
R21
220
R28
4.7
C22
100nF
HV
1
NC
2
ZCD
4GD 7
VDD
8
2.5V
CURRENT
CONTROL
+
-
U21 STCH02
+
C20
68µF
+~
~ -
U20
C21
2.2nF
R20
100k
+
C27
22µF
D23
BAV103
+
C26
22µF
T21
BC847C
R30
20k
D24
15V
R32
30k
R26
22k
R25
360k
C29
220pF
U22A
SFH617A-2
U22B
SFH617A-2
D25
TLVH431AI L3T
C28
33nF
R29
12k
R31
1k
R27
1k
R1
100k
R3
8k87
R4
2k49
R5
4k42
R6
16k2
VDD
VDD
C25
1000pF
C24
1.5nF
+
C23
680µF
R22
33
D21
T2
STS10P3LLH6
T1
STS5P3LLH6
+
C4
10µF
C2 1µF
C1 1µF
C3 1µF
CC1
CC2
Vbus
Vbus
GND
A1
Tx+1
A2
Tx-1
A3
Vbus
A4
CC1
A5
D+1
A6
D-1
A7
Sbu1
A8
Vbus
A9
Rx-2
A10
Rx+2
A11
GND
A12
GND
B1
Tx+2
B2
Tx-2
B3
Vbus
B4
CC2
B5
D+2
B6
D-2
B7
Sbu2
B8
Vbus
B9
Rx-1
B10
Rx+1
B11
GND
B12
TYPE C
USB 3.1
J1
Vbus
Vbus
R8
1k5
R9
10k
R10
10k
R11
2k2
R7
100k
VSYS
22
VDD
24
VReg_2V7
23
VReg_1V2
21
VBus_DISCH 19
VBus_EN_SRC 20
A_B_Side 17
SCL
7
SDA
8
Addr0
13
GPIO0
12
GPIO1
11
GPIO2
14
GPIO3
15
GPIO4
16
Reset
6
GND
10
CC2GND 5
CC2 4
CC1 2
CC1GND 1
VCONN
VBus_Sense 18
ALERT#
9
Autonomous USB PD controller
with integrated discharge path
ExpPAD
0
U1
STUSB4700
GND
SCL
SDA
3
STF10LN80K5
FB 3
GND 6
sense 5
Vbus EN SRC
Vbus DISCH
In the above example, only 4 power profiles are used: 5 V, 9 V, 12 V and 15 V.
STUSB4700
Power supply – flyback topology
DS11977 - Rev 4 page 23/43
Figure 9. Flyback topology extract
U22A
SFH617A-2
D25
TLVH431AIL3T
C28
33nF
R29
12k
R31
1k
R27
1k
R1
100k
R3
8k87
R4
2k49
R5
4k42
R6
16k2
R7
100k
SCL
7
SDA
8
Addr0
13
GPIO0
12
GPIO1
11
GPIO2
14
GPIO3
15
GPIO4
16
Reset
6
ALERT#
9
SCL
SDA
The Vsafe5V is generated by R1 and the full ladder R3+R4+R5+ R6.When a power delivery negotiation results in a
PD contract that is not 5 V (PDO2, PDO3, PDO4), GPIO0, GPIO1 and GPIO2 are asserted (active low),
respectively. This shorts R6, R5, R4 according to the following table.
Table 22. Resistor value
PDO VOUT Calculation Resistor value
(Ω)
R1100 k
4 15 R3=R11.24
VOUT 1.24 8.87 k
3 12 R4=R11.24
VOUT 1.24 R32.49 k
2 9 R5=R11.24
VOUT 1.24 R3 R44.42 k
1 5 R6=R11.24
VOUT 1.24 R3 R4 R516.2 k
To implement a different VBUS output voltage for every PDO, the Resistor matrix needs to be calculated using the
following formula:
VBUS = 1.24
R1
R3+ R4+ R5+ R6(2)
STUSB4700
Power supply – flyback topology
DS11977 - Rev 4 page 24/43
8Electrical characteristics
8.1 Absolute maximum ratings
All voltages are referenced to GND.
Table 23. Absolute maximum ratings
Symbol Parameter Value Unit
VDD Supply voltage on VDD pin 28 V
VSYS Supply voltage on VSYS pin 6 V
VCC1
VCC2
High voltage on CC pins 22 V
VVBUS_EN_SRC
VVBUS_SENSE
High voltage on VBUS pins 28 V
VSCL
VSDA
VALERT#
VRESET
VA_B_SIDE
VGPIO[4 :0]
Operating voltage on I/O pins -0.3 to 6 V
VCONN VCONN voltage 6 V
TSTG Storage temperature -55 to 150 °C
TJMaximum junction temperature 145 °C
ESD
HBM 4
kV
CDM 1.5
STUSB4700
Electrical characteristics
DS11977 - Rev 4 page 25/43
8.2 Operating conditions
Table 24. Operating conditions
Symbol Parameter Value Unit
VDD Supply voltage on VDD pin 4.1 to 22 V
VSYS Supply voltage on VSYS pin 3.0 to 5.5 V
VCC1, VCC2 CC pins (1) -0.3 to 5.5 V
VVBUS_EN_SRC
VVBUS_DISCH
VVBUS_SENSE
High voltage pins 0 to 22 V
VSCL VSDA
VALERT#
VRESET
VA_B_SIDE
VGPIO[4 :4]
Operating voltage on I/O pins 0 to 4.5 V
VCONN VCONN voltage 2.7 to 5.5 V
ICONN VCONN rated current (default = 0.35 A) 0.1 to 0.6 A
TAOperating temperature -40 to 105 °C
1. Transient voltage on CC1 and CC2 pins are allowed to go down to -0.3 during BMC communication from connected
devices.
STUSB4700
Operating conditions
DS11977 - Rev 4 page 26/43
8.3 Electrical and timing characteristics
Unless otherwise specified: VDD = 5 V, TA = +25 °C, all voltages are referenced to GND.
Table 25. Electrical characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
IIDD(SRC) Current consumption
Device idle as source (not connected, no communication)
VSYS @ 3.3 V 158 µA
VDD @ 5.0 V 188 µA
CC1 and CC2 pins
IP-USB
CC current sources
CC pin voltage VCC =
-0.3 to 2.6 V
-40° < TA < +105°
-20% 80 +20% µA
IP-1.5 -8% 180 +8% µA
IP-3.0 -8% 330 +8% µA
VCCO CC open pin voltage CC unconnected,
VDD=3.0 to 5.5 V 2.75 V
RINCC CC input impedance Terminations off 200
VTH0.2 Detection threshold 1 Max. Ra detection by
source at IP = IP -USB
0.15 0.2 0.25 V
VTH0.4 Detection threshold 2 Max. Ra detection by
source at IP = IP-1.5
0.35 0.4 0.45 V
VTH0.8 Detection threshold 3 Max. Ra detection by
source at IP = IP-3.0
0.75 0.8 0.85 V
VTH1.6 Detection threshold 4
Max. Rd detection by
source at IP = IP-USB and
IP = IP-1.5
1.5 1.6 1.65 V
VTH2.6 Detection threshold 5
Max. Rd detection by
source at IP-3.0,
max. CC voltage for
connected sink
2.45 2.6 2.75 V
VCONN pin and power switches
RVCONN
VCONN power path
resistance
IVCONN = 0.2 A
-40 °C < TA < +105 °C 0.25 0.5 0.975 Ω
IOCP Overcurrent protection
Programmable current
limit threshold (from 100
mA to 600 mA by step of
50 mA)
85 100 125
mA300 350 400
550 600 650
VOVP Overvoltage protection
on CC output pins 5.9 6 6.1 V
VUVP
Undervoltage
protection on VCONN
input pin
Low UVLO threshold 2.6 2.65 2.7
V
High UVLO threshold
(default) 4.6 4.65 4.8
VDD pin monitoring
VDDOVLO Overvoltage lockout
OVLO threshold
detection enabled, VDD
pin supplied
5.8 6 6.2 V
STUSB4700
Electrical and timing characteristics
DS11977 - Rev 4 page 27/43
Symbol Parameter Conditions Min. Typ. Max. Unit
VDDUVLO Undervoltage lockout
UVLO threshold
detection enabled, VDD
pin supplied
3.8 3.9 4.0 V
VBUS_SENSE pin monitoring and driving
VTHUSB
VBUS presence
threshold (UVLO) VSYS=3.0 to 5.5 V 3.8 3.9 4 V
VTH0V
VBUS safe 0V
threshold (vSafe0V) VSYS=3.0 to 5.5 V 0.5 0.6 0.7 V
RDISUSB
VBUS discharge
resistor 600 700 800 Ω
TDISUSB0V
VBUS discharge time
to 0 V
Coefficient TDISPAR0V
programmable by NVM,
default TDISPAR0V = 2,
TDISUSB0V = 168 ms
70 *TDISPAR0V 84 *TDISPAR0V 100 *TDISPAR0V ms
TDISUSBPDO
VBUS transition
discharge time to new
PDO
Coefficient TDISPARPDO
programmable by NVM,
default TDISPARPDO = 12,
TDISUSBPDO = 288 ms
20
*TDISPARPDO
24
*TDISPARPDO
28
*TDISPARPDO ms
VMONUSBH
VBUS monitoring high
voltage limit
Coefficient VSHUSBH
programmable by NVM
from 1% to 15% of VBUS
by step of 1%, default
VMONUSBH = VBUS+12%
(PDO1)
VMONUSBH = VBUS+10%
(PDO2, PDO3, PDO4)
VMONUSBH = VBUS+8%
(PDO5)
VBUS +5%
+VSHUSBH
V
VMONUSBL
VBUS monitoring low
voltage limit
Coefficient VSHUSBL
programmable by NVM
from 1% to 15% of VBUS
by step of 1%, default
VMONUSBL = VBUS-10%
(all PDOs)
VBUS -5% -
VSHUSBL
V
Digital input/output (SCL, SDA, ALERT#, A_B_SIDE, RESET)
VIH High level input
voltage 1.2 V
VIL Low level input voltage 0.35 V
VOL Low level output
voltage Ioh = 3 mA 0.4 V
20 V open-drain outputs (VBUS_EN_SRC)
VOL Low level output
voltage Ioh = 3 mA 0.4 V
STUSB4700
Electrical and timing characteristics
DS11977 - Rev 4 page 28/43
9Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions
and product status are available at: www.st.com. ECOPACK® is an ST trademark.
STUSB4700
Package information
DS11977 - Rev 4 page 29/43
9.1 QFN24 EP 4x4 mm package information
Figure 10. QFN24 EP 4x4 mm package outline
STUSB4700
QFN24 EP 4x4 mm package information
DS11977 - Rev 4 page 30/43
Table 26. QFN24 EP 4x4 mm package mechanical data
Symbol
Millimeters
Min. Typ. Max.
A 0.80 0.90 1.00
A1 0.00 0.02 0.05
b 0.18 0.25 0.30
D 3.95 4.00 4.05
D2 2.55 2.70 2.80
E 3.95 4.00 4.05
E2 2.55 2.70 2.80
e 0.45 0.50 0.55
K 0.15
L 0.30 0.40 0.50
Figure 11. QFN24 EP 4x4 mm recommended footprint
STUSB4700
QFN24 EP 4x4 mm package information
DS11977 - Rev 4 page 31/43
9.2 QFN24 EP 4x4 mm wettable flank package information
Figure 12. QFN24 EP 4x4 mm wettable flank package outline
D
E
TOP VIEW
A
A1
SIDE VIEW
A2
A3
Detail A
D2
E2
C0.35
19 24
1
6
7
12
D
L2
18
13
Jb
Le
E
BOTTOM VIEW
FRONT VIEW SECTION VIEW
Terminal thickness
Terminal length
L1
L3 L2
L3
L1
L
DETAIL A
STUSB4700
QFN24 EP 4x4 mm wettable flank package information
DS11977 - Rev 4 page 32/43
Table 27. QFN24 EP 4x4 mm wettable flank mechanical data
Ref.
Dimensions (mm)
Min. Typ. Max.
A 0.90 0.95 1.00
A1 - 0.10 -
A2 0.00 0.02 0.05
A3 - 0.20 -
b 0.20 0.25 0.30
D 3.85 4.00 4.15
D2 2.40 2.50 2.60
E 3.85 4.00 4.15
E2 2.40 2.50 2.60
e - 0.50 -
J - 0.35 -
L 0.30 0.40 0.50
L1 - 0.20 -
L2 - 0.05 -
L3 - 0.10 -
Figure 13. QFN24 EP 4x4 mm wettable flank recommended footprint
STUSB4700
QFN24 EP 4x4 mm wettable flank package information
DS11977 - Rev 4 page 33/43
9.3 Packing information
Figure 14. Reel information
Table 28. Tape dimensions
Package Pitch Carrier width Reel
QFN 4x4 - 24L 8 mm 12 mm 13"
STUSB4700
Packing information
DS11977 - Rev 4 page 34/43
10 Thermal information
Table 29. Thermal information
Symbol Parameter Value Unit
RθJA Junction-to-ambient thermal resistance 37
°C/W
RθJC Junction-to-case thermal resistance 5
STUSB4700
Thermal information
DS11977 - Rev 4 page 35/43
11 Terms and abbreviations
Table 30. List of terms and abbreviations
Term Description
Accessory
modes
Audio adapter accessory mode. It is defined by the presence of Ra/Ra on the CC1/CC2 pins.
Debug accessory mode. It is defined by the presence of Rd/Rd on CC1/CC2 pins in source power role or
Rp/Rp on CC1/CC2 pins in sink power role.
DFP
Downstream facing port, associated with the flow of data in a USB connection. Typically, the ports on a host
or the ports on a hub to which devices are connected. In its initial state, the DFP sources VBUS and VCONN
and supports data.
DRP Dual-role port. A port that can operate as either a source or a sink. The port role may be changed
dynamically.
Sink Port asserting Rd on the CC pins and consuming power from the VBUS; most commonly a device.
Source Port asserting Rp on the CC pins and providing power over the VBUS; usually a host or hub DFP.
UFP
Upstream facing port, specifically associated with the flow of data in a USB connection. The port on a device
or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks the VBUS and supports
data.
STUSB4700
Terms and abbreviations
DS11977 - Rev 4 page 36/43
12 Ordering information
Table 31. Ordering information
Order code AEC-Q100 Package Marking Temperature range
STUSB4700QTR No QFN24 EP 4x4 mm 4700
-40 °C to 105 °C
STUSB4700YQTR Yes QFN24 EP 4x4 mm
Wettable flanks 4700Y
STUSB4700
Ordering information
DS11977 - Rev 4 page 37/43
Revision history
Table 32. Document revision history
Date Version Changes
24-Jan-2017 1 Initial release.
22-Mar-2017 2
Updated comments columns in Table 7: "GPIO1 (pin #11) configuration" and Table 8: "GPIO2 (pin
#14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration", and ESD parameter description in Table
18: "Absolute maximum rating".
In Table 19: "Operating conditions " replaced VVBUS_EN_SNK with VVBUS_DISCH. Replaced
Figure 6: "Power supply - buck topology" with a new figure. Minor changes throughout the document.
06-Dec-2017 3
On cover page:
- updated title description
- updated feature regarding protections
- added feature regarding Automotive grade availability
- updated feature regarding Certification test ID
- updated Table 1: "Device summary table"
Updated Section 7.1 Power supply – buck topology
Updated Section 7.2 Power supply – flyback topology
Added Section 9.2 QFN24 EP 4x4 mm wettable flank package information
12-Jun-2018 4 Minor text changes
STUSB4700
DS11977 - Rev 4 page 38/43
Contents
1Functional description .............................................................2
2Inputs/outputs .....................................................................3
2.1 Pinout ........................................................................3
2.2 Pin list ........................................................................4
2.3 Pin description .................................................................6
2.3.1 CC1 / CC2 .............................................................6
2.3.2 RESET ................................................................6
2.3.3 I2C interface pins ........................................................6
2.3.4 A_B_SIDE..............................................................6
2.3.5 VBUS_SENSE ..........................................................6
2.3.6 VBUS_EN_SRC .........................................................6
2.3.7 VSYS .................................................................6
2.3.8 VDD ..................................................................7
2.3.9 GND ..................................................................7
2.3.10 VVAR_ADDR0 ..........................................................7
2.3.11 VREG2V7 ..............................................................7
2.3.12 VREG1V2 ..............................................................7
2.3.13 VBUS_DISCH ...........................................................7
2.3.14 VCONN................................................................7
2.3.15 GPIO [4:0]..............................................................8
3Block descriptions.................................................................9
3.1 CC interface...................................................................9
3.2 BMC .........................................................................9
3.3 Protocol layer..................................................................9
3.4 Policy engine ..................................................................9
3.5 Device policy manager ..........................................................9
3.6 VBUS power path control........................................................9
3.6.1 VBUS monitoring .......................................................10
3.6.2 VBUS discharge ........................................................10
3.6.3 VBUS power path assertion ...............................................10
STUSB4700
Contents
DS11977 - Rev 4 page 39/43
3.7 High voltage protection.........................................................11
3.8 Hardware fault management ....................................................11
3.9 Accessory mode detection ......................................................11
3.9.1 Audio accessory mode detection............................................12
3.9.2 Debug accessory mode detection ...........................................12
4User-defined startup configuration................................................13
4.1 Parameter overview ...........................................................13
4.2 PDO – voltage configuration in NVM .............................................14
4.3 PDO – current configuration in NVM..............................................14
4.4 Monitoring configuration in NVM .................................................15
4.5 Factory settings ...............................................................15
5I²C interface ......................................................................16
5.1 Read and write operations ......................................................16
5.2 Timing specifications...........................................................17
6I²C register map ..................................................................19
7Typical use cases.................................................................21
7.1 Power supply – buck topology...................................................21
7.2 Power supply – flyback topology .................................................22
8Electrical characteristics..........................................................25
8.1 Absolute maximum ratings......................................................25
8.2 Operating conditions...........................................................26
8.3 Electrical and timing characteristics ..............................................27
9Package information..............................................................29
9.1 QFN24 EP 4x4 mm package information..........................................30
9.2 QFN24 EP 4x4 mm wettable flank package information .............................31
9.3 Packing information ...........................................................33
10 Thermal information ..............................................................35
11 Terms and abbreviations..........................................................36
12 Ordering information .............................................................37
Revision history .......................................................................38
STUSB4700
Contents
DS11977 - Rev 4 page 40/43
List of tables
Table 1. Pin function list .....................................................................4
Table 2. Legend ...........................................................................5
Table 3. I2C interface pin list ..................................................................6
Table 4. USB data mux select .................................................................6
Table 5. GPIO0 (pin #12) configuration ..........................................................8
Table 6. GPIO1 (pin #11) configuration ...........................................................8
Table 7. GPIO2 (pin #14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration ................................8
Table 8. Conditions for VBUS power path assertion ................................................. 11
Table 9. The orientation detection.............................................................. 12
Table 10. PDO configurations in NVM............................................................ 13
Table 11. PDO NVM voltage configuration ........................................................ 14
Table 12. PDO NVM current configuration......................................................... 14
Table 13. Factory NVM setting................................................................. 15
Table 14. Device address format ............................................................... 16
Table 15. Register address format .............................................................. 16
Table 16. Register data format................................................................. 16
Table 17. I2C timing parameters - VDD = 5 V....................................................... 17
Table 18. Register access legend .............................................................. 19
Table 19. STUSB4700 register map overview ...................................................... 19
Table 20. Register access legend .............................................................. 20
Table 21. Resistor value ..................................................................... 22
Table 22. Resistor value ..................................................................... 24
Table 23. Absolute maximum ratings .......................................................... 25
Table 24. Operating conditions ................................................................ 26
Table 25. Electrical characteristics .............................................................. 27
Table 26. QFN24 EP 4x4 mm package mechanical data ............................................... 31
Table 27. QFN24 EP 4x4 mm wettable flank mechanical data ........................................... 33
Table 28. Tape dimensions ................................................................... 34
Table 29. Thermal information ................................................................. 35
Table 30. List of terms and abbreviations ......................................................... 36
Table 31. Ordering information................................................................. 37
Table 32. Document revision history ............................................................. 38
STUSB4700
List of tables
DS11977 - Rev 4 page 41/43
List of figures
Figure 1. Functional block diagram .............................................................2
Figure 2. Pin connections (top view) ............................................................3
Figure 3. Read operation................................................................... 16
Figure 4. Write operation ................................................................... 17
Figure 5. I²C timing diagram................................................................. 18
Figure 6. Power supply - buck topology ......................................................... 21
Figure 7. Power supply - buck topology extract.................................................... 22
Figure 8. Flyback topology.................................................................. 23
Figure 9. Flyback topology extract ............................................................ 24
Figure 10. QFN24 EP 4x4 mm package outline .................................................... 30
Figure 11. QFN24 EP 4x4 mm recommended footprint ............................................... 31
Figure 12. QFN24 EP 4x4 mm wettable flank package outline .......................................... 32
Figure 13. QFN24 EP 4x4 mm wettable flank recommended footprint ..................................... 33
Figure 14. Reel information .................................................................. 34
STUSB4700
List of figures
DS11977 - Rev 4 page 42/43
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved
STUSB4700
DS11977 - Rev 4 page 43/43