[AK4614]
MS1025-E-05 2015/06
- 1 -
GENERAL DESCRIPTION
The AK4614 is a single chip audio CODEC that includes six ADC channels and twelve DAC channels.
The converters are designed with Enhanced Dual Bit architecture for the ADC’s, and Advanced Multi-Bit
architecture for the DAC, enabling very low noise performance. Fabricated on a low power process, the
AK4614 operates off of a +3.3V analog supply and a +1.8V digital supply. The AK4614 supports both
single-ended and differential inputs and outputs. A wide range of applications can be realized, including
home theater, pro audio and car audio. The AK4614 is available in an 80-pin LQFP package.
FEATURES
1. 6channel 24bit ADC
- 128x Oversampling
- Linear Phase Digital Anti-Alias Filter
- Analog Anti-Alias Filter for Single-Ended Input and Differential Input
- ADC S/(N+D)
92dB: Single-Ended Input
97dB: Differential Input
- ADC DR, S/N
103dB: Single-Ended Input
104dB: Differential Input
- Digital HPF for offset cancellation
- I/F format: MSB justified, I2S or TDM
- Overflow flag
2. 12channel 24bit DAC
- 128x Oversampling
- Linear Phase 24bit 8 times Digital Filter
- Analog Smoothing Filter for Single-Ended Output
- DAC S/(N+D)
94dB: Single-Ended Output
100dB: Differential Output
- DAC DR, S/N
105dB: Single-Ended Output
108dB: Differential Output
- Individual channel digital volume with 256 levels and 0.5dB steps
- Soft mute
- De-emphasis for 32kHz, 44.1kHz and 48kHz
- Zero Detect Function
- I/F format: MSB justified, LSB justified (16bit, 20bit, 24bit), I2S or TDM
3. Sampling Frequency
- Normal Speed Mode: 32kHz to 48kHz
- Double Speed Mode: 64kHz to 96kHz
- Quad Speed Mode: 128kHz to 192kHz
4. Master / Slave mode
AK4614
6/12-Channel Audio CODEC
[AK4614]
MS1025-E-05 2015/06
- 2 -
5. Master clock
- Slave mode: 256fs, 384fs or 512fs (Normal Speed Mode: fs=32kHz 48kHz)
256fs (Double Speed Mode: fs=64kHz 96kHz)
128fs (Quad Speed Mode: fs=128kHz 192kHz)
- Master mode: 256fs or 512fs (Normal Speed Mode: fs=32kHz 48kHz)
256fs (Double Speed Mode: fs=64kHz 96kHz)
128fs (Quad Speed Mode: fs=128kHz 192kHz)
6. 4-wire Serial and I2C Bus µP I/F for mode setting
7. Power Supply
- Analog Power Supply: AVDD1, AVDD2 = 3.0 3.6V
- Digital Power Supply: DVDD = 1.6 2.0V
- I/O Buffer Power Supply: TVDD1, TVDD2 = 1.6 3.6V
8. Power Supply Current : 119 mA (fs=48kHz)
9. Ta = - 40 105ºC
10. Package: 80pin LQFP (0.5mm pitch)
[AK4614]
MS1025-E-05 2015/06
- 3 -
Block Diagram
Audio
I/F
SCF1
LOUT1+ / LOUT1
DAC1
ADC3
ADC3
LRCK
BICK
SDTI1
SDTI2
SDTI3
MCLK
LRCK
BICK
SDOUT1
SDIN1
SDIN2
SDIN3
SDTO1
SDTI4
SDIN4
DAC1
DAC2
DAC2
DAC3
DAC3
DAC4
DAC4
LOUT1-
ADC2
ADC2
ADC1
ADC1
LIN1+ / LIN1
LIN1-
DAC5
DAC5
DAC6
DAC6
SDOUT2
SDOUT3
SDTI5
SDIN5
SDTI6
SDIN6
SDTO2
SDTO3
uP I/F
I2C
CSN
CCLK / SCL
CDTI / SDA
CDTO
CAD1
CAD0
MCKO
XTO
XTI / MCKI
Divider
XATL
Xtal
Oscillation
RIN1+ / RIN1
RIN1-
LIN2+ / LIN2
LIN2-
RIN2+ / RIN2
RIN2-
LIN3+ / LIN3
LIN3-
RIN3+ / RIN3
RIN3-
SCF1
ROUT1+ / ROUT1
ROUT1-
SCF2
LOUT2+ / LOUT2
LOUT2-
SCF2
ROUT2+ / ROUT2
ROUT2-
SCF3
LOUT3+ / LOUT3
LOUT3-
SCF3
ROUT3-
SCF4
LOUT4+ / LOUT4
LOUT4-
SCF4
ROUT4+ / ROUT4
ROUT4-
SCF5
LOUT5+ / LOUT5
LOUT5-
SCF5
ROUT5+ / ROUT5
ROUT5-
SCF6
LOUT6+ / LOUT6
LOUT6-
SCF6
ROUT6+ /ROUT6
ROUT6-
PDN
M/S
TST2
TST1
TST4
TST3
OVF1 / DZF1
OVF2 / DZF2
VCOM
AVDD1
VREFH1
VREFH2
VSS1
AVDD2
VSS2
DVDD
VSS3
TVDD1
VSS4
TVDD2
TST5
DVMPD
ROUT3+ / ROUT3
Figure 1. Block Diagram
[AK4614]
MS1025-E-05 2015/06
- 4 -
Ordering Guide
AK4614VQ -40 +105C 80pin LQFP(0.5mm pitch)
AKD4614 Evaluation Board for AK4614
Pin Layout
(TOP VIEW)
80 pin LQFP
LOUT4+ / LOUT4
1
LOUT2+ / LOUT2
61
62
63
64
65
66
67
68
69
70
72
73
71
74
76
77
75
78
79
80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
29
28
30
27
25
24
26
23
22
21
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
LOUT2-
1
ROUT2+ / ROUT2
1
ROUT2-
1
LOUT3+ / LOUT3
1
LOUT3-
1
ROUT3+ / ROUT3
1
ROUT3-
1
VSS2
1
AVDD2
1
VREFH2
1
LOUT4-
1
ROUT4+ / ROUT4
1
ROUT4-
1
LOUT5+ / LOUT5
1
LOUT5-
1
ROUT5+ / ROUT5
1
ROUT5-
1
LOUT6+ / LOUT6
1
LOUT6-
1
ROUT1-
ROUT1+ / ROUT1
TST4
TST5
CAD0
LOUT1+ / LOUT1
DVMPD
LOUT1-
SDTI6
SDTI5
I2C
CCLK / SCL
CDTI / SDA
CDTO
TST1
TST3
NC
XTO
CAD1
CSN
TVDD2
VSS3
DVDD
MCKO
M/S
TST2
PDN
SDTI4
SDTI3
SDTI2
BICK
LRCK
SDTI1
SDTO3
SDTO2
SDTO1
VSS4
TVDD1
XTI / MCKI
ROUT6+ / ROUT6
ROUT6-
OVF1 / DZF1
LIN1-
RIN1+ / RIN1
RIN1-
LIN2+ / LIN2
LIN2-
RIN2+ / RIN2
LIN3+ / LIN3
LIN3-
RIN2-
VSS1
VREFH1
VCOM
RIN3+ / RIN3
RIN3-
OVF2 / DZF2
LIN1+ / LIN1
AVDD1
Figure 2. Pin Layout
[AK4614]
MS1025-E-05 2015/06
- 5 -
Compatibility with AK4628
1. Functions
Function
AK4628
AK4614
Number of ADC channel
2-channel
6-channel
Number of DAC channel
8-channel
12-channel
Input
Single
Single or Diff
Output
Single
Single or Diff
I/F Format
I2S, LJ, RJ(20/24bit), TDM
I2S, LJ, RJ(16/20/24bit), TDM
TDM512
No
Fs=48kHz
XTAL OSC
No
Yes
Parallel / Serial Select Pin
Yes
No
Control Data Output Pin
No
Yes
Ta
-40 +85C
-40 +105C
Package
44pinLQFP
80pinLQFP
2. Power Supply
Voltage Name
AK4628
AK4614
AVDD
4.5 5.5V
No
AVDD1
No
3.0 3.6V
AVDD2
No
3.0 3.6V
DVDD
4.5 5.5V
1.6 2.0V
TVDD
2.7 5.5V
No
TVDD1
No
1.6 3.6V
TVDD2
No
1.6 3.6V
3. Specification
Parameter
AK4628
AK4614
Fs (AD/DA)
96k / 192k
192k / 192k
THD+N (AD/DA)
Single: 92 / 90
Differential : - / -
Single: 92 / 94
Differential : 97 / 100
S/N (AD/DA)
Single: 102 / 106
Differential : - / -
Single: 103 / 105
Differential: 104 / 108
Output DATT
128 level
256 level
µP I/F
100k I2C, 3wire
400k I2C, 4wire
[AK4614]
MS1025-E-05 2015/06
- 6 -
PIN/FUNCTION
No.
Pin Name
I/O
Function
1
TST1
I
Test Pin
This pin must be connected to VSS3.
2
TST3
I
Test Pin
This pin must be connected to VSS3.
3
TST4
I
Test Pin
This pin must be connected to VSS3.
4
TST5
I
Test Pin
This pin must be connected to VSS3.
5
CAD0
I
Chip Address 0 Pin
6
CAD1
I
Chip Address 1 Pin
7
I2C
I
µP I/F Mode Select Pin
“L”: 4-wire Serial, “H”: I2C Bus
8
CCLK
I
Control Data Clock Pin in serial control mode
I2C = “L”: CCLK (4-wire Serial)
SCL
I
Control Data Clock Pin in serial control mode
I2C = “H”: SCL (I2C Bus)
9
CSN
I
Chip Select Pin in 4-wire serial control mode
This pin must be connected to TVDD2 at I2C bus control mode
10
CDTI
I
Control Data Input Pin in serial control mode
I2C = “L”: CDTI (4-wire Serial)
SDA
I/O
Control Data Input Pin in serial control mode
I2C = “H”: SDA (I2C Bus)
11
CDTO
O
Control Data Output Pin in 4-wire serial control mode
12
TVDD2
-
Input / Output Buffer Power Supply 1 Pin, 1.6V3.6V
13
VSS3
Ground Pin, 0V
14
DVDD
-
Digital Power Supply Pin, 1.6V2.0V
15
NC
-
No Connection.
No internal bonding. This pin must be connected to the ground.
16
TST2
I
Test Pin
This pin must be connected to VSS4.
17
M/S
I
Master Mode Select Pin
“L”: Slave Mode “H”: Master Mode
18
MCKO
O
Master Clock Output Pin
19
PDN
I
Power-Down & Reset Pin
When “L”, the AK4614 is powered-down and the control registers are reset to default
state. If the state of CAD1-0 changes, then the AK4614 must be reset by PDN.
20
XTO
O
X’tal Output Pin
21
XTI
I
X’tal Input Pin
MCKI
I
External Master Clock Input Pin
22
TVDD1
-
Input / Output Buffer Power Supply 1 Pin, 1.6V3.6V
23
VSS4
-
Digital Ground Pin, 0V
24
SDTO1
O
Audio Serial Data Output 1 Pin
25
SDTO2
O
Audio Serial Data Output 2 Pin
26
SDTO3
O
Audio Serial Data Output 3 Pin
27
LRCK
I/O
Input /Output Channel Clock Pin
28
BICK
I/O
Audio Serial Data Clock Pin
29
SDTI1
I
Audio Serial Data Input 1 Pin
30
SDTI2
I
Audio Serial Data Input 2 Pin
31
SDTI3
I
Audio Serial Data Input 3 Pin
32
SDTI4
I
Audio Serial Data Input 4 Pin
33
SDTI5
I
Audio Serial Data Input 5 Pin
34
SDTI6
I
Audio Serial Data Input 6 Pin
35
DVMPD
I
DAC output VCOM voltage power down pin
“L”: DAC outputs are VCOM voltage “H”: DAC outputs are Hi-Z.
[AK4614]
MS1025-E-05 2015/06
- 7 -
No.
Pin Name
I/O
Function
36
LOUT1+
O
Lch Analog Positive Output 1 Pin (DOE1 bit = “H”)
LOUT1
O
Lch Analog Output 1 Pin (DOE1 bit = “L”)
37
LOUT1-
O
Lch Analog Negative Output 1 Pin (When DOE1 bit = “L”, this pin must be open.)
38
ROUT1+
O
Rch Analog Positive Output 1 Pin (DOE1 bit = “H”)
ROUT1
O
Rch Analog Output 1 Pin (DOE1 bit = “L”)
39
ROUT1-
O
Rch Analog Negative Output 1 Pin (When DOE1 bit = “L”, this pin must be open.)
40
LOUT2+
O
Lch Analog Positive Output 2 Pin (DOE2 bit = “H”)
LOUT2
O
Lch Analog Output 2 Pin (DOE2 bit = “L”)
41
LOUT2-
O
Lch Analog Negative Output 2 Pin (When DOE2 bit = “L”, this pin must be open.)
42
ROUT2+
O
Rch Analog Positive Output 2 Pin (DOE2 bit = “H”)
ROUT2
O
Rch Analog Output 2 Pin (DOE2 bit = “L”)
43
ROUT2-
O
Rch Analog Negative Output 2 Pin (When DOE2 bit = “L”, this pin must be open.)
44
LOUT3+
O
Lch Analog Positive Output 3 Pin (DOE3 bit = “H”)
LOUT3
O
Lch Analog Output 3 Pin (DOE3 bit = “L”)
45
LOUT3-
O
Lch Analog Negative Output 3 Pin (When DOE3 bit = “L”, this pin must be open.)
46
ROUT3+
O
Rch Analog Positive Output 3 Pin (DOE3 bit = “H”)
ROUT3
O
Rch Analog Output 3 Pin (DOE3 bit = “L”)
47
ROUT3-
O
Rch Analog Negative Output 3 Pin (When DOE3 bit = “L”, this pin must be open.)
48
VSS2
-
Ground Pin, 0V
49
AVDD2
-
Analog Power Supply Pin, 3.0V3.6V
50
VREFH2
I
Positive Voltage Reference Input Pin, AVDD2
51
LOUT4+
O
Lch Analog Positive Output 4 Pin (DOE4 bit = “H”)
LOUT4
O
Lch Analog Output 4 Pin (DOE4 bit = “L”)
52
LOUT4-
O
Lch Analog Negative Output 4 Pin (When DOE4 bit = “L”, this pin must be open.)
53
ROUT4+
O
Rch Analog Positive Output 4 Pin (DOE4 bit = “H”)
ROUT4
O
Rch Analog Output 4 Pin (DOE4 bit = “L”)
54
ROUT4-
O
Rch Analog Negative Output 4 Pin (When DOE4 bit = “L”, this pin must be open.)
55
LOUT5+
O
Lch Analog Positive Output 5 Pin (DOE5 bit = “H”)
LOUT5
O
Lch Analog Output 5 Pin (DOE5 bit = “L”)
56
LOUT5-
O
Lch Analog Negative Output 5 Pin (When DOE5 bit = “L”, this pin must be open.)
57
ROUT5+
O
Rch Analog Positive Output 5 Pin (DOE5 bit = “H”)
ROUT5
O
Rch Analog Output 5 Pin (DOE5 bit = “L”)
58
ROUT5-
O
Rch Analog Negative Output 5 Pin (When DOE5 bit = “L”, this pin must be open.)
59
LOUT6+
O
Lch Analog Positive Output 6 Pin (DOE6 bit = “H”)
LOUT6
O
Lch Analog Output 6 Pin (DOE6 bit = “L”)
60
LOUT6-
O
Lch Analog Negative Output 6 Pin (When DOE6 bit = “L”, this pin must be open.)
61
ROUT6+
O
Rch Analog Positive Output 6 Pin (DOE6 bit = “H”)
ROUT6
O
Rch Analog Output 6 Pin (DOE6 bit = “L”)
62
ROUT6-
O
Rch Analog Negative Output 6 Pin (When DOE6 bit = “L”, this pin must be open.)
63
OVF1
O
Analog Input Overflow Detect 1 Pin (Note 1)
This pin goes to “H” if the analog input of Lch or Rch overflows.
DZF1
O
Zero Input Detect 1 Pin (Note 2)
When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data,
this pin goes to “H”. And when RSTN bit is “0”, PMDAC bit is “0”, this pin goes to “H”.
64
OVF2
O
Analog Input Overflow Detect 2 Pin (Note 1)
This pin goes to “H” if the analog input of Lch or Rch overflows.
DZF2
O
Zero Input Detect 2 Pin (Note 2)
When the input data of the group 2 follow total 8192 LRCK cycles with “0” input data,
this pin goes to “H”. And when RSTN bit is “0”, PMDAC bit is “0”, this pin goes to “H”.
65
LIN1+
I
Lch Analog Positive Input 1 Pin (DIE1 bit = “H”)
LIN1
I
Lch Analog Input 1 Pin (DIE1 bit = “L”)
66
LIN1-
-
Lch Analog Negative Input 1 Pin (When DIE1 bit = “L”, this pin must be open.)
(Note 3)
67
RIN1+
I
Rch Analog Positive Input 1 Pin (DIE1 bit = “H”)
RIN1
I
Rch Analog Input 1 Pin (DIE1 bit = “L”)
[AK4614]
MS1025-E-05 2015/06
- 8 -
No.
Pin Name
I/O
Function
68
RIN1-
-
Rch Analog Negative Input 1 Pin (When DIE1 bit = “L”, this pin must be open.)
(Note 3)
69
LIN2+
I
Lch Analog Positive Input 2 Pin (DIE2 bit = “H”)
LIN2
I
Lch Analog Input 2 Pin (DIE2 bit = “L”)
70
LIN2-
-
Lch Analog Negative Input 2 Pin (When DIE2 bit = “L”, this pin must be open.)
(Note 3)
71
RIN2+
I
Rch Analog Positive Input 2 Pin (DIE2 bit = “H”)
RIN2
I
Rch Analog Input 2 Pin (DIE2 bit = “L”)
72
RIN2-
-
Rch Analog Negative Input 2 Pin (When DIE2 bit = “L”, this pin must be open.)
(Note 3)
73
LIN3+
I
Lch Analog Positive Input 3 Pin (DIE3 bit = “H”)
LIN3
I
Lch Analog Input 3 Pin (DIE3 bit = “L”)
74
LIN3-
-
Lch Analog Negative Input 3 Pin (When DIE3 bit = “L”, this pin must be open.)
(Note 3)
75
VSS1
-
Ground Pin, 0V
76
AVDD1
-
Analog Power Supply Pin, 3.0V3.6V
77
VREFH1
I
Positive Voltage Reference Input Pin, AVDD1
78
VCOM
O
Common Voltage Output Pin, AVDD1x1/2
Large external capacitor around 2.2µF is used to reduce power-supply noise.
79
RIN3+
I
Rch Analog Positive Input 3 Pin (DIE3 bit = “H”)
RIN3
I
Rch Analog Input 3 Pin (DIE3 bit = “L”)
80
RIN3-
-
Rch Analog Negative Input 3 Pin (When DIE3 bit = “L”, this pin must be open.)
(Note 3)
Note 1. This pin becomes OVF pin when OVFE bit is set to “1”.
Note 2. This pin becomes DZF pin when OVFE bit is set to “0”.
Note 3. This pin becomes analog negative input pin in differential input mode, and becomes output pin invert the positive
input pin in single-end input mode. This pin must be open in single-end input mode.
Note 4. All digital input pins except for pull-down must not be left floating.
[AK4614]
MS1025-E-05 2015/06
- 9 -
ABSOLUTE MAXIMUM RATINGS
(VSS1=VSS2=VSS3=VSS4=0V; Note 5)
Parameter
Symbol
min
max
Unit
Power Supplies
Analog
Digital
Output buffer
AVDD1,2
DVDD
TVDD1,2
-0.3
-0.3
-0.3
4.2
2.2
4.2
V
V
V
Input Current (any pins except for supplies)
IIN
-
10
mA
Analog Input Voltage
VINA
-0.3
AVDD1,2+0.3
V
Digital Input Voltage
(TST2,M/S,PDN,XTI/MCKI,LRCK,BICK,
SDTI1,SDTI2,SDTI3,SDTI4,SDTI5,SDTI6,
DVMPD pins)
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,
CCLK/SCL,CSN,CDTI/SDA pins)
VIND1
VIND2
-0.3
-0.3
TVDD1+0.3
TVDD2+0.3
V
V
Ambient Temperature (power applied)
Ta
-40
105
C
Storage Temperature
Tstg
-65
150
C
Note 5. All voltages with respect to ground. VSS1, VSS2, VSS3 and VSS4 must be connected to the same analog ground
plane. AVDD1 and AVDD2 must be the same voltage.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
RECOMMENDED OPERATING CONDITIONS
(VSS1=VSS2=VSS3=VSS4=0V; Note 5)
Parameter
Symbol
min
typ
max
Unit
Power Supplies
(Note 6)
Analog
Digital
I/O buffer 1
(Stereo Mode & Normal Speed Mode)
I/O buffer 1
(Except Stereo Mode & Normal Speed Mode)
I/O buffer 2
AVDD1,2
DVDD
TVDD1
TVDD1
TVDD2
3.0
1.6
DVDD
3.0
DVDD
3.3
1.8
3.3
3.3
3.3
3.6
2.0
3.6
3.6
3.6
V
V
V
V
V
Note 6. The power up sequence between AVDD1, AVDD2, DVDD, TVDD1 and TVDD2 is not critical. Each power
supplies should be powered up during the PDN pin = L. The PDN pin should be H after all power supplies
are powered up. All power supplies should be powered on, only a part of these power supplies cannot be powered
off. (Power off means power supplies equal to ground or power supplies are floating.) Do not turn off only the
AK4614 under the condition that a surrounding device is powered on and the I2C bus is in use.
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
[AK4614]
MS1025-E-05 2015/06
- 10 -
ANALOG CHARACTERISTICS
(Ta=25C; AVDD1=AVDD2=TVDD1=TVDD2=3.3V, DVDD =1.8V; VSS1=VSS2=0V; VREFH1=AVDD1,
VREFH2=AVDD2; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement
Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at fs=96kHz, 20Hz~40kHz at fs=192kHz; unless otherwise specified)
Parameter
min
typ
max
Unit
ADC Analog Input Characteristics (single inputs)
Resolution
24
Bits
S/(N+D)
fs=48kHz
BW=20kHz
-1dBFS
84
92
dB
-60dBFS
40
fs=96kHz
BW=40kHz
-1dBFS
83
91
dB
-60dBFS
37
fs=192kHz
BW=40kHz
-1dBFS
91
-60dBFS
37
DR (-60dBFS with A-weighted)
95
103
dB
S/N (A-weighted)
95
103
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0.1
0.5
dB
Gain Drift
40
-
ppm/C
Input Voltage
AIN=0.65xVREFH1
1.94
2.15
2.37
Vpp
Input Resistance
7
9
k
Power Supply Rejection (Note 7)
50
dB
ADC Analog Input Characteristics (differential inputs)
S/(N+D)
fs=48kHz
BW=20kHz
-1dBFS
88
97
dB
-60dBFS
40
dB
fs=96kHz
BW=40kHz
-1dBFS
86
94
-60dBFS
37
fs=192kHz
BW=40kHz
-1dBFS
94
-60dBFS
37
DR (-60dBFS with A-weighted)
96
104
dB
S/N (A-weighted)
96
104
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0.1
0.5
dB
Gain Drift
40
-
ppm/C
Input Voltage
AIN=0.65xVREFH1 (Note 8)
±1.94
±2.15
±2.37
Vpp
Input Resistance
11
13
k
Power Supply Rejection (Note 7)
50
dB
Common Mode Rejection Ratio (CMRR) (Note 9)
74
dB
DAC Analog Output Characteristics (single outputs)
Resolution
24
Bits
S/(N+D)
fs=48kHz
BW=20kHz
0dBFS
84
94
dB
-60dBFS
44
fs=96kHz
BW=40kHz
0dBFS
86
92
-60dBFS
41
fs=192kHz
BW=40kHz
0dBFS
92
-60dBFS
41
DR (-60dBFS with A-weighted)
97
105
dB
S/N (A-weighted)
97
105
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0.1
0.5
dB
Gain Drift
20
-
ppm/C
Output Voltage
AOUT=0.63xVREFH2
1.87
2.08
2.29
Vpp
Load Resistance (AC Load)
5
k
Load Capacitance
30
pF
Power Supply Rejection (Note 7)
50
dB
[AK4614]
MS1025-E-05 2015/06
- 11 -
DAC Analog Output Characteristics (differential outputs)
S/(N+D)
fs=48kHz
BW=20kHz
0dBFS
90
100
dB
-60dBFS
45
fs=96kHz
BW=40kHz
0dBFS
88
98
-60dBFS
42
fs=192kHz
BW=40kHz
0dBFS
98
-60dBFS
42
DR (-60dBFS with A-weighted)
100
108
dB
S/N (A-weighted)
100
108
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0
0.5
dB
Gain Drift
20
-
ppm/C
Output Voltage
AOUT=0.63xVREFH2 (Note 8)
±1.87
±2.08
±2.29
Vpp
Load Resistance (Note 10)
2
k
Load Capacitance
30
pF
Power Supply Rejection (Note 7)
50
dB
Note 7. PSR is applied to AVDD1, AVDD2, DVDD, TVDD1 and TVDD2 with 1kHz, 50mVpp. VREFH1 and VREFH2
pins are held a constant voltage +3.3V.
Note 8. This value is (LIN+) (LIN-) and (RIN+) (RIN-). The voltage is proportional to VREFH1, VREFH2 voltage.
Note 9. VREFH1 and VREFH2 are held +3.3V, the input bias voltage is set to AVDD1, 2 x 0.5. The 1kHz, 0.96Vpp
signal is applied to LIN- and LIN+ with same phase (e.g. shorted) or RIN- and RIN+. The CMRR is measured as
the attenuation level from 0dB = -7dBFS (since the normal 0.96Vpp = -7dBFS). This value is guaranteed but not
tested.
Note 10. For AC-load. In the case of DC-load is 5.
Note 11. This value is Load Capacitance for output pin to GND. In differential mode, this value should be estimated to be
twice, because Load Capacitance exists to GND and between the differential pin.
Parameter
min
typ
max
Unit
Power Supplies
Power Supply Current
Normal Operation (PDN pin = “H”)
AVDD1+AVDD2 fs=48kHz, 96kHz, 192kHz
DVDD fs=48kHz
fs=96kHz
fs=192kHz
TVDD1+TVDD2 fs=48kHz
fs=96kHz
fs=192kHz
Power-down mode
(PDN pin = “L”, DVMPD = “ L”) (Note 12)
AVDD1+AVDD2+DVDD+TVDD1+TVDD2
(PDN pin = “L”, DVMPD = “ H”) (Note 12)
AVDD1+AVDD2+DVDD+TVDD1+TVDD2
95.0
18.0
25.0
40.0
6.0
7.0
7.0
300
10
125.0
24.0
35.0
55.0
8.0
9.5
9.5
550
200
mA
mA
mA
mA
mA
mA
mA
µA
µA
Note 12. In the power-down mode, all digital input pins including clock pins are held VSS3 (TST1, TST3, TST4, TST5,
CAD0, CAD1, I2C, CSN, CCLK, CDTI pins), VSS4 (TST2, M/S, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3,
SDTI4,SDTI5, SDTI6).
[AK4614]
MS1025-E-05 2015/06
- 12 -
FILTER CHARACTERISTICS (fs=48kHz)
(Ta= -40 +105C; AVDD1=AVDD2=3.0 3.6V, DVDD=1.6 2.0V, TVDD1=TVDD2=1.6 3.6V; DEM=OFF)
Parameter
Symbol
min
typ
max
Unit
ADC Digital Filter (Decimation LPF):
Passband (Note 13)
0.1dB
0.2dB
3.0dB
PB
0
-
-
-
20.0
23.0
18.9
-
-
kHz
kHz
kHz
Stopband (Note 13)
SB
28
-
-
kHz
Passband Ripple
PR
-
-
0.1
dB
Stopband Attenuation
SA
68
-
-
dB
Group Delay Distortion
GD
-
0
-
s
Group Delay (Note 14)
GD
-
16
-
1/fs
ADC Digital Filter (HPF):
Frequency Response (Note 13)
3dB
0.1dB
FR
-
-
1.0
6.5
-
-
Hz
Hz
DAC Digital Filter (LPF):
Passband (Note 13)
0.06dB
6.0dB
PB
0
-
-
24.0
21.8
-
kHz
kHz
Stopband (Note 13)
SB
26.2
-
-
kHz
Passband Ripple
PR
-
-
0.06
dB
Stopband Attenuation
SA
54
-
-
dB
Group Delay Distortion
GD
-
0
-
s
Group Delay (Note 14)
GD
-
22
-
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response (Note 15)
20kHz
FR
-
-0.1
-
dB
FILTER CHARACTERISTICS (fs=96kHz)
(Ta= -40 +105C; AVDD1=AVDD2=3.0 3.6V, DVDD=1.6 2.0V, TVDD1=TVDD2=1.6 3.6V; DEM=OFF)
Parameter
Symbol
min
typ
max
Unit
ADC Digital Filter (Decimation LPF):
Passband (Note 13)
0.1dB
0.2dB
3.0dB
PB
0
-
-
-
40.0
46.0
37.8
-
-
kHz
kHz
kHz
Stopband (Note 13)
SB
56
-
-
kHz
Passband Ripple
PR
-
-
0.1
dB
Stopband Attenuation
SA
68
-
-
dB
Group Delay Distortion
GD
-
0
-
s
Group Delay (Note 14)
GD
-
16
-
1/fs
ADC Digital Filter (HPF):
Frequency Response (Note 13)
3dB
0.1dB
FR
-
-
2.0
13.0
-
-
Hz
Hz
DAC Digital Filter (LPF):
Passband (Note 13)
0.06dB
6.0dB
PB
0
-
-
48.0
43.6
-
kHz
kHz
Stopband (Note 13)
SB
52.4
-
-
kHz
Passband Ripple
PR
-
-
0.06
dB
Stopband Attenuation
SA
54
-
-
dB
Group Delay Distortion
GD
-
0
-
s
Group Delay (Note 14)
GD
-
22
-
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response (Note 15)
40kHz
FR
-
-0.3
-
dB
[AK4614]
MS1025-E-05 2015/06
- 13 -
FILTER CHARACTERISTICS (fs=192kHz)
(Ta= -40 +105C; AVDD1=AVDD2=3.0 3.6V, DVDD=1.6 2.0V, TVDD1=TVDD2=1.6 3.6V; DEM=OFF)
Parameter
Symbol
min
typ
max
Unit
ADC Digital Filter (Decimation LPF):
Passband (Note 13)
0.1dB
0.2dB
3.0dB
PB
0
-
-
-
57.0
90.3
56.6
-
-
kHz
kHz
kHz
Stopband (Note 13)
SB
112
-
-
kHz
Passband Ripple
PR
-
-
0.1
dB
Stopband Attenuation
SA
70
-
-
dB
Group Delay Distortion
GD
-
0
-
s
Group Delay (Note 14)
GD
-
16
-
1/fs
ADC Digital Filter (HPF):
Frequency Response (Note 13)
3dB
0.1dB
FR
-
-
4.0
26.0
-
-
Hz
Hz
DAC Digital Filter (LPF):
Passband (Note 13)
0.06dB
6.0dB
PB
0
-
-
96.0
87.0
-
kHz
kHz
Stopband (Note 13)
SB
104.9
-
-
kHz
Passband Ripple
PR
-
-
0.06
dB
Stopband Attenuation
SA
54
-
-
dB
Group Delay Distortion
GD
-
0
-
s
Group Delay (Note 14)
GD
-
22
-
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response (Note 15)
80kHz
FR
-
-1
-
dB
Note 13. The passband and stopband frequencies scale with fs (sampling frequency). For example, ADC: Passband
(0.1dB) = 0.39375 x fs (@ fs=48kHz), DAC: Passband (0.06dB) = 0.45412 x fs.
Note 14. The calculated delay time is resulting from digital filtering. For the ADC, this time is from the input of an analog
signal to the setting of 24bit data for both channels to the ADC output register. For the DAC, this time is from
setting the 24 bit data both channels at the input register to the output of an analog signal.
Note 15. The reference frequency is 1kHz.
[AK4614]
MS1025-E-05 2015/06
- 14 -
DC CHARACTERISTICS
(Ta=-40C+105C; AVDD1=AVDD2=3.03.6; DVDD=1.62.0V; TVDD1=TVDD2=1.63.6V)
Parameter
Symbol
min
typ
max
Unit
TVDD1,TVDD2 2.2V
High-Level Input Voltage
(TST2, M/S, PDN, MCKI, LRCK, BICK,
SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6,
DVMPD pins)
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,
CSN,CCLK, CDTI pins)
Low-Level Input Voltage
(TST2, M/S, PDN, MCKI, LRCK, BICK,
SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6,
DVMPD pins)
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,
CSN,CCLK, CDTI pins)
VIH
VIH
VIL
VIL
80%TVDD1
80%TVDD2
-
-
-
-
-
-
-
-
20%TVDD1
20%TVDD2
V
V
V
V
TVDD1,TVDD2 > 2.2V
High-Level Input Voltage
(TST2, M/S, PDN, MCKI, LRCK, BICK,
SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6,
DVMPD pins)
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,
CSN,CCLK, CDTI pins)
Low-Level Input Voltage
(TST2, M/S, PDN, MCKI, LRCK, BICK,
SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6,
DVMPD pins)
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,
CSN,CCLK, CDTI pins)
VIH
VIH
VIL
VIL
70%TVDD1
70%TVDD2
-
-
-
-
-
-
-
-
30%TVDD1
30%TVDD2
V
V
V
V
High-Level Output Voltage
(SDTO1,SDTO2,SDTO3, LRCK, BICK,
MCKO pins: Iout=-100µA)
(CDTO pin: Iout=-100µA)
(DZF1/OVF1, DZF2/OVF2 pins: Iout=-100µA)
Low-Level Output Voltage
(SDTO1,SDTO2,SDTO3, LRCK, BICK,
MCKO, CDTO, DZF1, DZF2/OVF pins:
Iout= 100µA)
(SDA pin, 2.0VTVDD23.6V Iout= 3mA)
(SDA pin, 1.6VTVDD2<2.0V Iout= 3mA)
VOH
VOH
VOL
VOL
VOL
TVDD1-0.5
TVDD2-0.5
AVDD2-0.5
-
-
-
-
-
-
-
-
0.5
0.4
20%TVDD2
V
V
V
V
V
V
Input Leakage Current
Iin
-
-
10
µA
[AK4614]
MS1025-E-05 2015/06
- 15 -
SWITCHING CHARACTERISTICS
(Ta=-40+105C; AVDD1=AVDD2=3.03.6; DVDD=1.62.0V; TVDD1=1.63.6V, TVDD2=1.63.6V; CL=20pF;
unless otherwise specified)
Parameter
Symbol
min
typ
max
Unit
Master Clock Timing
Crystal Resonator
Frequency
fXTAL
11.2896
24.576
MHz
MCKO Output
Frequency (TVDD1 3.0V)
Duty
fMCK
dMCK
5.6448
40
50
24.576
60
MHz
%
External Clock
256fsn:
Pulse Width Low
Pulse Width High
384fsn:
Pulse Width Low
Pulse Width High
512fsn, 256fsd, 128fsq:
Pulse Width Low
Pulse Width High
fCLK
tCLKL
tCLKH
fCLK
tCLKL
tCLKH
fCLK
tCLKL
tCLKH
8.192
32
32
12.288
22
22
16.384
16
16
12.288
18.432
24.576
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
MCKO Output
Frequency
(TVDD1 3.0V)
Duty (Note 16)
fMCK
fMCK
dMCK
4.096
12.288
40
50
12.288
24.576
60
MHz
MHz
%
LRCK Timing (Slave mode)
Stereo mode
(TDM1 bit = “0”, TDM0 bit = “0”)
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
Duty Cycle
fsn
fsd
fsq
Duty
32
64
128
45
48
96
192
55
kHz
kHz
kHz
%
TDM512 mode (Note 17)
(TDM1 bit = “0”, TDM0 bit = “1”)
LRCK frequency
“H” time
“L” time
fsn
tLRH
tLRL
32
1/512fs
1/512fs
48
kHz
ns
ns
TDM256 mode (Note 18)
(TDM1 bit = “1”, TDM0 bit = “0”)
LRCK frequency
“H” time
“L” time
fsd
tLRH
tLRL
64
1/256fs
1/256fs
96
kHz
ns
ns
TDM128 mode (Note 19)
(TDM1 bit = “1”, TDM0 bit = “1”)
LRCK frequency
“H” time
“L” time
fsq
tLRH
tLRL
128
1/128fs
1/128fs
192
kHz
ns
ns
[AK4614]
MS1025-E-05 2015/06
- 16 -
Parameter
Symbol
min
typ
max
Unit
LRCK Timing (Master Mode)
Stereo mode
(TDM1 bit = “0”, TDM0 bit = “0”)
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
Duty Cycle
fsn
fsd
fsq
Duty
32
64
128
-
50
48
96
192
-
kHz
kHz
kHz
%
TDM512 mode (Note 17)
(TDM1 bit = “0”, TDM0 bit = “1”)
LRCK frequency
“H” time (Note 20)
fsn
tLRH
32
1/16fs
48
kHz
ns
TDM256 mode (Note 18)
(TDM1 bit = “1”, TDM0 bit = “0”)
LRCK frequency
“H” time (Note 20)
fsd
tLRH
64
1/8fs
96
kHz
ns
TDM128 mode (Note 19)
(TDM1 bit = “1”, TDM0 bit = “1”)
LRCK frequency
“H” time (Note 20)
fsq
tLRH
128
1/4fs
192
kHz
ns
Note 16. Except the case of DIV bit = “0”.
Note 17. Please use for Normal Speed mode. Master clock should be input the 512fs in Master mode.
Note 18. Please use for Double Speed mode.
Note 19. Please use for Quad Speed mode.
Note 20. If the format is I2S, it is “L” time.
[AK4614]
MS1025-E-05 2015/06
- 17 -
Parameter
Symbol
min
typ
max
Unit
Audio Interface Timing (Slave mode)
Stereo mode (TDM1 bit = “0”, TDM0 bit = “0”)
(TVDD1= 1.6V3.6V)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “” (Note 21)
BICK “” to LRCK Edge (Note 21)
LRCK to SDTO(MSB) (Except I2S mode)
BICK “” to SDTO
SDTI Hold Time
SDTI Setup Time
tBCK
tBCKL
tBCKH
tLRB
tBLR
tLRS
tBSD
tSDH
tSDS
324
130
130
20
20
50
50
80
80
ns
ns
ns
ns
ns
ns
ns
ns
ns
(TVDD1= 3.0V3.6V)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “” (Note 21)
BICK “” to LRCK Edge (Note 21)
LRCK to SDTO(MSB) (Except I2S mode)
BICK “” to SDTO
SDTI Hold Time
SDTI Setup Time
tBCK
tBCKL
tBCKH
tLRB
tBLR
tLRS
tBSD
tSDH
tSDS
81
33
33
23
23
10
10
23
23
ns
ns
ns
ns
ns
ns
ns
ns
ns
TDM512 mode (TDM1 bit = “0”, TDM0 bit = “1”)
(TVDD1= 3.0V3.6V) (Note 17)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “” (Note 21)
BICK “” to LRCK Edge (Note 21)
SDTO Setup time BICK “
SDTO Hold time BICK “
SDTI Hold Time
SDTI Setup Time
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSS
tBSH
tSDH
tSDS
40
16
16
10
10
6
5
10
10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TDM256 mode (TDM1 bit = “1”, TDM0 bit = “0”)
(TVDD1= 3.0V3.6V) (Note 18)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “” (Note 21)
BICK “” to LRCK Edge (Note 21)
SDTO Setup time BICK “
SDTO Hold time BICK “
SDTI Hold Time
SDTI Setup Time
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSS
tBSH
tSDH
tSDS
40
16
16
10
10
6
5
10
10
ns
ns
ns
ns
ns
ns
ns
ns
ns
TDM128 mode (TDM1 bit = “1”, TDM0 bit = “1”)
(TVDD1= 3.0V3.6V) (Note 19)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “” (Note 21)
BICK “” to LRCK Edge (Note 21)
SDTO Setup time BICK “
SDTO Hold time BICK “
SDTI Hold Time
SDTI Setup Time
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSS
tBSH
tSDH
tSDS
40
16
16
10
10
6
5
10
10
ns
ns
ns
ns
ns
ns
ns
ns
ns
[AK4614]
MS1025-E-05 2015/06
- 18 -
Parameter
Symbol
min
typ
max
Unit
Audio Interface Timing (Master mode)
Stereo mode (TDM1 bit = “0”, TDM0 bit = “0”)
(TVDD1= 1.6V3.6V)
BICK Frequency
BICK Duty
BICK “” to LRCK
BICK “” to SDTO
SDTI Hold Time
SDTI Setup Time
fBCK
dBCK
tMBLR
tBSD
tSDH
tSDS
-
-
40
70
50
50
64fs
50
-
-
-
-
-
-
40
70
-
-
Hz
%
ns
ns
ns
ns
(TVDD1= 3.0V3.6V)
BICK Frequency
BICK Duty
BICK “” to LRCK
BICK “” to SDTO
SDTI Hold Time
SDTI Setup Time
fBCK
dBCK
tMBLR
tBSD
tSDH
tSDS
-
-
23
23
10
10
64fs
50
-
-
-
-
-
-
23
23
-
-
Hz
%
ns
ns
ns
ns
TDM512 mode (TDM1 bit = “0”, TDM0 bit = “1”)
(TVDD1= 3.0V3.6V) (Note 17)
BICK Frequency
BICK Duty
BICK “” to LRCK
SDTO Setup time BICK “
SDTO Hold time BICK “
SDTI Hold Time
SDTI Setup Time
fBCK
dBCK
tMBLR
tBSS
tBSH
tSDH
tSDS
-
-
-10
6
5
10
10
512fs
50
-
-
-
-
-
-
10
-
-
-
-
Hz
%
ns
ns
ns
ns
ns
TDM256 mode (TDM1 bit = “1”, TDM0 bit = “0”)
(TVDD1= 3.0V3.6V) (Note 18)
BICK Frequency
BICK Duty
BICK “” to LRCK
SDTO Setup time BICK “
SDTO Hold time BICK “
SDTI Hold Time
SDTI Setup Time
fBCK
dBCK
tMBLR
tBSS
tBSH
tSDH
tSDS
-
-
10
6
5
10
10
256fs
50
-
-
-
-
-
-
-
10
-
-
-
-
Hz
%
ns
ns
ns
ns
ns
TDM128 mode (TDM1 bit = “1”, TDM0 bit = “1”)
(TVDD1= 3.0V3.6V) (Note 19)
BICK Frequency
BICK Duty
BICK “” to LRCK
SDTO Setup time BICK “
SDTO Hold time BICK “
SDTI Hold Time
SDTI Setup Time
fBCK
dBCK
tMBLR
tBSS
tBSH
tSDH
tSDS
-
-
10
6
5
10
10
128fs
50
-
-
-
-
-
-
-
10
-
-
-
-
Hz
%
ns
ns
ns
ns
ns
Note 21. BICK rising edge must not occur at the same time as LRCK edge.
[AK4614]
MS1025-E-05 2015/06
- 19 -
Parameter
Symbol
min
typ
max
Unit
Control Interface Timing (4-wire Serial mode):
CCLK Period
CCLK Pulse Width Low
Pulse Width High
CDTI Setup Time
CDTI Hold Time
CSN H Time
CSN to CCLK
CCLK to CSN
CDTO Delay
CSN to CDTO Hi-Z
tCCK
tCCKL
tCCKH
tCDS
tCDH
tCSW
tCSS
tCSH
tDCD
tCCZ
200
80
80
40
40
150
50
50
50
70
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
Bus Free Time Between Transmissions
Start Condition Hold Time (prior to first clock pulse)
Clock Low Time
Clock High Time
Setup Time for Repeated Start Condition
SDA Hold Time from SCL Falling (Note 22)
SDA Setup Time from SCL Rising
Rise Time of Both SDA and SCL Lines
Fall Time of Both SDA and SCL Lines
Setup Time for Stop Condition
Pulse Width of Spike Noise Suppressed by Input Filter
Capacitive load on bus
fSCL
tBUF
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tR
tF
tSU:STO
tSP
Cb
-
1.3
0.6
1.3
0.6
0.6
0
0.1
-
-
0.6
0
-
400
-
-
-
-
-
-
-
1.0
0.3
-
50
400
kHz
s
s
s
s
s
s
s
s
s
s
ns
pF
Power-down & Reset Timing
PDN Pulse Width (Note 23)
PDN “” to SDTO valid (Note 24)
tPD
tPDV
150
518
ns
1/fs
Note 22. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 23. The AK4614 can be reset by setting the PDN pin to L upon power-up.
Note 24. These cycles are the numbers of LRCK rising from the PDN pin rising.
Note 25. I2C-bus is a trademark of NXP B.V.
[AK4614]
MS1025-E-05 2015/06
- 20 -
Timing Diagram
1/fCLK
tCLKL
VIH
tCLKH
MCKI
VIL
1/fsn, 1/fsd, 1/fsq
LRCK
VIH
VIL
tBCK
tBCKL
VIH
tBCKH
BICK
VIL
tdLRKL
tdLRKH
Duty
= tdLRKH (or tdLRKL) x fs x 100
Figure 3. Clock Timing (TDM1/0 bit = “00” & Slave mode)
1/fCLK
tCLKL
VIH
tCLKH
MCKI
VIL
1/fs
LRCK
VIH
VIL
tLRL
tLRH
tBCK
tBCKL
VIH
tBCKH
BICK
VIL
Figure 4. Clock Timing (Except TDM1/0 bit = “00” & Slave mode)
[AK4614]
MS1025-E-05 2015/06
- 21 -
1/fCLK
tCLKL
VIH
tCLKH
MCKI
VIL
1/fMCK
50%TVDD1
MCKO
tdMCKL
tdMCKH
dMCK
= tdMCKH (or tdMCKL) x fMCK x 100
1/fBCK
tdBCKL
tdBCKH
BICK
50%TVDD1
1/fs
LRCK
50%TVDD1
tdLRKL
tdLRKH
dLRK
= tdLRKH (or tdLRKL) x fs x 100
dBCK
= tdBCKH (or tdBCKL) x fs x 100
Figure 5. Clock Timing (TDM1/0 bit = “00” & Master mode)
1/fCLK
tCLKL
VIH
tCLKH
MCKI
VIL
1/fMCK
50%TVDD1
MCKO
tdMCKL
tdMCKH
dMCK
= tdMCKH (or tdMCKL) x fMCK x 100
1/fs
LRCK
50%TVDD1
tLRH
1/fBCK
tdBCKL
tdBCKH
BICK
50%TVDD1
dBCK
= tdBCKH (or tdBCKL) x fs x 100
Figure 6. Clock Timing (Except TDM1/0 bit = “00 & Master mode)
[AK4614]
MS1025-E-05 2015/06
- 22 -
tLRB
LRCK
VIH
BICK
VIL
tLRS
SDTO
50%TVDD1
tBSD
VIH
VIL
tBLR
tSDS
SDTI
VIH
VIL
tSDH
Figure 7. Audio Interface Timing (TDM1/0 bit = “00” & Slave mode)
tLRB
LRCK
VIH
BICK
VIL
SDTO
50%TVDD1
tBSS
VIH
VIL
tBLR
tSDS
SDTI
VIH
VIL
tSDH
tBSH
Figure 8. Audio Interface Timing (Except TDM1/0 bit = “00” & Slave mode)
[AK4614]
MS1025-E-05 2015/06
- 23 -
LRCK
BICK
SDTO
tBSD
tMBLR
50%TVDD1
50%TVDD1
50%TVDD1
SDTI
tSDH
tSDS
VIH
VIL
Figure 9. Audio Interface Timing (TDM1/0 bit = “00” & Master mode)
LRCK
BICK
SDTO
tBSH
tMBLR
50%TVDD1
50%TVDD1
50%TVDD1
SDTI
tSDH
tSDS
VIH
VIL
tBSS
Figure 10. Audio Interface Timing (Except TDM1/0 bit = “00” & Master mode)
[AK4614]
MS1025-E-05 2015/06
- 24 -
CSN VIH
VIL
tCSS
CCLK
tCDS
VIH
VIL
CDTI VIH
tCCKHtCCKL
tCDH
VIL
C1 C0 R/W
CDTO Hi-Z
tCSH
Figure 11. WRITE Command Input Timing (4-wire Serial mode)
CSN VIH
VIL
tCSH
CCLK VIH
VIL
CDTI VIH
tCSW
VIL
D1 D0
CDTO Hi-Z
D2
tCSS
Figure 12. WRITE Data Input Timing (4-wire Serial mode)
[AK4614]
MS1025-E-05 2015/06
- 25 -
CSN VIH
VIL
CCLK VIH
VIL
CDTI VIH
VIL
A0
CDTO
A1
50%TVDD2
tDCD
D7 D6
Hi-Z
Figure 13. Read Data Output Timing1(4-wire Serial mode)
CSN VIH
VIL
tCSH
CCLK VIH
VIL
CDTI VIH
tCSW
VIL
CDTO 50%TVDD2D2 D1 D0
tCCZ
Hi-Z
tCSS
Figure 14. Read Data Output Timing2(4-wire Serial mode)
[AK4614]
MS1025-E-05 2015/06
- 26 -
tHIGH
SCL
SDA
VIH
tLOW
tBUF
tHD:STA
tR
tF
tHD:DAT
tSU:DAT
tSU:STA
Stop
Start
Start
Stop
tSU:STO
VIL
VIH
VIL
tSP
Figure 15. I2C Bus mode Timing
tPD
VIL
PDN
tPDV
SDTO
50%TVDD1
VIH
Figure 16. Power-down & Reset Timing
[AK4614]
MS1025-E-05 2015/06
- 27 -
OPERATION OVERVIEW
System Clock
It is possible to select the clock source either extra clock input or X’tal input for the AK4614. (Figure 17, Figure 18) The
external clocks which are required to operate the AK4614 in slave mode are MCLK, LRCK and BICK. MCLK should be
synchronized with LRCK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting
Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS0, DFS1 (Table 1). The frequency of MCLK at each
sampling speed is set automatically. (Table 3, Table 4, Table 5). In Auto Setting Mode (ACKS bit= “1”), as MCLK
frequency is detected automatically (Table 6) and the internal master clock attains the appropriate frequency (Table 7), so
it is not necessary to set DFS.
In master mode, only MCLK is required. Master Clock Input Frequency should be set with the CKS1-0 bits, and the
sampling speed should be set by the DFS1-0 bits. The frequencies and the duties of the clocks (LRCK, BICK) are not
stabile immediately after setting CKS1-0 bits and DFS1-0 bits up.
After exiting reset at power-up in slave mode, the AK4614 is in power-down mode until MCLK and LRCK are input.
If the clock is stopped, click noise occurs when restarting the clock. Mute the digital output externally if the click noise
influences system applications.
DFS1
DFS0
Sampling Speed Mode (fs)
(default)
0
0
Normal Speed Mode
32kHz~48kHz
0
1
Double Speed Mode
64kHz~96kHz
1
0
Quad Speed Mode
128kHz~192kHz
1
1
N/A
-
(N/A: Not available)
Table 1. Sampling Speed (Manual Setting Mode)
CKS1
CKS0
Normal Speed
Mode
Double Speed
Mode
Quad Speed
Mode
0
0
256fs
256fs
128fs
0
1
384fs
256fs
128fs
1
0
512fs
256fs
128fs
(default)
1
1
512fs
256fs
128fs
Table 2. Master Clock Input Frequency Select (Master Mode)
LRCK
MCLK (MHz)
BICK (MHz)
fs
256fs
384fs
512fs
64fs
32.0kHz
8.1920
12.2880
16.3840
2.0480
44.1kHz
11.2896
16.9344
22.5792
2.8224
48.0kHz
12.2880
18.4320
24.5760
3.0720
Table 3. System Clock Example (Normal Speed Mode @Manual Setting Mode)
[AK4614]
MS1025-E-05 2015/06
- 28 -
LRCK
MCLK (MHz)
BICK (MHz)
fs
256fs
64fs
88.2kHz
22.5792
5.6448
96.0kHz
24.5760
6.1440
Table 4. System Clock Example (Double Speed Mode @Manual Setting Mode)
LRCK
MCLK (MHz)
BICK (MHz)
fs
128fs
64fs
176.4kHz
22.5792
11.2896
192.0kHz
24.5760
12.2880
Table 5. System Clock Example (Quad Speed Mode @Manual Setting Mode)
MCLK
Sampling Speed Mode
512fs
Normal Speed Mode
256fs
Double Speed Mode
128fs
Quad Speed Mode
Table 6. Sampling Speed (Auto Setting Mode)
LRCK
MCLK (MHz)
Sampling
Speed Mode
fs
128fs
256fs
512fs
32.0kHz
-
-
16.3840
Normal Speed
Mode
44.1kHz
-
-
22.5792
48.0kHz
-
-
24.5760
88.2kHz
-
22.5792
-
Double Speed
Mode
96.0kHz
-
24.5760
-
176.4kHz
22.5792
-
-
Quad Speed
Mode
192.0kHz
24.5760
-
-
Table 7. System Clock Example (Auto Setting Mode)
[AK4614]
MS1025-E-05 2015/06
- 29 -
Clock Source
The clock for the XTI pin can be generated by the two methods.
1) External clock
XTI
XTO
AK4614
External Clock
Figure 17. External clock mode
Note: Input clock must not exceed TVDD1.
2) Xtal
XTI
XTO
AK4614
Figure 18. Xtal mode
Note: External capacitance depends on the crystal oscillator (Typ. 10pF)
TVDD1 should be used in the range of 3.0 ~ 3.6V in Xtal mode.
[AK4614]
MS1025-E-05 2015/06
- 30 -
Differential / Single-End Input selection
The AK4614 supports the differential input (Figure 19) by setting DIE1-3 bits = 1, supports the single-end input (Figure
20) by setting DIE1-3 bits = 0. In differential input mode, two input pins must not be connected to a signal input in
combination with a VCOM voltage. When single-end input mode, L/RIN1-/3- pins should be open, because L/RIN1-/3-
pins output an invert signal of the input signal. The AK4614 includes an anti-aliasing filter (RC filter) for both differential
input and the single-end input.
SCF
L/RIN+
L/RIN-
LPF
LPF
AK4614
Figure 19. Differential Input (DIE1-3 bit = 1)
SCF
L/RIN
L/RIN-
LPF
AK4614
(Open)
Figure 20. Single-end Input (DIE1-3 bit = 0)
Differential / Single-End Output selection
The AK4614 supports the differential output (Figure 21) by setting DOE1-6 bits = 1, and the single-end output (Figure
22) by setting DOE1-6 bits = 0. When single-end output mode, L/ROUT1-6- pins should be open, because of
L/ROUT1-6- pins outputs VCOM voltage. The internal analog filters remove most of the noise beyond the audio
passband generated by the delta-sigma modulator of a DAC in single-end input mode. There is no internal analog filter for
differential output. Use external analog filters if needed to remove this noise.
SCF
L/ROUT+
L/ROUT-
AK4614
Figure 21. Differential Output (DOE1-6 bit = 1)
SCF
L/ROUT
L/ROUT-
LPF
Diff
to
Single
AK4614
(Open)
Figure 22. Single-end Output (DOE1-6 bit = 0)
[AK4614]
MS1025-E-05 2015/06
- 31 -
De-emphasis Filter
The AK4614 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter supports only Normal
Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis of each DAC
can be set individually by registers, DAC1(SDTI1), DAC2(SDTI2), DAC3(SDTI3), DAC4(SDTI4), DAC5(SDTI5),
DAC6(SDTI6).
Mode
Sampling Speed Mode
DEM11
(DEM61-21)
DEM10
(DEM60-20)
DEM
0
Normal Speed Mode
0
0
44.1kHz
1
Normal Speed Mode
0
1
OFF
(default)
2
Normal Speed Mode
1
0
48kHz
3
Normal Speed Mode
1
1
32kHz
Table 8. De-emphasis control
Digital High Pass Filter
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz
and scales with the sampling rate (fs).
Master Clock Output
The AK4614 has a master clock output pin. If DIV bit = 1, the MCKO pin output the frequency divided in half.
DIV
MCKO
(default)
0
XTI x1
1
XTI x1/2
Table 9. The select of Master clock output frequency
Master Mode and Slave Mode
Master Mode and Slave Mode are selected by setting the M/S pin. (Master Mode= H, Slave Mode= L)
LRCK and BICK pins are outputs in Master Mode (M/S pin= H)
LRCK and BICK pins are inputs in Slave Mode (M/S pin= L)
PDN
M/S pin
LRCK pin
BICK pin
L
L
Input
Input
H
L Output
L Output
H
L
Input
Input
H
Output
Output
Table 10. LRCK and BICK pins
[AK4614]
MS1025-E-05 2015/06
- 32 -
Audio Serial Interface Format
(1) Stereo Mode
When TDM1-0 bits = 00, ten modes can be selected by the DIF2-0 bits as shown in Table 11. In all modes the serial data
is MSB-first, 2s compliment format. The data SDTO1-3 is clocked out on the falling edge of BICK and the SDTI1-6 is
latched on the rising edge of BICK.
Mode3/4/8/9/13/14/18/19/23/24/28/29/33/34/38/39 in SDTI input formats can be used for 16-20bit data by zeroing the
unused LSBs.
Mode
M/S
TDM1
TDM0
DIF2
DIF1
DIF0
SDTO1-3
SDTI1-6
LRCK
BICK
I/O
I/O
0
0
0
0
0
0
0
24bit, Left
justified
16bit, Right
justified
H/L
I
32fs
I
1
0
0
0
0
0
1
24bit, Left
justified
20bit, Right
justified
H/L
I
48fs
I
2
0
0
0
0
1
0
24bit, Left
justified
24bit, Right
justified
H/L
I
48fs
I
3
0
0
0
0
1
1
24bit, Left
justified
24bit, Left
justified
H/L
I
48fs
I
4
0
0
0
1
0
0
24bit, I2S
24bit, I2S
L/H
I
48fs
I
(default)
5
1
0
0
0
0
0
24bit, Left
justified
16bit, Right
justified
H/L
O
64fs
O
6
1
0
0
0
0
1
24bit, Left
justified
20bit, Right
justified
H/L
O
64fs
O
7
1
0
0
0
1
0
24bit, Left
justified
24bit, Right
justified
H/L
O
64fs
O
8
1
0
0
0
1
1
24bit, Left
justified
24bit, Left
justified
H/L
O
64fs
O
9
1
0
0
1
0
0
24bit, I2S
24bit, I2S
L/H
O
64fs
O
Table 11. Audio data formats (Stereo mode)
Note. TVDD1 which is the Power of I/O buffer should be kept in the range of 1.6V~3.6V at Normal Speed Mode in Stereo
Mode. TVDD1 should be kept in the range of 3.0V~3.6V at Double Speed Mode and Quad Speed Mode.
[AK4614]
MS1025-E-05 2015/06
- 33 -
(2) TDM Mode
The audio serial interface format is set in TDM mode by the TDM1-0 bits = 01. Five modes can be selected by the
DIF2-0 bits as shown in Table 12. In all modes the serial data is MSB-first, 2s compliment format. The SDTO1/2 are
clocked out on the rising edge of BICK and the SDTI1/2/3 are latched on the rising edge of BICK. In the TDM512 mode
(fs = 48kHz), the serial data of all ADC (six channels) is output to the SDTO1 pin. SDTO2/3 pins = L. And the serial
data of all DAC (twelve channels) is input to the SDTI1 pin. The input data to SDTI2-6 pins are ignored. BICK should be
fixed to 512fs. H time and L time of LRCK should be 1/512fs at least.
TDM256 mode can be set by TDM1-0 bits as show in Table 13. In the TDM256 mode (fs = 96kHz), the serial data of all
ADC (six channels) is output to the SDTO1 pin. SDTO2/3 pins = L. And the serial data of DAC (eight channels; L1,
R1, L2, R2, L3, R3, L4, R4) is input to the SDTI1 pin. Other four data (L5, R5, L6, R6) are input to the SDTI2 pin. The
input data to SDTI3-6 pins are ignored. BICK should be fixed to 256fs. H time and L time of LRCK should be 1/256fs
at least. TDM128 mode can be set by TDM1-0 bits as show in Table 14.
In TDM128 mode (fs=192kHz), the serial data of four ADC (four channels; L1, R1, L2, R2) is output to the SDTO1 pin.
Other two data (L3, R3) output to the SDTO2. The SDTO3 pin = L. And the serial data of DAC (four channels; L1, R1,
L2, R2) is input to the SDTI1 pin and the serial data of DAC (four channels; L3, R3, L4, R4) is input to the SDTI2 pin, the
serial data of DAC (four channels; L5, R5, L6, R6) is input to the SDTI3 pin. The input data to SDTI4-6 pins are ignored.
BICK should be fixed to 128fs. H time and L time of LRCK should be 1/128fs at least.
Mode
M/S
TDM1
TDM0
DIF2
DIF1
DIF0
SDTO1-3
SDTI1-6
LRCK
BICK
I/O
I/O
10
0
0
1
0
0
0
24bit, Left
justified
16bit, Right
justified
I
512fs
I
11
0
0
1
0
0
1
24bit, Left
justified
20bit, Right
justified
I
512fs
I
12
0
0
1
0
1
0
24bit, Left
justified
24bit, Right
justified
I
512fs
I
13
0
0
1
0
1
1
24bit, Left
justified
24bit, Left
justified
I
512fs
I
14
0
0
1
1
0
0
24bit, I2S
24bit, I2S
I
512fs
I
15
1
0
1
0
0
0
24bit, Left
justified
16bit, Right
justified
O
512fs
O
16
1
0
1
0
0
1
24bit, Left
justified
20bit, Right
justified
O
512fs
O
17
1
0
1
0
1
0
24bit, Left
justified
24bit, Right
justified
O
512fs
O
18
1
0
1
0
1
1
24bit, Left
justified
24bit, Left
justified
O
512fs
O
19
1
0
1
1
0
0
24bit, I2S
24bit, I2S
O
512fs
O
Table 12. Audio data formats (TDM512 mode)
[AK4614]
MS1025-E-05 2015/06
- 34 -
Mode
M/S
TDM1
TDM0
DIF2
DIF1
DIF0
SDTO1-3
SDTI1-6
LRCK
BICK
I/O
I/O
20
0
1
0
0
0
0
24bit, Left
justified
16bit, Right
justified
I
256fs
I
21
0
1
0
0
0
1
24bit, Left
justified
20bit, Right
justified
I
256fs
I
22
0
1
0
0
1
0
24bit, Left
justified
24bit, Right
justified
I
256fs
I
23
0
1
0
0
1
1
24bit, Left
justified
24bit, Left
justified
I
256fs
I
24
0
1
0
1
0
0
24bit, I2S
24bit, I2S
I
256fs
I
25
1
1
0
0
0
0
24bit, Left
justified
16bit, Right
justified
O
256fs
O
26
1
1
0
0
0
1
24bit, Left
justified
20bit, Right
justified
O
256fs
O
27
1
1
0
0
1
0
24bit, Left
justified
24bit, Right
justified
O
256fs
O
28
1
1
0
0
1
1
24bit, Left
justified
24bit, Left
justified
O
256fs
O
29
1
1
0
1
0
0
24bit, I2S
24bit, I2S
O
256fs
O
Table 13. Audio data formats (TDM256 mode)
Mode
M/S
TDM1
TDM0
DIF2
DIF1
DIF0
SDTO1-3
SDTI1-6
LRCK
BICK
I/O
I/O
30
0
1
1
0
0
0
24bit, Left
justified
16bit, Right
justified
I
128fs
I
31
0
1
1
0
0
1
24bit, Left
justified
20bit, Right
justified
I
128fs
I
32
0
1
1
0
1
0
24bit, Left
justified
24bit, Right
justified
I
128fs
I
33
0
1
1
0
1
1
24bit, Left
justified
24bit, Left
justified
I
128fs
I
34
0
1
1
1
0
0
24bit, I2S
24bit, I2S
I
128fs
I
35
1
1
1
0
0
0
24bit, Left
justified
16bit, Right
justified
O
128fs
O
36
1
1
1
0
0
1
24bit, Left
justified
20bit, Right
justified
O
128fs
O
37
1
1
1
0
1
0
24bit, Left
justified
24bit, Right
justified
O
128fs
O
38
1
1
1
0
1
1
24bit, Left
justified
24bit, Left
justified
O
128fs
O
39
1
1
1
1
0
0
24bit, I2S
24bit, I2S
O
128fs
O
Table 14. Audio data formats (TDM128 mode)
Note. TVDD1 should be used in the range of 3.0V~3.6V in TDM mode.
[AK4614]
MS1025-E-05 2015/06
- 35 -
LRCK
BICK(64fs)
SDTO(o)
0
1
2
16
17
18
24
25
31
0
1
2
16
17
18
24
25
31
0
23
1
22
0
23
22
8
7
6
0
23
SDTI(i)
1
14
0
15
8
7
1
14
0
15
8
7
Lch Data
Rch Data
Dont Care
Dont Care
8
7
6
SDTO-23:MSB, 0:LSB; SDTI-15:MSB, 0:LSB
Figure 23. Mode 0/5 Timing (Stereo Mode)
LRCK
BICK(64fs)
SDTO(o)
0
1
2
12
13
14
24
25
31
0
1
2
12
13
14
24
25
31
0
23
1
22
0
23
22
12
11
10
0
23
SDTI(i)
1
18
0
19
8
7
1
18
0
19
8
7
Lch Data
Rch Data
Dont Care
Dont Care
12
11
10
SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB
Figure 24. Mode 1/6 Timing (Stereo Mode)
LRCK
BICK(64fs)
SDTO(o)
0
1
2
8
9
10
24
25
31
0
1
2
8
9
10
24
25
31
0
23
1
22
0
23
22
16
15
14
0
23
SDTI(i)
1
22
0
23
8
7
1
22
0
23
8
7
23:MSB, 0:LSB
Lch Data
Rch Data
Dont Care
Dont Care
16
15
14
Figure 25. Mode 2/7 Timing (Stereo Mode)
LRCK
BICK(64fs)
SDTO(o)
0
1
2
21
22
23
24
31
0
1
2
0
23
1
22
1
23
22
23
SDTI(i)
22
23
0
22
23
23:MSB, 0:LSB
Lch Data
Rch Data
Dont Care
2
2
1
28
29
30
23
0
22
23
24
31
1
0
Dont Care
2
2
1
28
29
30
0
Figure 26. Mode 3/8 Timing (Stereo Mode)
[AK4614]
MS1025-E-05 2015/06
- 36 -
LRCK
BICK(64fs)
SDTO(o)
0
1
2
3
22
23
24
25
0
0
1
SDTI(i)
31
29
30
23
22
1
22
23
0
23:MSB, 0:LSB
Lch Data
Rch Data
Dont Care
2
2
1
0
2
3
22
23
24
25
0
31
29
30
23
22
1
22
23
0
Dont Care
2
2
1
0
1
Figure 27. Mode 4/9 Timing (Stereo Mode)
BICK(512fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
23
23
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
22
23
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
14
0
15
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
15
LRCK(Mode10)
512BICK
LRCK(Mode15)
Figure 28. Mode 10/15 Timing (TDM512 Mode)
BICK(512fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
23
23
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
22
23
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
18
0
19
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
19
LRCK(Mode11)
512BICK
LRCK(Mode16)
Figure 29. Mode 11/16 Timing (TDM512 Mode)
BICK(512fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
23
23
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
22
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
23
LRCK(Mode12)
512BICK
LRCK(Mode17)
Figure 30. Mode 12/17 Timing (TDM512 Mode)
[AK4614]
MS1025-E-05 2015/06
- 37 -
BICK(512fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
23
23
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
22
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
23
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
22
23
LRCK(Mode13)
512BICK
LRCK(Mode18)
Figure 31. Mode 13/18 Timing (TDM512 Mode)
BICK(512fs)
SDTO1(o)
SDTI1(i)
23
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
23
0
R1
32 BICK
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
23
0
L2
32 BICK
23
0
R2
32 BICK
23
0
L3
32 BICK
23
0
R3
32 BICK
23
LRCK(Mode14)
512BICK
LRCK(Mode19)
Figure 32. Mode 14/19 Timing (TDM512 Mode)
BICK(256fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
14
4
0
L1
32 BICK
14
0
R1
32 BICK
14
0
L2
32 BICK
14
0
R2
32 BICK
14
0
L3
32 BICK
14
0
R3
32 BICK
14
0
L4
32 BICK
14
0
R4
32 BICK
22
0
R1
32 BICK
22
23
15
15
15
15
15
23
15
15
15
23
15
LRCK (Mode20)
SDTI2(i)
14
0
L5
32 BICK
14
0
R5
32 BICK
14
0
L6
32 BICK
14
0
R6
32 BICK
15
15
15
15
19
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
256 BICK
LRCK (Mode25)
Figure 33. Mode 20/25 Timing (TDM256 Mode)
[AK4614]
MS1025-E-05 2015/06
- 38 -
BICK(256fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
18
0
L1
32 BICK
18
0
R1
32 BICK
18
0
L2
32 BICK
18
0
R2
32 BICK
18
0
L3
32 BICK
18
0
R3
32 BICK
18
0
L4
32 BICK
18
0
R4
32 BICK
22
0
R1
32 BICK
22
23
19
19
19
19
19
23
19
19
19
23
19
LRCK (Mode21)
SDTI2(i)
18
0
L5
32 BICK
18
0
R5
32 BICK
18
0
L6
32 BICK
18
0
R6
32 BICK
19
19
19
19
19
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
256 BICK
LRCK (Mode26)
Figure 34. Mode 21/26 Timing (TDM256 Mode)
BICK(256fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
22
0
L1
32 BICK
22
0
R1
32 BICK
22
0
L2
32 BICK
22
0
R2
32 BICK
22
0
L3
32 BICK
22
0
R3
32 BICK
22
0
L4
32 BICK
22
0
R4
32 BICK
22
0
R1
32 BICK
22
23
23
23
23
23
23
23
23
23
23
23
23
LRCK (Mode22)
SDTI2(i)
22
0
L5
32 BICK
22
0
R5
32 BICK
22
0
L6
32 BICK
22
0
R6
32 BICK
23
23
23
23
23
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
256 BICK
LRCK (Mode27)
Figure 35. Mode 22/27 Timing (TDM256 Mode)
[AK4614]
MS1025-E-05 2015/06
- 39 -
BICK(256fs)
SDTO1(o)
SDTI1(i)
22
0
L1
32 BICK
22
0
L1
32 BICK
22
0
R1
32 BICK
22
0
L2
32 BICK
22
0
R2
32 BICK
22
0
L3
32 BICK
22
0
R3
32 BICK
22
0
L4
32 BICK
22
0
R4
32 BICK
22
0
R1
32 BICK
22
23
23
23
23
23
23
23
23
23
23
23
23
LRCK (Mode23)
SDTI2(i)
22
0
L5
32 BICK
22
0
R5
32 BICK
22
0
L6
32 BICK
22
0
R6
32 BICK
23
23
23
23
22
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
23
22
256 BICK
LRCK (Mode28)
Figure 36. Mode 23/28 Timing (TDM256 Mode)
BICK(256fs)
SDTO1(o)
SDTI1(i)
23
0
L1
32 BICK
23
0
L1
32 BICK
23
0
R1
32 BICK
23
0
L2
32 BICK
23
0
R2
32 BICK
23
0
L3
32 BICK
23
0
R3
32 BICK
23
0
L4
32 BICK
23
0
R4
32 BICK
23
0
R1
32 BICK
23
LRCK (Mode24)
SDTI2(i)
23
0
L5
32 BICK
23
0
R5
32 BICK
23
0
L6
32 BICK
23
0
R6
32 BICK
23
23
32 BICK
32 BICK
23
0
L3
32 BICK
23
0
R3
32 BICK
23
0
L2
23
0
R2
256 BICK
LRCK (Mode29)
Figure 37. Mode 24/29 Timing (TDM256 Mode)
[AK4614]
MS1025-E-05 2015/06
- 40 -
BICK(128fs)
SDTO1(o)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
22
23
23
SDTI1(i)
0
0
14
0
14
0
15
15
15
15
LRCK (Mode30)
SDTI2(i)
0
0
0
14
0
15
15
15
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
SDTI3(i)
0
14
0
0
14
0
15
15
15
14
14
14
15
15
14
14
14
15
15
15
23
14
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
SDTO2(o)
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
128 BICK
LRCK (Mode35)
Figure 38. Mode 30/35 Timing (TDM128 Mode)
BICK(128fs)
SDTO1(o)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
22
23
23
SDTI1(i)
0
0
18
0
18
0
19
19
19
19
LRCK (Mode31)
SDTI2(i)
0
0
0
18
0
19
19
19
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
SDTI3(i)
0
18
0
0
18
0
19
19
19
18
18
18
19
19
18
18
18
19
19
19
23
18
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
SDTO2(o)
22
0
L3
32 BICK
22
0
R3
32 BICK
23
23
128 BICK
LRCK (Mode36)
Figure 39. Mode 31/36 Timing (TDM128 Mode)
[AK4614]
MS1025-E-05 2015/06
- 41 -
BICK(128fs)
SDTO1(o)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
22
23
23
SDTI1(i)
0
0
22
0
22
0
23
23
23
23
LRCK (Mode32)
SDTI2(i)
0
0
0
22
0
23
23
23
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
SDTI3(i)
0
22
0
0
22
0
23
23
23
22
22
22
23
23
22
22
22
23
23
23
23
22
SDTO2(o)
22
0
L3
32 BICK
22
0
R3
32 BICK
22
23
23
23
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
128 BICK
LRCK (Mode37)
Figure 40. Mode 32/37 Timing (TDM128 Mode)
BICK(128fs)
SDTO1(o)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
22
0
R1
32 BICK
22
23
23
SDTI1(i)
0
0
22
0
22
0
23
23
23
LRCK (Mode33)
SDTI2(i)
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
SDTI3(i)
23
22
22
23
22
23
0
0
22
0
22
0
23
23
23
23
22
22
22
23
0
0
22
0
22
0
23
23
23
23
22
22
22
23
SDTO2(o)
22
0
L3
32 BICK
22
0
R3
32 BICK
22
23
23
23
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
128 BICK
LRCK (Mode38)
Figure 41. Mode 33/38 Timing (TDM128 Mode)
[AK4614]
MS1025-E-05 2015/06
- 42 -
BICK(128fs)
SDTO1(o)
22
0
L1
32 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
23
0
R1
32 BICK
23
SDTI1(i)
0
0
23
0
23
0
LRCK (Mode34)
SDTI2(i)
L5
32 BICK
R5
32 BICK
L6
32 BICK
R6
32 BICK
SDTI3(i)
23
23
23
0
0
23
0
23
0
23
23
23
0
0
23
0
23
0
23
23
23
SDTO2(o)
23
0
L3
32 BICK
23
0
R3
32 BICK
23
23
0
L2
32 BICK
23
0
R2
32 BICK
128 BICK
LRCK (Mode39)
Figure 42. Mode 34/39 Timing (TDM128 Mode)
[AK4614]
MS1025-E-05 2015/06
- 43 -
Overflow Detection
The AK4614 has an overflow detect function for the analog input. The overflow detect function is enabled when the
OVFE bit is set to 1. Overflow detection is applied to the analog input of each channel, and the result is ORd. OVF1/2
pins goes to H according to the group set by OVFM2-0 bits, if analog input of Lch or Rch overflows (more than
-0.3dBFS). When the analog input is overflowed, the output signal of OVF1/2 pins have the same group delay as ADC
(GD = 16/fs = 333s @fs=48kHz). OVF1/2 pins are L for 518/fs (=11.8ms @fs=48kHz) after PDN = , and then
overflow detection is enabled.
Mode
OVFM2
OVFM1
OVFM0
LIN1 or RIN1
LIN2 or RIN2
LIN3 or RIN3
0
0
0
0
OVF1
OVF1
OVF1
1
0
0
1
OVF1
OVF2
-
2
0
1
0
-
OVF1
OVF2
3
0
1
1
OVF2
-
OVF1
4
1
0
0
OVF2
OVF2
OVF2
5
1
0
1
disable (OVF2=OVF1= L)
6
1
1
0
7
1
1
1
(default)
Table 15. Overflow detect control (OVFE bit = 1)
Zero Detection
The AK4614 has two pins for zero detect flag outputs. Zero detect function is enabled when the OVFE bit is set to “0”.
Channel grouping can be selected by the DZFM3-0 bits. (Table 16) The DZF1 pin corresponds to the group 1 channels
and the DZF2 pin corresponds to the group 2 channels. DZF1 is AND operation of all twelve channels and DZF2 is
disabled (“L”) at mode 0. When the input data of all channels in the group 1(group 2) are continuously zeros for 8192
LRCK cycles, the DZF1 (DZF2) pin goes to “H”. The DZF1 (DZF2) pin immediately returns to “L” if input data of any
channels in the group 1(group 2) is not zero.
Mode
DZFM
AOUT
3
2
1
0
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
0
0
0
0
0
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
(default)
1
0
0
0
1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
2
0
0
1
0
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
3
0
0
1
1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
4
0
1
0
0
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
5
0
1
0
1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
6
0
1
1
0
DZF1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
7
0
1
1
1
DZF1
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
8
1
0
0
0
DZF1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
9
1
0
0
1
DZF1
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
10
1
0
1
0
DZF1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
11
1
0
1
1
DZF1
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
12
1
1
0
0
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
DZF2
13
1
1
0
1
disable (DZF1=DZF2 = L)
14
1
1
1
0
15
1
1
1
1
Table 16. Zero detect control (OVFE bit = 0)
[AK4614]
MS1025-E-05 2015/06
- 44 -
Digital Attenuator
AK4614 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each channel can be
set by each the ATT7-0 bits (Table 17).
ATT7-0
Attenuation Level
(default)
00H
0dB
01H
-0.5dB
02H
-1.0dB
:
:
7DH
-62.5dB
7EH
-63.0dB
7FH
-63.5dB
:
FEH
-127.0dB
FFH
MUTE (-)
Table 17. Attenuation level of digital attenuator
Transition time between set values of ATT7-0 bits can be selected by the ATS1-0 bits (Table 18). Transition between set
values is the soft transition in Mode1/2/3 eliminating switching noise in the transition.
Mode
ATS1
ATS0
ATT speed
(default)
0
0
0
4096/fs
1
0
1
2048/fs
2
1
0
512/fs
3
1
1
256/fs
Table 18. Transition time between set values of ATT7-0 bits
The transition between set values is a soft transition of 4096 levels in mode 0. It takes 4096/fs (85.3ms@fs=48kHz) from
00H(0dB) to FFH(MUTE). If the PDN pin goes to “L”, the ATTs are initialized to 00H. The ATTs also become 00H when
RSTN bit = 0, and fade to their current value when RSTN bit returns to 1.
* A power-down release command must be write again (dummy write) after 5 LRCK cycles or later form the first
command when releasing power-down mode by PMVR, PMDAC, RSTN, PMDA1, PMDA2, PMDA3, PMDA4,
PMDA5 or PMDA6 bit in I2C mode. If this dummy write is not executed, DATT output will keep the initial value (0dB)
until the next write is executed.
Power-down Release
Command
LRCK
I2C
ContIrol
A power-down release command must be write again
after 5 LRCK cycle or later from the first command.
> 5LRCK (5/fs)
Power-down Release
Command (Dummy)
Figure 43. Power-up Sequence Example
[AK4614]
MS1025-E-05 2015/06
- 45 -
Soft Mute Operation
Soft mute operation is performed in the digital domain. When the SMUTE bit becomes 1, the output signal is attenuated
to - in the cycle set by ATS bits (Table 18) from the current ATT level. When the SMUTE bit is returned to 0, the
mute is cancelled and the output attenuation gradually changes to the ATT level in the cycle set by ATS bits. If the soft
mute is cancelled before attenuating to - after starting the operation, attenuation is discontinued and it is returned to ATT
level by the same cycle. Soft mute is effective for changing the signal source without stopping the signal transmission.
SMUTE bit
Attenuation
DZF1,2
ATT Level
-
AOUT
8192/fs
GD
GD
(1)
(3)
(4)
(5)
(2)
Notes:
(1) The time for input data attenuation to - (Table 18). For example, in Normal Speed Mode, this time is 4096LRCK
cycles (4096/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH
(2) The time for input data recovery to ATT level (Table 18). For example, in Normal Speed Mode, this time is
4096LRCK cycles (4096/fs) at ATT-DATA=FFH. ATT transition of soft-mute is from FFH to 00H.
(3) The analog output corresponding to the digital input has group delay, GD.
(4) If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT level by
the same cycle.
(5) When the input data at all the channels of the group are continuously zeros for 8192 LRCK cycles, DZF1, 2 pins of
each channel goes to H. DZF1/2 pins immediately returns to L if the input data of either channel of the group
are not zero after going H.
Figure 44. Soft mute and zero detection
System Reset
The AK4614 should be reset once by bringing the PDN pin = L upon power-up. The AK4614 is powered up and the
internal timing starts clocking by LRCK after exiting the power down state of reference voltage (such as VCOM) by
MCLK. The AK4614 is in power-down mode until MCLK and LRCK are input.
[AK4614]
MS1025-E-05 2015/06
- 46 -
Power-Down
All ADCs and DACs of the AK4614 are placed in power-down mode by bringing the PDN pin L which resets both
digital filters at the same time. The PDN pin L also resets the control registers to their default values. In power-down
mode, when the DVMPD pin L, the analog outputs go to VCOM voltage, when the DVMPD pin =H, the analog
outputs go to Hi-Z. The SDTO1-3, DZF1-2 pins go to L in the power-dwon mode. This reset should always be executed
after power-up. For the ADC, an analog initialization cycle (518/fs) starts 3~4/fs after exiting power-down mode. The
output data, SDTO1-3, is available after 521~522 cycles of the LRCK clock. For the DAC, an analog initialization cycle
(516/fs) starts 3~4/fs after exiting power-down mode. The analog outputs are VCOM voltage when the DVMPD =pin
L, and the analog outputs go to Hi-Z when the DVMPD pin =H during the initialization. Figure 45 shows the
power-down and power-up sequences.
ADC Internal
State
PDN
Clock In
MCLK,LRCK,SCLK
ADC In
(Analog)
ADC Out
(Digital)
DAC Internal
State
DAC In
(Digital)
DAC Out
(Analog)
External
Mute
Mute ON
(9)
Power
Power-down
Dont care
GD
0data
Power-down
0data
GD
(3)
(3)
(4)
(7)
(7)
518/fs
Init Cycle
Normal Operation
(1)
GD
Normal Operation
GD
(6)
(7)
516/fs
Init Cycle
(2)
Mute ON
0data
0data
Dont care
3~4/fs
(10)
(5)
DZF1/DZF2
Dont care
(7)
10~11/fs
(11)
(12)
Notes:
(1) The analog part of ADC is initialized after exiting power-down state.
(2) The analog part of DAC is initialized after exiting power-down state.
(3) Digital output corresponds to analog input and analog output corresponds to digital input have group delay (GD).
(4) ADC output is 0 data at power-down state.
(5) The analog outputs are VCOM voltage when the DVMPD pin L, and the analog outputs go to Hi-Z when the
DVMPD pin H in power-down mode.
(6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise
influences system applications.
(7) Click noise occurs at the falling edge of PDN and at 519~520/fs after the rising edge of the PDN pin.
(8) DZF1-2 pins are Lin power-down mode (PDN pin = L).
(9) Please mute the analog output externally if the click noise (7) influences system applications.
(10) There is a delay, 3~4/fs from PDN pin H to the start of initial cycle.
(11) DZF pin= L for 1011/fs after PDN pin = .
(12) The PDN pin must be L when power up the AK4614 and set to H after all poweres are supplied.
Figure 45. Pin power-down/Pin power-up sequence example
[AK4614]
MS1025-E-05 2015/06
- 47 -
All ADCs and all DACs can be powered-down individually through the PMADC bits and PMDAC bits, when the PMVR
bit 1. ADC1-3 can be power-down individually through the PMAD3-1 bits. DAC1-6 can be power-down individually
by PMDA6-1 bits. In this case, the internal register values are not initialized. When PMADC bit = 0, SDTO1-3 goes to
“L”. When PMDAC bit = 0, the analog outputs go to VCOM voltage when the DVMPD pin is L, and the analog
outputs go to Hi-Z when the DVMPD pin H. When PMDAC bit = 0, DZF1-2 pins go to “H”. As some click noise
occurs, the analog output should be muted externally if the click noise influences system applications. Figure 46 shows
the power-down and power-up sequences.
ADC Internal
State
PMADC/PMDAC bit
518/fs
Normal Operation
Power-down
Init Cycle
Normal Operation
(1)
Dont care
GD
GD
Clock In
MCLK,LRCK,SCLK
ADC In
(Analog)
0data
ADC Out
(Digital)
Normal Operation
Power-down
Normal Operation
DAC Internal
State
0data
DAC In
(Digital)
DAC Out
(Analog)
GD
External
Mute
Mute ON
GD
(3)
(3)
(4)
(6)
(7)
(7)
(9)
516/fs
Init Cycle
(2)
(8)
89/fs (12)
(5)
3~4/fs (11)
4~5/fs (10)
PMVR bit
DZF1/DZF2
Notes:
(1) The analog section of ADC is initialized after exiting power-down state.
(2) The analog section of DAC is initialized after exiting power-down state.
(3) Digital output corresponding to the analog inputs and analog outputs corresponding to the digital inputs have group
delay (GD).
(4) ADC output is 0 data at power-down state.
(5) The analog outputs are VCOM voltage when the DVMPD pin L, and the analog outputs go to Hi-Z when the
DVMPD pin H in power-down mode.
(6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise
influences system application.
(7) Click noise occurs at 45/fs after PMDAC bit becomes 0, and occurs at 519520/fs after PMDAC bit becomes
1.
(8) DZF1-2 pins are Hin power-down mode (PMDAC bit = 0).
(9) Mute the analog output externally if the click noise (7) influences system application.
(10) There is a delay, 4~5/fs from PMDAC bit becomes 0 to the applicable ADC power-down.
There is a delay, 4~5/fs from PMDAC bit becomes 0 to the applicable DAC power-down.
(11) There is a delay, 3~4/fs from PMADC and PMDAC bits become 1 to the start of initial cycle.
(12) DZF pin= L for 89/fs after PMDAC bit becomes 1.
Figure 46. Bit power-down/Bit power-up sequence example
[AK4614]
MS1025-E-05 2015/06
- 48 -
Reset Function
When RSTN bit= 0, the analog and digital part of ADC and the digital part of DACs are powered-down, but the internal
register are not initialized. The analog outputs go to VCOM voltage regardless of the DVMPD pin setting, then DZF1-2
pins go to H and SDTO1-3 pin goes to “L”. As some click noise occurs, the analog output should be muted externally if
the click noise influences system application. Figure 47 shows the power-up sequence.
ADC Internal
State
RSTN bit
Normal Operation
Power-down
Normal Operation
Dont care
GD
GD
Clock In
MCLK,LRCK,SCLK
ADC In
(Analog)
0data
ADC Out
(Digital)
Normal Operation
Normal Operation
DAC Internal
State
0data
DAC In
(Digital)
DAC Out
(Analog)
GD
GD
(2)
(2)
(3)
(4)
(6)
(6)
DZF1/DZF2
Internal
RSTN bit
Digital Block Power-down
3~4/fs (9)
4~5/fs (8)
89/fs (7)
(5)
518/fs
Init Cycle
(1)
Notes:
(1) The analog section of the ADC is initialized after exiting reset state.
(2) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group
delay (GD).
(3) ADC output is 0 data at power-down state.
(4) Click noise occurs when the internal RSTN bit becomes 1. Mute the digital output externally if the click noise
influences system application.
(5) The analog outputs go to VCOM voltage regardless of the DVMPD pin setting when RSTN bit becomes 1.
(6) Click noise occurs at 45/fs after RSTN bit becomes 0, and occurs at 34/fs after RSTN bit becomes 1.
(7) DZF pins go to “H” when the RSTN bit becomes “0”, and go to “Lat 8~9/fs after RSTN bit becomes “1”.
(8) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0.
(9) There is a delay, 3~4/fs from RSTN bit 1 to the start of initial cycle.
Figure 47. Reset sequence example
[AK4614]
MS1025-E-05 2015/06
- 49 -
ADC Partial Power-Down Function
All of the ADCs can be powered-down individually by PMAD3-1 bits. The analog section and the digital section of the
ADC are in power-down mode when the PMAD3-1 bits = 0. The analog section of ADCs are initialized after exiting the
power-down state. Digital output corresponding to analog input have group delay (GD). ADC output is 0 data at the
power-down state. Click noise occurs when the internal RSTN bit becomes 1. Mute the digital output externally if the
click noise influences system applications. Figure 48 shows the power-down and power-up sequences by PMAD3-1 bits.
PMAD3-1 bit
ADCDigital
Internal State
Normal Operation
ADC Analog
Internal State
Power-down
Clock In
MCLK,LRCK,SCLK
Normal Operation Channel
Power-down
Normal Operation
Power Down Channel
Normal Operation
Power-down
Power-down
Normal Operation
2~3/fs (2)
2~3/fs (2)
Init Cycle
Normal Operation
518/fs (3)
Init Cycle
Normal Operation
518/fs (3)
4~5/fs (1)
4~5/fs (1)
GD
GD
ADC In
(Analog)
0data
ADC Out
(Digital)
(4)
(5)
(6)
(6)
(4)
GD
GD
ADC In
(Analog)
0data
ADC Out
(Digital)
(5)
(4)
(4)
Notes.
(1) There is a delay, 4~5/fs from PMAD3-1 bits become 0 to the applicable ADC power-down.
(2) There is a delay, 2~3/fs from PMAD3-1 bit 1 to the start of initial cycle.
(3) The analog section of the ADC is initialized after exiting reset state.
(4) Analog output corresponding to the digital inputs have group delay (GD).
(5) ADC output is 0 data at power-down state.
(6) Click noise occurs when the internal RSTN bit becomes 1. Mute the digital output externally if the click noise
influences system application.
Figure 48. ADC partial power-down example
[AK4614]
MS1025-E-05 2015/06
- 50 -
DAC Partial Power-Down Function
All of the DACs can be powered-down individually by PMDA6-1 bits. The analog section and the digital section of the
DAC are placed in power-down mode when the PMDA6-1 bits = 0. The analog output of the powered-down channels,
which is by PMDA6-1 bits, go to the voltage of VCOM when the DVMPD pin is L, and go to Hi-Z when the DVMPD
pin H. Although DZF detection is in operation, the AK4614 stops reflecting the result of DZF detection to DZF1-2 pins.
Some click noise occurs in both set-up and release of power-down. Mute the analog output externally or set PMDA1-6
bits when PMDAC bit = 0 or RSTN bit = 0, if click noise aversely affects system performance. Figure 49 shows the
sequence of the power-down and the power-up by PMDA6-1 bits.
PMDA6-1 bit
DZF1/DZF2
8192/fs
0data
DAC In
(Digital)
DAC Out
(Analog)
GD
GD
(1)
(3)
(3)
(2)
DAC Digital
Internal State
Normal Operation
DAC Analog
Internal State
Power-down
Clock In
MCLK,LRCK,SCLK
DAC In
(Digital)
DAC Out
(Analog)
Normal Operation Channel
(7)
(8)
GD
8192/fs
GD
Power-down
Normal Operation
(2)
(3)
(3)
(7)
Power Down Channel
DZF Detect
Internal State
DZF Detect
Internal State
0data
(9)
Normal Operation
Power-down
Power-down
Normal Operation
2~3/fs (5)
2~3/fs (5)
Init Cycle
Normal Operation
516/fs (6)
Init Cycle
Normal Operation
516/fs (6)
4~5/fs (4)
4~5/fs (4)
Notes:
(1) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group
delay (GD).
(2) Analog output of the DAC powered down by PMDA6-1 = 0 and goes to VCOM voltage when the DVMPD pin
=L, and the analog outputs go to Hi-Z when the DVMPD pin =H.
(3) Click noise occurs at 45/fs after RSTN bit becomes 0, and occurs at 34/fs after RSTN bit becomes 1. after
PMDA6-1 bits are changed, some click noise occurs immediately at output of the channel changed by the own PD
bits.
(4) The DACs will be powered-down 4~5fs after PMDA6-1 bits = 0
(5) The initiation stars 2~3fs after PMDA6-1 bits are set to 1.
(6) The analog parts of DACs are initilised after exiting power down mode.
(7) Although DZF detection is active at a certain channel set up though PMDA6-1 = 0, the AK4614 stops reflecting
the result of DZF detection to DZF1-2 pins.
(8) DZF detection of the DAC which is set up by the power-down setting is ignored, and DZF1-2 pins go to H.
(9) When signal is input to a DAC, even if the partical power down is applied, DZF1-2 pins will not become H.
Figure 49. DAC partial power-down example
[AK4614]
MS1025-E-05 2015/06
- 51 -
Serial Control Interface
The AK4614s functions are controlled through registers. The registers may be written by two types of control modes.
The chip address is determined by the state of the CAD0 and CAD1 inputs. The PDN pin = L initializes the registers to
their default values. Writing 0 to the RSTN bit can initialize the internal timing circuit, but the register data will not be
initialized.
(1) 4-wire Serial Control Mode (I2C pin = “L”)
The internal registers may be written through the 4-wire µP interface pins (CSN, CCLK, CDTI and CDTO). The data on
this interface consists of a 2-bit Chip address, Read/Write, Register address (MSB first, 5bits) and Control data (MSB
first, 8bits). The chip address high bit is fixed to “1” and the lower bit is set by the CAD0 pin. Address and data are
clocked in on the rising edge of CCLK and data is clocked out on the falling edge. After a low-to-high transition of CSN,
data is latched for write operations and CDTO bit outputs Hi-Z. The clock speed of CCLK is 5MHz (max). The value of
internal registers is initialized when the PDN pin = “L”.
CDTI
CCLK
CSN
C1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
D4
D5
D6
D7
A1
A2
A3
A4
R/W
C0
A0
D0
D1
D2
D3
CDTO
Hi-Z
WRITE
CDTI
C1
A1
A2
A3
A4
R/W
C0
A0
CDTO
Hi-Z
READ
D4
D5
D6
D7
D0
D1
D2
D3
Hi-Z
H or L
H or L
H or L
H or L
H or L
H or L
C1 C0: Chip Address (C1=CAD1, C0=CA0)
R/W: READ / WRITE (“1”: WRITE, “0”: READ)
A4 - A0: Register Address
D7 D0: Control Data
Figure 50. Serial Control I/F Timing
[AK4614]
MS1025-E-05 2015/06
- 52 -
(2) I2C-bus Control Mode (I2C pin = “H”)
The AK4614 supports the fast-mode I2C-bus (max: 400kHz).
(2)-1. WRITE Operations
Figure 51 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by START condition. A
HIGH to LOW transition on the SDA line while SCL is HIGH indicates START condition (Figure 57). After the START
condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W).
The most significant five bits of the slave address are fixed as “00100”. The next bits are CAD1 and CAD0 (device
address bit). This bit identifies the specific device on the bus. The hard-wired input pins (CAD1/0 pins) set these device
address bits (Figure 52). If the slave address matches that of the AK4614, the AK4614 generates an acknowledge and the
operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH)
during the acknowledge clock pulse (Figure 58). R/W bit = “1” indicates that the read operation is to be executed. “0”
indicates that the write operation is to be executed.
The second byte consists of the control register address of the AK4614. The format is MSB first, and those most
significant 3-bits are fixed to zeros (Figure 53). The data after the second byte contains control data. The format is MSB
first, 8bits (Figure 54). The AK4614 generates an acknowledge after each byte is received. Data transfer is always
terminated by STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH
defines STOP condition (Figure 57).
The AK4614 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4614
generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the
write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is
incremented by one, and the next data is automatically taken into the next address. If the address exceeds 16H prior to
generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data
line can only change when the clock signal on the SCL line is LOW (Figure 59) except for the START and STOP
conditions.
SDA Slave
Address
S
S
T
A
R
T
R/W="0"
A
C
K
Sub
Address(n) A
C
K
Data(n)
A
C
K
Data(n+1)
A
C
K
A
C
K
Data(n+x)
A
C
K
P
S
T
O
P
Figure 51. Data Transfer Sequence at the I2C-Bus Mode
0
0
1
0
0
CAD1
CAD0
R/W
(Those CAD1/0 should match with CAD1/0 pins)
Figure 52. The First Byte
0
0
0
A4
A3
A2
A1
A0
Figure 53. The Second Byte
D7
D6
D5
D4
D3
D2
D1
D0
Figure 54. Byte Structure after the second byte
[AK4614]
MS1025-E-05 2015/06
- 53 -
(2)-2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4614. After transmission of data, the master can read the next
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word.
After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is
automatically taken into the next address. If the address exceeds 16H prior to generating stop condition, the address
counter will “roll over” to 00H and the data of 00H will be read out.
The AK4614 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.
(2)-2-1. CURRENT ADDRESS READ
The AK4614 contains an internal address counter that maintains the address of the last word accessed, incremented by
one. Therefore, if the last access (either a read or write) was to address n, the next CURRENT READ operation would
access data from the address n+1. After receipt of the slave address with R/W bit “1”, the AK4614 generates an
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal
address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4614
ceases transmission.
SDA Slave
Address
S
S
T
A
R
T
R/W="1"
A
C
K
A
C
K
Data(n+1)
A
C
K
Data(n+2)
A
C
K
A
C
K
Data(n+x)
N
A
C
K
P
S
T
O
P
Data(n)
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
Figure 55. CURRENT ADDRESS READ
(2)-2-2. RANDOM ADDRESS READ
The random read operation allows the master to access any memory location at random. Prior to issuing a slave address
with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave
address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master
immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4614 then generates an
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an
acknowledge but generates a stop condition instead, the AK4614 ceases transmission.
SDA Slave
Address
S
S
T
A
R
T
R/W="0"
A
C
K
A
C
K
A
C
K
Data(n)
A
C
K
Data(n+x)
A
C
K
P
S
T
O
P
Sub
Address(n) SSlave
Address
R/W="1"
S
T
A
R
T
Data(n+1)
A
C
K
N
A
C
K
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
Figure 56. RANDOM ADDRESS READ
[AK4614]
MS1025-E-05 2015/06
- 54 -
SCL
SDA
stop condition
start condition
S
P
Figure 57. START and STOP Conditions
SCL FROM
MASTER
acknowledge
DATA
OUTPUT BY
TRANSMITTER
DATA
OUTPUT BY
RECEIVER
1
9
8
START
CONDITION
not acknowledge
clock pulse for
acknowledgement
S
2
Figure 58. Acknowledge on the I2C-Bus
SCL
SDA
data line
stable;
data valid
change
of data
allowed
Figure 59. Bit Transfer on the I2C-Bus
[AK4614]
MS1025-E-05 2015/06
- 55 -
Register Map
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
00H
Power Management 1
0
0
0
0
PMVR
PMADC
PMDAC
RSTN
01H
Power Management 2
0
0
0
0
0
PMAD3
PMAD2
PMAD1
02H
Power Management 3
0
0
PMDA6
PMDA5
PMDA4
PMDA3
PMDA2
PMDA1
03H
Control 1
TDM1
TDM0
DIF2
DIF1
DIF0
ATS1
ATS0
SMUTE
04H
Control 2
0
MCKO
CKS1
CKS0
DFS1
DFS0
ACKS
DIV
05H
De-emphasis1
DEM41
DEM40
DEM31
DEM30
DEM21
DEM20
DEM11
DEM10
06H
De-emphasis2
0
0
0
0
DEM61
DEM60
DEM51
DEM50
07H
Overflow Detect
0
0
0
0
OVFE
OVFM2
OVFM1
OVFM0
08H
Zero Detect
LOOP1
LOOP0
0
0
DZFM3
DZFM2
DZFM1
DZFM0
09H
Input Control
0
0
0
0
0
DIE3
DIE2
DIE1
0AH
Output Control
0
0
DOE6
DOE5
DOE4
DOE3
DOE2
DOE1
0BH
LOUT1 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0CH
ROUT1 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0DH
LOUT2 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0EH
ROUT2 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0FH
LOUT3 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
10H
ROUT3 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
11H
LOUT4 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
12H
ROUT4 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
13H
LOUT5 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
14H
ROUT5 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
15H
LOUT6 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
16H
ROUT6 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
Note: For addresses from 17H to 1FH, data is not written.
When the PDN pin goes to L, the registers are initialized to their default values.
When RSTN bit goes to 0, the internal timing is reset and the DZF1-2 pins go to H, but registers are not
initialized to their default values.
[AK4614]
MS1025-E-05 2015/06
- 56 -
Register Definitions
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
00H
Power Management 1
0
0
0
0
PMVR
PMADC
PMDAC
RSTN
R/W
RD
RD
RD
RD
R/W
R/W
R/W
R/W
Default
0
0
0
0
1
1
1
1
RSTN: Internal timing reset
0: Reset. DZF1-2 pins go to H, but registers are not initialized.
1: Normal operation
PMDAC: Power management of DAC1-6
0: Power-down
1: Normal operation
PMADC: Power management of ADC1-3
0: Power-down
1: Normal operation
PWVR: Power management of reference voltage
0: Power-down
1: Normal operation
When any blocks are powered-up, the PMVR bit must be set to 1. PMVR bit can be set to 0 only when
PMADAL=PMADAR= bits = 0.
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
01H
Power Management 2
0
0
0
0
0
PMAD3
PMAD2
PMAD1
R/W
RD
RD
RD
RD
RD
R/W
R/W
R/W
Default
0
0
0
0
0
1
1
1
PMAD3-1: Power management of ADC1-3 (0: Power-down, 1: Normal operation)
PMAD1: Power management control of ADC1
PMAD2: Power management control of ADC2
PMAD3: Power management control of ADC3
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
02H
Power Management 3
0
0
PMDA6
PMDA5
PMDA4
PMDA3
PMDA2
PMDA1
R/W
RD
RD
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
1
1
1
1
1
1
PMDA6-1: Power management of DAC1-6 (0: Power-down, 1: Normal operation)
PMDA1: Power management control of DAC1
PMDA2: Power management control of DAC2
PMDA3: Power management control of DAC3
PMDA4: Power management control of DAC4
PMDA5: Power management control of DAC5
PMDA6: Power management control of DAC6
[AK4614]
MS1025-E-05 2015/06
- 57 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
03H
Control 1
TDM1
TDM0
DIF2
DIF1
DIF0
ATS1
ATS0
SMUTE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
1
0
0
0
0
0
SMUTE: Soft Mute Enable
0: Normal operation
1: All DAC outputs soft-muted
ATS1-0: Digital attenuator transition time setting (Table 18)
Initial: 00, mode 0
DIF2-0: Audio Data Interface Modes (Table 11, Table 12, Table 13, Table 14)
Initial: 100”, mode 4
TDM1-0: TDM Format Select (Table 11, Table 12, Table 13, Table 14)
Mode
TDM1
TDM0
SDTI
Sampling Speed
0
0
0
1-6
Stereo mode (Normal, Double, Quad Speed Mode)
1
0
1
1
TDM512 mode (Normal Speed Mode)
2
1
0
1-2
TDM256 mode (Double Speed Mode)
3
1
1
1-3
TDM128 mode (Quad Speed Mode)
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
04H
Control 2
0
MCKO
CKS1
CKS0
DFS1
DFS0
ACKS
DIV
R/W
RD
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
1
0
0
0
0
0
DIV: Output of Master clock frequency
0: x 1
1: x 1/2
ACKS: Master Clock Frequency Auto Setting Mode Enable
0: Disable, Manual Setting Mode
1: Enable, Auto Setting Mode
Master clock frequency is detected automatically at ACKS bit “1”. In this case, the setting of DFS are
ignored. When this bit is 0, DFS0, 1 set the sampling speed mode.
DFS1-0: Sampling speed mode (Table 1)
The setting of DFS is ignored at ACKS bit =1”.
CKS1-0: Master Clock Input Frequency Select (Table 2)
MCKO: Master clock output enable
0: Output L
1: Output MCKO
[AK4614]
MS1025-E-05 2015/06
- 58 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
05H
De-emphasis1
DEM41
DEM40
DEM31
DEM30
DEM21
DEM20
DEM11
DEM10
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
1
0
1
0
1
0
1
DEMA11-10: De-emphasis response control for DAC1 data on SDTI1 (Table 8)
Initial: 01”, OFF
DEMA21-20: De-emphasis response control for DAC2 data on SDTI1 (Table 8)
Initial: 01”, OFF
DEMA31-30: De-emphasis response control for DAC3 data on SDTI1 (Table 8)
Initial: 01”, OFF
DEMA41-40: De-emphasis response control for DAC4 data on SDTI1 (Table 8)
Initial: 01”, OFF
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
06H
De-emphasis2
0
0
0
0
DEM61
DEM60
DEM51
DEM50
R/W
RD
RD
RD
RD
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
1
0
1
DEMA51-50: De-emphasis response control for DAC5 data on SDTI1 (Table 8)
Initial: 01”, OFF
DEMA61-60: De-emphasis response control for DAC6 data on SDTI1 (Table 8)
Initial: 01”, OFF
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
07H
Overflow Detect
0
0
0
0
OVFE
OVFM2
OVFM1
OVFM0
R/W
RD
RD
RD
RD
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
1
1
1
OVFM2-0: Overflow detect mode select (Table 15)
Initial: 111”, disable
OVFE: Overflow detection enable (Table 15)
0: Disable, pin#33 becomes DZF2 pin.
1: Enable, pin#33 becomes OVF pin.
[AK4614]
MS1025-E-05 2015/06
- 59 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
08H
Zero Detect
LOOP1
LOOP0
0
0
DZFM3
DZFM2
DZFM1
DZFM0
R/W
R/W
R/W
RD
RD
R/W
R/W
R/W
R/W
Default
0
0
0
0
1
1
1
1
DZFM3-0: Zero detect mode select (Table 16)
Initial: 1111”, disable
LOOP1-0: Loopback mode enable
00: Normal (No loop back)
01: LIN1 LOUT1, LOUT2
RIN1 ROUT1, ROUT2
LIN2 LOUT3, LOUT4
RIN2 ROUT3, ROUT4
LIN3 LOUT5, LOUT6
RIN3 ROUT5, ROUT6
The digital ADC output is connected to the digital DAC input. In this mode, the input DAC data to
SDTI1-6 is ignored. The audio format of SDTO at loopback mode becomes mode 3 at mode 0 or 1,
and mode 5 at mode 2, respectively.
10: SDTI1(L) SDTI2(L), SDTI3(L), SDTI4(L), SDTI5(L), SDTI6(L)
SDTI1(R) SDTI2(R), SDTI3(R), SDTI4(R), SDTI5(R), SDTI6(R)
In this mode, the input DAC data to SDTI2-6 is ignored.
11: Not Available
LOOP1-0 should be set to 00 at TDM mode.
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
09H
Output Control
0
0
0
0
0
DIE3
DIE2
DIE1
R/W
RD
RD
RD
RD
RD
R/W
R/W
R/W
Default
0
0
0
0
0
1
1
1
DIE3-1: ADC1-3 Differential Input Enable (0: Single-End Input, 1: Differential Input)
DIE1: ADC1 Differential Input Enable
DIE2: ADC2 Differential Input Enable
DIE3: ADC3 Differential Input Enable
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
0AH
Output Control
0
0
DOE6
DOE5
DOE4
DOE3
DOE2
DOE1
R/W
RD
RD
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
1
1
1
1
1
1
DOE6-1: DAC1-6 Differential Output Enable (0: Single-End Input, 1: Differential Input)
DOE1: DAC1 Differential Output Enable
DOE2: DAC2 Differential Output Enable
DOE3: DAC3 Differential Output Enable
DOE4: DAC4 Differential Output Enable
DOE5: DAC5 Differential Output Enable
DOE6: DAC6 Differential Output Enable
[AK4614]
MS1025-E-05 2015/06
- 60 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
0BH
LOUT1 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0CH
ROUT1 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0DH
LOUT2 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0EH
ROUT2 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0FH
LOUT3 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
10H
ROUT3 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
11H
LOUT4 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
12H
ROUT4 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
13H
LOUT5 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
14H
ROUT5 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
15H
LOUT6 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
16H
ROUT6 Volume Control
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
ATT7-0: Attenuation Level (Table 17)
* A power-down release command must be write again (dummy write) after 5 LRCK cycles or later form the first
command when releasing power-down mode by PMVR, PMDAC, RSTN, PMDA1, PMDA2, PMDA3, PMDA4,
PMDA5 or PMDA6 bit in I2C mode. If this dummy write is not executed, DATT output will keep the initial value
(0dB) until the next write is executed. (Figure 43)
[AK4614]
MS1025-E-05 2015/06
- 61 -
SYSTEM DESIGN
Condition: Differential Input (DIE3-1 bit = 111), Differential Output (DOE6-1 bit = 111111)
4-wire Serial Control Interface (I2C pin = L)
Master mode (M/S pin = H)
The AK4614 has the analog Anti-Alias Filter for Differential Input.
The AK4614 does not have the analog Smoothing Filter for Differential Output.
AK4614
LOUT4+
1
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
LOUT2-
1
ROUT2+
1
ROUT2-
LOUT3+
1
LOUT3-
1
ROUT3+
1
ROUT3-
1
VSS2
1
AVDD2
1
VREFH2
1
LOUT4-1
ROUT4+
+
ROUT4-
1
LOUT5+
1
LOUT5-
1
ROUT5+
1
ROUT5-
1
LOUT6+
1
LOUT6-
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
TST4
TST5
CAD0
I2C
CCLK / SCL
CDTI / SDA
CDTO
TST1
TST3
NC
XTO
CAD1
CSN
TVDD2
VSS3
DVDD
MCKO
M/S
TST2
PDN
LOUT2+
40
39
38
37
36
35
34
33
32
31
29
28
30
27
25
24
26
23
22
21
ROUT1-
ROUT1+-
LOUT1+
DVMPD
LOUT1-
SDTI6
SDTI5
SDTI4
SDTI3
SDTI2
BICK
LRCK
SDTI1
SDTO3
SDTO2
SDTO1
VSS4
TVDD1
XTI / MCLK
61
62
63
64
65
66
67
68
69
70
72
73
71
74
76
77
75
78
79
80
ROUT6+
ROUT6-
OVF1 / DZF1
LIN1-
RIN1+
RIN1-
LIN2+
LIN2-
RIN2+
LIN3+
LIN3-
RIN2-
VSS1
VREFH1
VCOM
RIN3+
RIN3-
OVF2 / DZF2
LIN1+
AVDD1
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
MUTE
LPF
LPF
MUTE
1.6V to 3.6V
Digital
C1
C1
Analog 3.3V
Analog 3.3V
+
2.2u
0.1u
+
+
+
+
+
1.6V to 3.6V
Digital
1.8V
Digital Core
DSP
µP
Analog Ground
Digital Ground
0.1u
10u
10u
10u
0.1u
0.1u
0.1u
10u
10u
0.1u
Figure 60. Typical Connection Diagram1
[AK4614]
MS1025-E-05 2015/06
- 62 -
Condition: Single-end Input (DIE3-1 bit = 000), Single-end Output (DOE6-1 bit = 000000)
I2C Bus Control Interface (I2C pin = H)
Slave mode (M/S pin = L)
The AK4614 has the analog Anti-Alias Filter for Single-Ended Input.
The AK4614 has the analog Smoothing Filter for Single-Ended Output.
AK4614
LOUT4
1
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
LOUT2-
1
ROUT2
1
ROUT2-
LOUT3
1
LOUT3-
1
ROUT3
1
ROUT3-
1
VSS2
1
AVDD2
1
VREFH2
1
LOUT4-
ROUT4
ROUT4-
1
LOUT5
1
LOUT5-
1
ROUT5
1
ROUT5-
1
LOUT6
1
LOUT6-
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
TST4
TST5
CAD0
I2C
CCLK / SCL
CDTI / SDA
CDTO
TST1
TST3
NC
XTO
CAD1
CSN
TVDD2
VSS3
DVDD
MCKO
M/S
TST2
PDN
LOUT2
40
39
38
37
36
35
34
33
32
31
29
28
30
27
25
24
26
23
22
21
ROUT1-
ROUT1
LOUT1
DVMPD
LOUT1-
SDTI6
SDTI5
SDTI4
SDTI3
SDTI2
BICK
LRCK
SDTI1
SDTO3
SDTO2
SDTO1
VSS4
TVDD1
XTI / MCLK
61
62
63
64
65
66
67
68
69
70
72
73
71
74
76
77
75
78
79
80
ROUT6
ROUT6-
OVF1 / DZF1
LIN1-
RIN1
RIN1-
LIN2
LIN2-
RIN2
LIN3
LIN3-
RIN2-
VSS1
VREFH1
VCOM
RIN3
RIN3-
OVF2 / DZF2
LIN1
AVDD1
MUTE
MUTE
1.6V to 3.6V
Digital
C1
Analog 3.3V
Analog 3.3V
+
2.2u
0.1u
+
+
+
+
+
1.6V to 3.6V
Digital
1.8V
Digital Core
DSP
µP
Analog Ground
Digital Ground
MUTE
MUTE
MUTE
MUTE
MUTE
MUTE
MUTE
MUTE
MUTE
MUTE
10u
0.1u
0.1u
0.1u
10u
10u
0.1u
10u
10u
0.1u
Figure 61. Typical Connection Diagram2
[AK4614]
MS1025-E-05 2015/06
- 63 -
1. Grounding and Power Supply Decoupling
The AK4614 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2, TVDD1 and
TVDD2 are usually supplied from analog supply in system. Alternatively if AVDD1, AVDD2, TVDD1 and TVDD2 are
supplied separately, the power up sequence is not critical. VSS1, VSS2, VSS3 and VSS4 of the AK4614 must be
connected to analog ground plane. System analog ground and digital ground should be connected together near to
where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4614 as
possible, with the small value ceramic capacitor being the nearest.
2. Voltage Reference Inputs
The voltage of VREFH1, VREFH2 set the analog input/output range. The VREFH1 pin is normally connected to AVDD1
with a 0.1µF ceramic capacitor. The VREFH2 pin is normally connected to AVDD2 with a 0.1µF ceramic capacitor.
VCOM is a signal ground of this chip and output the voltage AVDD1x1/2. An electrolytic capacitor 2.2µF parallel with a
0.1µF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. Ceramic capacitors
should be as near to the pin as possible. No load current may be drawn from the VCOM pin. All signals, especially clocks,
should be kept away from the VREFH1, VREFH2 and VCOM pins in order to avoid unwanted coupling into the AK4614.
3. Analog Inputs
The ADC inputs correspond to single-ended and differential are able to select by DIE3-1 bits. When the inputs are
single-ended, internally biased to the common voltage (AVDD1x1/2) with 9k(typ) resistance. The input signal range
scales with the supply voltage and nominally 0.65xVREFH1 Vpp (typ) @fs=48kHz. When the inputs are differential,
internally biased to the common voltage (AVDD2x1/2) with 13k(typ) resistance. The input signal range between
LIN(RIN)+ and LIN(RIN) scales with the supply voltage and nominally ±0.65xVREFH1 Vpp (typ) @fs=48kHz The
ADC output data format is 2s complement. The internal HPF removes the DC offset.
The AK4614 samples the analog inputs at 128fs (@ fs=48kHz). The digital filter rejects noise above the stop band except
for multiples of the sampling frequency of analog inputs. The AK4614 includes an anti-aliasing filter (RC filter) to
attenuate a noise around the sampling frequency of analog inputs.
4. Analog Outputs
The DAC outputs correspond to single-ended and differential are able to select by DOE6-1 bits. When the outputs are
single-ended, the output signal range is centered around the VCOM voltage and nominally 0.63 x VREFH2 Vpp. When
the outputs are differential, the output signal ranges are ±0.63 x VREFH2 Vpp (typ) centered around the VCOM voltage.
The differential outputs are summed externally, VAOUT = [L(R)OUT+]-[L(R)OUT-] between L(R)OUT+ and L(R)OUT-.
If the summing gain is 1, the output range is 4.16Vpp (typ@AVDD2=3.3V). The bias voltage of the external summing
circuit is supplied externally. The DAC input data format is 2s complement. The output voltage is a positive full scale for
7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM voltage for
000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC
beyond the audio passband, when the single-end input mode. The differential output mode does not have the internal
analog filters, therefore this noise should be remove by the external analog filters.
DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV.
[AK4614]
MS1025-E-05 2015/06
- 64 -
5. External Analog Inputs Circuit
Figure 62 shows the input buffer circuit example 1. The input level of this circuit is 4.3Vpp (AK4614: typ. 2.15Vpp).
4.3Vpp
Analog In
2210k
5.1k
VP+
VP-
NJM5532
VP+ = +12V
VP- = -12V
4.7k
4.7k
NJM5532
Bias Bias
100.1Bias
10k
10k
VA
VA = +3.3V
AIN+
AK4614
2.15Vpp
AIN-
Figure 62. Input buffer circuit example 1 (DC coupled single-end input)
Figure 63 shows the input buffer circuit example 2. The input level of this circuit is 4.3Vpp (AK4614: typ. 2.15Vpp).
4.3Vpp
Analog In
2210k
5.1k
VP+
VP-
NJM5532
VP+ = +12V
VP- = -12V
4.7k
4.7k
NJM5532 10
AIN+
AK4614
2.15Vpp
102.15Vpp AIN-
Figure 63. Input buffer circuit example 2 (AC coupled single-end input)
Figure 64 shows the input buffer circuit example 3. The input level of this circuit is 2.15Vpp (AK4614: typ. 2.15Vpp).
Analog In
Analog In
2.15Vpp
2.15Vpp
10
10
AIN+
AIN-
AK4614
Figure 64. Input buffer circuit example 3 (AC coupled differential input)
[AK4614]
MS1025-E-05 2015/06
- 65 -
Figure 65 shows the input buffer circuit example 4. The input level of this circuit is 2.15Vpp (AK4614: typ. 2.15Vpp).
Analog In
2.15Vpp 10
AIN+
AIN-
AK4614
Open
Figure 65. Input buffer circuit example 4 (AC coupled single-end input)
6. External Analog Outputs Circuit
Figure 66 shows the output buffer circuit example 1. The output level of this circuit is 4.16Vpp (AK4614: typ. 2.08Vpp).
4.7k
VP+ = +12V
VP- = -12V
R1
4.7k
AOUT-
AK4614
AOUT+ 4.16Vpp
Analog Out
2.08Vpp
2.08Vpp
VP+
VP-
NJM5532
470p
R1
4.7k
470p
4.7k
When R1=200
fc=93.2kHz, Q=0.712, g=-0.1B at 40kHz
When R1=180
fc=98.2kHz, Q=0.681, g=-0.2dB at 40kHz
3900p
20
20
2200p
A
B
Figure 66. Output buffer circuit example 1 (DC coupled differential output)
Figure 67 shows the output buffer circuit example 2. The output level of this circuit is 4.16Vpp (AK4614: typ. 2.08Vpp).
4.7k
VP+ = +12V
VP- = -12V
R1
4.7k
AOUT-
AK4614
AOUT+ 4.16Vpp
Analog Out
2.08Vpp
2.08Vpp
VP+
VP-
NJM5532
470p
R14.7k
470p4.7k
When R1=180
fc=90.1kHz, Q=0.735, g=-0.04B at 40kHz
When R1=150
fc=99.0kHz, Q=0.680, g=-0.23dB at 40kHz
3900p
22
22
20
20
2200p
A
B
Figure 67. Output buffer circuit example 2 (AC coupled differential output)
[AK4614]
MS1025-E-05 2015/06
- 66 -
Figure 68 shows the output buffer circuit example 3. The output level of this circuit is 4.16Vpp (AK4614: typ. 2.08Vpp).
4.7k
VP+ = +12V
VP- = -12V
AOUT-
AK4614
AOUT+ Analog Out
2.08Vpp 4.7k
VP+
VP-
NJM5532 4.16Vpp
OPEN
10k
22470p
470p
4.7k4.7k
Figure 68. Output buffer circuit example 3 (AC coupled single-end output)
Figure 69 shows the output buffer circuit example 4. The output level of this circuit is 2.08Vpp (AK4614: typ. 2.08Vpp).
AOUT-
AK4614
AOUT+ Analog Out
2.08Vpp
10k
22
2.08Vpp
OPEN
Figure 69. Output buffer circuit example 4 (AC coupled single-end output)
[AK4614]
MS1025-E-05 2015/06
- 67 -
PACKAGE
80-pin LQFP ( Unit: mm )
14.0±0.2
12.0±0.2
0.50
120
21
40
4160
61
80
12.0±0.2
14.0±0.2
1.25TYP 0.08 M
0.125+0.10
-0.05
0.50±0.2
1.85MAX
0.10 +0.15
-0.10
1.40±0.2
0.10
0.20±0.1 0° ~ 10°
Package & Lead frame material
Package molding compound: Epoxy resin, Halogen (bromine, chlorine) free
Lead frame material: Cu
Lead frame surface treatment: Solder (Pb free) plate
[AK4614]
MS1025-E-05 2015/06
- 68 -
MARKING
AK4614VQ
XXXXXXX
1) Pin #1 indication
2) Date Code: XXXXXXX(7 digits)
3) Marking Code: AK4614VQ
4) Asahi Kasei Logo
[AK4614]
MS1025-E-05 2015/06
- 69 -
REVISION HISTORY
Date (Y/M/D)
Revision
Reason
Page
Contents
08/10/21
00
First Edition
09/03/27
01
Error Correct
10
11
ANALOG CHARACTERISTICS
DAC Analog Output Characteristics (single/differential)
Output Voltage,
AOUT=0.65xVREFH2 →AOUT=0.63xVREFH2
43
■ Zero Detection
Mode numbers were corrected.
49
ADC Partial Power-Down Function
(1) PMDAC bit → PMAD1-3 bits
50
■ DAC Partial Power-Down Function
In the line 2, PD6-1 bits → PMDA6-1 bits
52
Figure 52 was changed.
59
09H D2, D1, D0 were corrected.
DOE3 → DIE3, DOE2 → DIE2, DOE1 → DIE1
63
4. Analog Outputs
“±0.65 x VREFH2 Vpp” → “±0.63 x VREFH2 Vpp”
“4.29Vpp” → “4.16Vpp”
Specification
Change
10
ANALOG CHARACTERISTICS
ADC Analog Input Characteristics (differential)
S/(N+D) fs=48kHz, -1dBFS: 89 → 88 (min)
12/11/19
02
Error
Correction
57
■ Register Definitions
TDM format table
Mode 2: TDM1-0 bits = “11” → “10”
Mode 3: TDM1-0 bits = “01 → “11”
13/07/03
03
Description
Addition
44
■ Digital Attenuator
A description was added.
Figure 43 was added.
60
■ Register Definitions
A description was added.
04/09/29
04
Error
Correction
30
Differential / Single-End Input selection
L/RIN1-3- pins L/RIN1-/3- pins
15/06/11
05
Error
Correction
15-18
SWITCHING CHARACTERISTICS
TDM512 mode: TDM0 bit = 0, TDM1 bit = 1
TDM1 bit = 0, TDM0 bit = 1
TDM256 mode: TDM0 bit = 1, TDM1 bit = 0
TDM1 bit = 1, TDM0 bit = 0
33
Audio Serial Interface Format
(2) TDM Mode
TDM256 mode (fs = 48kHz) (fs= 96kHz)
[AK4614]
MS1025-E-05 2015/06
- 70 -
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application of
AKM product stipulated in this document (Product), please make inquiries the sales office of AKM
or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application
examples of AKM Products. AKM neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of AKM or any third party with respect to the
information in this document. You are fully responsible for use of such information contained in this
document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY
LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH
INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices, elevators
and escalators, devices related to electric power, and equipment used in finance-related fields. Do not
use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible
for complying with safety standards and for providing adequate designs and safeguards for your
hardware, software and systems which minimize risk and avoid situations in which a malfunction or
failure of the Product could cause loss of human life, bodily injury or damage to property, including
data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and regulations.
The Products and related technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth
in this document shall immediately void any warranty granted by AKM for the Product and shall not
create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.